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Abstract: (1) Background: A typical cardiac cycle consists of a P-wave, a QRS complex, and a T-wave,
and these waves are perfectly shown in electrocardiogram signals (ECG). When atrial fibrillation
(AF) occurs, P-waves disappear, and F-waves emerge. F-waves contain information on the cause
of atrial fibrillation. Therefore it is essential to extract F-waves from the ECG signal. However,
F-waves overlap the QRS complex and T-waves in both the time and frequency domain, causing this
matter to be a difficult one. (2) Methods: This paper presents an optimized resonance-based signal
decomposition method for detecting F-waves in single-lead ECG signals with atrial fibrillation (AF).
It represents the ECG signal utilizing morphological component analysis as a linear combination
of a finite number of components selected from the high-resonance and low-resonance dictionaries,
respectively. The linear combination of components in the low-resonance dictionary reconstructs
the oscillatory part (F-wave) of the ECG signal. In contrast, the linear combination of components
in the high-resonance dictionary reconstructs the transient components part (QRST wave). The
tunable Q-factor wavelet transform generates the high and low resonance dictionaries, with a high
Q-factor producing a high resonance dictionary and a low Q-factor producing a low resonance
dictionary. The different Q-factor settings affect the dictionaries’ characteristics, hence the F-wave
extraction. A genetic algorithm was used to optimize the Q-factor selection to select the optimal
Q-factor. (3) Results: The presented method helps reduce RMSE between the extracted and the
simulated F-waves compared to average beat subtraction (ABS) and principal component analysis
(PCA). According to the amplitude of the F-wave, RMSE is reduced by 0.24–0.32. Moreover, the
dominant frequency of F-waves extracted by the presented method is clearer and more resistant
to interference. The presented method outperforms the other two methods, ABS and PCA, in F-
wave extraction from AF-ECG signals with the ventricular premature heartbeat. (4) Conclusion:
The proposed method can potentially improve the accuracy of F-wave extraction for mobile ECG
monitoring equipment, especially those with fewer leads.

Keywords: F-wave extraction; atrial fibrillation; resonance-based signal decomposition; morphologi-
cal component analysis; wavelet transform; genetic algorithm

1. Introduction

Atrial fibrillation (AF) is the most common persistent arrhythmia, with 33.5 million
patients all over the world [1,2]. AF directly endangers the health of patients and also
increases the risk of coronary heart disease, hypertension, and heart failure. Therefore,
the diagnosis and monitoring of AF patients are of great significance. In clinical practice,
a body surface electrocardiogram (ECG) is often used to monitor AF patients. Under
normal circumstances, the ECG signal consists of P-wave generated by atrial activity and
QRS-wave and T-wave caused by ventricular activity. When AF occurs, the ECG signal will
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be manifested as an RR-interval disorder and disappearance of the P-wave. Additionally,
the serrated F-wave appears instead of the P-wave. By analyzing the frequency spectrum
and amplitude of the F-wave, not only can we distinguish the type of AF but also judge
whether AF relapses. However, how to extract F-waves from ECG becomes a difficult
problem since F-waves overlap with QRST-wave in time and space [3].

With regards to F-wave extraction in multi-lead ECG signals, Stridh et al. [4,5] pro-
posed a spatiotemporal QRST elimination method. This method utilizes spatial transforma-
tion to accurately align the ECG signals of different leads, then adds all the QRST items to
get the average template, and finally subtracts the template from the original signal to get
the AF-wave. Principal component analysis (PCA) [6,7] and independent component anal-
ysis (ICA) [8–10] determine a set of basic components according to the intrinsic relationship
of ECG vectors in different leads and then use the amplitude or dominant frequency of
AF-wave to select the components for a reconstruction of AF. These methods start from the
spatial composition of ECG signal and are insensitive to QRST waveform change and noise.
Petrenas [11] and Mateo [12] proposed a neural network extraction algorithm by adopting
the lead ECG data far away from the atrium as the reference to train the QRST template.
These methods adopt the correlation between leads as prior information. However, they
cannot guide the extraction of AF-wave in single-lead ECG. With regards to AF-wave
extraction from single-lead ECG signal, the template elimination method [13] is similar
to the spatiotemporal QRST elimination method. They both adopt multiple heartbeat
data to construct the QRST template and then realize AF-wave extraction by eliminating
QRST-wave, which is simple and easy to operate. However, they are sensitive to QRST
waveform changes. In recent years, with the development of wearable medical devices,
researchers began to focus on how to use certain characteristics of AF signals themselves to
improve the extraction effect of AF-wave.In reference [14], the heartbeat similarity of the
single-lead ECG signal was used to segment the signal, which was then decomposed. Next,
the AF-wave was extracted based on the non-stationary characteristics of AF. However,
AF patients have great individual differences in ECG signals and are often accompanied
by diseases such as ventricular premature contraction and indoor differential conduction,
which may affect the effect of AF-wave extraction methods. The F-wave has the charac-
teristics of the harmonic signal, while the QRST-wave has the characteristics of periodic
shock. However, to the author’s knowledge, there is no relevant research on the method of
extracting F-waves according to this law.

In the fields of feature extraction in EEG signals [15,16] and fault feature extraction in
mechanical vibration signals [17,18], there are cases where different signal components are
divided from the perspective of shape. Morphological component analysis (MCA) [19] is a
compelling new method to solve the problem of signal and image feature separation [20].
MCA uses the differences between the different components of the signal to separate the
signal. Tunable Q-factor wavelet transform (TQWT) [21] enables the tunable Q-factor
wavelet to achieve optimal matching for signals with specific oscillation properties by
selecting Q-values. After the TQWT processes the signal, it exhibits sparse properties in the
wavelet subbands.

MCA decomposition relies on two dictionaries with different shape types, while
tunable wavelets can be used to generate dictionaries with varying forms of oscillation.
Considering the different changes of F-waves and QRST waves, this paper utilizes the
resonance-based signal decomposition method to carry out F-wave extraction from the
single-lead central electrical signal. In this paper, high-resonance and low-resonance
dictionaries are obtained through TWQT. The linear combination of the components in the
high-resonance dictionary reconstructs the oscillatory part of the ECG signal, and the linear
combination of the components in the low-resonance dictionary reconstructs the transient
components part. Meanwhile, MCA represents the signal as a linear combination of a finite
number of components by sparse decomposition, picked from high-resonance and low-
resonance dictionaries, respectively. However, the dictionaries produced under different
Q-factors are different. Under the influence of the characteristic laws of F-waves and QRST
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waves, the effect of the high and low resonance dictionary of unselected Q-factors on the
extraction effect of F-waves did not reach good expectations. To obtain better high-low
resonance dictionary pairs, this paper uses a genetic algorithm to optimize the selection of
the Q-factor.

2. Methods
2.1. Resonance-Based Signal Decomposition

This section provides a comprehensive introduction to the optimized resonance-based
signal decomposition method, which will be utilized for F-wave extraction in Section 3.

The morphological component analysis represents the signal sparsely as a sum of
several components. These components are selected from two dictionaries with different
waveform morphological types. The components of the various dictionaries are used to re-
construct the components of the signal with varying waveform characteristics. The resonant
sparse decomposition of the signal is a special type of morphological component analysis
obtained using the tunable Q-factor wavelet transform for both dictionaries. When the
Q-factor is different, the tunable Q-factor wavelet decomposition can generate components
of various oscillatory forms. A high Q-factor generates a dictionary of signal components
of the shock type. In contrast, a low Q-factor generates a dictionary of signal components
of the steady-state oscillation form. By decomposition reconstruction, the transient and
oscillatory parts of the signal can be extracted.

2.1.1. Forms of Oscillation of the Signal

The form of oscillation of a signal can be distinguished by the Q-factor, defined as
the ratio of the signal’s center frequency to the width of the frequency band. Therefore,
the better the signal frequency aggregation, the higher the Q-factor, and the more the
waveform will behave as a continuous oscillation. These manifestations are shown in
Figure 1. Figure 1a,c,e,g show the time-domain waveforms of the signal, and Figure 1b,d,f,h
show their frequency spectra, respectively. Although the frequencies of Figure 1a,e are
different, they have the same oscillation form, expressed in the frequency domain as
the same ratio of frequency center to bandwidth, and therefore have the same Q-factor.
Comparing Figure 1a,e with Figure 1c,g, it can be seen that the higher the Q-factor, the
more continuous the oscillation is. QRS waves are shocking in ECG signals and can be
considered transient signals. A basis function achieves a sparse representation with a high
Q-factor. At the same time, the F-wave occurs continuously after the onset of AF, so this
signal with continuous oscillation can be sparsely represented by a basis function with a
low Q-factor.

2.1.2. Basis Function Construction Based on the Tunable Q-Factor Wavelet Transform

In the resonance-based signal decomposition method, tunable Q-factor wavelet trans-
form (TQWT) can generate basis functions with different Q-factors through two-channel
filter banks [19] as shown in Figure 1.

Suppose that α and β represent the scale parameters of low-pass and high-pass fil-
ter banks, respectively. When Q-factor Q and redundancy γ are determined, the scale
parameters α and β can be given by:

β =
2

(Q + 1)
(1)

α = 1− β

λ
(2)

It can be found from Equations (1) and (2) that increasing Q and γ will make the
scale parameters α and β smaller, i.e., the frequency resolution of the filter banks will be
improved. TQWT utilizes the two-channel filter banks as shown in Figure 2 to realize signal
decomposition iteratively. The L-layer TQWT is shown in Figure 3.
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Figure 1. Different forms of Q-factor waveforms.The Q-factor in the figure is the natural wave.
The left part is the Q-factor time-domain diagram, and the right part is the Q-factor frequency
domain diagram.
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Figure 3. Tunable Q-factor wavelet transform.

The maximum decomposition level Lof TQWT is determined by Equation (3).

L =

⌊
log[N/4(Q + 1)]

log[(Q + 1)/(Q + 1− 2/r)]

⌋
(3)

where N is the length of the signal, bc is the symbol for rounding down.
It can be found from Equation (3) that the number of decomposition layers L will be

too large if Q and γ are blindly increased, which results in a waste of computing resources.
Moreover, certain singular signals will appear in the sub-band signals of TQWT if Q and γ
are too large, which does not help obtain the best decomposition effect. Therefore, selecting
an appropriate Q and γ according to the characteristics of the signal is crucial for obtaining
the ideal decomposition effect. Good localization performance is already available for
TQWT when γ equals or is greater than 3. In this work, γ = 3 is selected for reducing the
calculation load. Thus, the key to obtaining the ideal decomposition effect lies in how to
adaptively select the optimal Q-factor Q. However, the Q-factor of the traditional resonance-
based signal decomposition method is usually selected manually, which is difficult to
obtain an ideal decomposition effect due to the existence of randomness.

2.1.3. Atrial Fibrillation Wave Separation Based on Morphological Component Analysis

Resonance-based signal decomposition utilizes morphological component analysis
(MCA) to separate the signal components non-linearly according to the oscillation character-
istics and establishes the best sparse representation of high and low resonance components.
Provided that the observed signal can be expressed as two components:

x = x1 + x2 (4)

MCA aims at estimating the QRST components x1 and F-wave component x2 from
the mixed ECG signal x. It is assumed that the signals x1 and x2 can be sparsely expressed
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by the base function libraries (or frames) S1 and S2, respectively. S1 and S2 have a low
correlation. The objective function of MCA can be expressed as:

J(W1, W2) = ‖x− S1W1 − S2W2‖2
2 + λ1‖W1‖1 + λ2‖W2‖1 (5)

where λ1 and λ2 are the regularization parameters. W1 and W2 are the transform coefficients
of the signals x1 and x2 under the frames S1 and S2, respectively. S1 and S2 are different
basis functions for the Q-factor generated by the tunable Q-factor wavelet transform.

The split augmented lagrangian shrinkage algorithm (SALSA) is utilized to iterate
Equation (5) to update the transformation coefficients and obtain the minimum objective
function J∗.

W∗1 and W∗2 are the high and low resonance transformation coefficients, respectively,
which corresponds to the minimum objective function J∗. The estimated high and low
resonance components x̂1 and x̂2 are given by:

x̂1 = S1W∗1 (6)

x̂2 = S2W∗2 (7)

2.1.4. Q-Factor Selection Based on Genetic Algorithm

In order to avoid the randomness arising from the manual selection of the Q-factor,
this paper presents an optimized resonance-based signal decomposition method by in-
troducing a genetic algorithm (GA), as shown in Figure 4. This method can adaptively
select the optimal Q-factor according to the characteristics of the signal, which makes the
oscillation characteristics of both the corresponding TQWT basis function and the signal
to be separated reach the optimal matching. This is conducive to obtaining a better signal
separation effect.

Considering the statistical distribution characteristics of F-wave and QRST-wave, the
presented method aims to maximize the kurtosis of low resonance components and utilizes
GA to optimize the Q-factor. The specific process is as follows:

1. Initialization: Randomly initialize the population and select binary coding mode.
The Q-factors Q1 and Q2 are encoded by binary coding mode and the encoded Q1 and
Q2 form chromosomes. The population size is set to 40, and the maximum genetic
algebra is 200;

2. Fitness evaluation: The chromosome is decoded to get the Q-factors Q1 and Q2. The
signal is decomposed by the resonance-based signal decomposition to calculate the
kurtosis difference between high and low resonance components, which is adopted as
the evaluation of individual fitness;

3. Genetic manipulation: Selection, crossover, and mutation. In each genetic process,
10% of the chromosomes with high fitness will be retained, and the rest will be selected
by a random traversal sampling method to breed the next generation. The crossover
method is a single-point crossover, and the probability is 0.67. The probability of
variation is 0.0175;

4. Iteration: After the emergence of new individuals, repeat steps 2 and 3 so as to update
the population by using the new individuals;

5. Termination: The maximum genetic algebra is defined as the termination condi-
tion. The optimization process will end when the genetic algebra reaches the maxi-
mum value.
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Figure 4. F-wave extraction based on the optimized resonance-based signal decomposition.

2.2. Data Sources and Evaluation Indicators
2.2.1. Construction of the Simulated Signal

The simulation method in [4] is utilized to construct the simulated atrial fibrillation
(AF) signal. A trigonometric wave is used to simulate atrial signal, and normal clini-
cal heartbeat is used to simulate ventricular signal. The simulated AF signal combines
simulated atrial and actual ventricular signals.

1. Atrial Activity
The F-waves are generated through a saw-tooth model, which is defined by a funda-
mental and M-1 harmonics.

x f (n) =
M

∑
m=1

am(n) sin

(
mw0n +

∆ f
f f

sin
(

w f n
))

(8)

where w0 = 2π f0 is the fundamental frequency, ∆ f is frequency deviation, and
w f = 2π f f is the modulation frequency. The amplitude am(n) is defined as:

am(n) =
2

mπ
[a + ∆a sin(wan)] (9)

where a, ∆a, and wa = 2π fa denotes the amplitude, modulation amplitude, and
amplitude modulation frequency, respectively. Three types of F-waves are generated
by using the parameters in Table 1.
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Table 1. Three types of F-waves and the corresponding parameters.

A B C

f0(Hz) 4 8 12
∆ f 0(Hz) 0.2 0.3 0.3
Fs(Hz) 500 500 500

M 3 (CD) 5 5
a(I I, V1, V5) [60 50 40] [60 50 40] [60 50 40]

∆a(I I, V1, V5) [50 25 15] [18 15 12] [25 15 10]
fa 0.08 0.5 0.5

Note: fs (Hz) is the sampling frequency.

2. Ventricular Activity
The clinical data of desensitization from several hospitals in Shanghai collected by
Shanghai Digital Medical Technology Co., Ltd. are adopted to simulate the Venture
Activity. The clinical data of Shanghai hospitals are 12-lead ECG signals with a
duration of 10 s and a sampling frequency of 500 Hz. After the electrode sheet collects
the ECG signal, it is amplified 400 times and then discretized. In the hardware circuit,
a notch filter is used to remove the power frequency interference, a low-pass filter with
a cut-off frequency of 200 Hz is used to remove the high-frequency interference, and a
high-pass filter with a cut-off frequency of 0.1 Hz is used to remove the baseline drift.
A total of 500 normal ECG records and 300 sinus rhythm and occasional ventricular
premature beats are selected from the database with 5000 records. Ventricular activity
is stimulated by the ECG signals of sinus rhythm and ventricular premature beat.

2.2.2. Evaluation Indicators

The results are evaluated in two aspects, i.e., time-domain and frequency-domain.
In the time-domain, root means square error (RMSE) and the normalized mean squared

error (NMSE ) [22] are selected as the evaluation indicators.

RMSE =

√(
x f − x̂1

)2
(10)

NMSE =

∥∥∥x f − x̂1

∥∥∥2

2∥∥∥x f

∥∥∥2

2

(11)

where x f is the simulated atrial signal, and x̂1 the high resonance component reconstructed
from the extracted F-wave according to Equation (6).

In the frequency domain, the power spectrum of x̂1 is adopted to measure the accuracy
of F-wave dominant frequency extraction. The Welch method is utilized to calculate the
power spectrum, and the cosine function of 2 s length is selected as the window function.
The frequency with the highest amplitude–frequency response within 3∼10 Hz in the
power spectrum of x̂1 is adopted as the dominant frequency of F-wave. A higher spectral
concentration (SC) [23] can indicate that the extracted F-wave is less distorted, so SC is
introduced as an evaluation index, and SC is calculated as

SC =
∑12

fi=3 PAA( fi)

∑Fs/2
fi=0 PAA( fi)

(12)

where Fs is the sampling rate, and PAA is the power spectrum calculated following
Welch’s method.
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3. Results
3.1. Parameter Settings
3.1.1. Selection of the High and Low Q-Factors

For the above 800 simulated ECG signals, the presented method is utilized to verify
the results. Firstly, a genetic algorithm (GA) is utilized to select the high and low Q-factors.
The population size is 40. The ending evolution algebra is 200. The crossover probability is
0.67. The variation probability is 0.0175. The optimal values are obtained after 43 iterations.
The final high and low Q-factors are 6.42 and 1.35, respectively.

3.1.2. Regularization Parameter

The regularization parameters λ1 and λ2 in Equation (5) affect the extracted energy
of x1 in two ways. If the parameter λ1 is fixed, increasing the parameter λ2 will reduce
the energy of x2 in Equation (7). If the regularization parameters λ1 and λ2 are decreased
simultaneously, the residual energy will increase. The experimental method is utilized to
select the regularization parameters in this work.

3.1.3. Redundancy

When γ is equal to or greater than 3, the tunable Q-factor wavelet transform (TQWT)
has achieved good localization performance. To reduce the calculation load, γ = 3 is selected
in this work.

3.2. The Extracted Results

AF-ECG signals are constructed by superpositioning normal ECG signals of three leads
(II, V1, and V5) and an F-wave of type A, respectively. The results of F-wave extraction by the
presented method are shown in Figure 5. Figure 5a–c show the extraction effect of F-wave
by using average beat subtraction (ABS) and principal component analysis (PCA) and the
presented method, respectively. The left side and right side of Figure 5a–c represent the
extraction effect in the time-domain and the comparison of the power spectrum estimated
by Welch’s method, respectively.

Next, three other situations are adopted to verify the effectiveness of the presented
method, as shown in Figure 6. Figure 6a shows the first situation: the extraction effect of
F-wave for the AF-ECG signals constructed by superposition of normal ECG signals of
lead-II and F-wave of type B. Figure 6b shows the second the situation: a noise with an
average amplitude of 0.02 mv is added based on the first situation. Figure 6c shows the
third situation: superposition of ECG signals with ventricular premature beats and F-wave
of type B.

It can be found from Figure 6a,b that the results obtained by the presented method
are similar to those obtained by ABS and PCA in the waveform. In noise loading, the
advantages of the presented method in the time domain are not obvious. In the case of
adding noise, F-waves extracted by the presented method contains some noise in terms of
waveform shape, and the amplitude of the extracted F-wave is closer to the added simu-
lated F-wave. Moreover, it can be found from the spectrum that the dominant frequency
amplitude of the presented method is significantly higher than ABS and PCA, which proves
its advantages. Figure 6c shows that for AF with ventricular premature beats, the F-wave ex-
tracted by ABS and PCA has a large residual at QRS, which affects the dominant frequency
analysis of F-waves in the spectrum. Therefore, it can be concluded that the presented
method is superior to ABS and PCA in both the time domain and frequency domain.
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Figure 5. F-wave extraction by the presented method on simulated F-wave for different leads. The
graphs in the left half of the chart are time-domain signals, and the six lines in each graph are, from
top to bottom, represent the raw ECG signal, simulated F-wave signal, synthetic atrial fibrillation
signal, F-wave extracted by the present method, F-wave signal extracted by ABS, and F-wave signal
extracted by PAC. The figure in the right half is the power spectrum estimated by the Welch method.
In the figure, method1 method2, and method3 are the present method, ABS, and PAC, respectively.
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(a) F-wave of B type

(b) With noise

(c) PVC

Figure 6. F-wave extraction with other situation.The graphs in the left half of the chart are time-
domain signals, and the six lines in each graph are, from top to bottom, represent the raw ECG signal,
simulated F-wave signal, synthetic atrial fibrillation signal, F-wave extracted by the present method,
F-wave signal extracted by ABS, and F-wave signal extracted by PAC. The figure in the right half is
the power spectrum estimated by the Welch method. In the figure, method1 method2, and method3
are the present method, ABS, and PAC, respectively.
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Figure 7 provides the comparison results of the presented method, ABS, and PCA.
It can be found that the presented method obtains smaller RMSE, which means that
the extracted F-wave is closer to the added simulated F-wave. It also indicates that the
presented method performs better than ABS and PCA.

Figure 7. Comparison of the presented method, ABS, and PCA.

It can be found from Table 2 that RMSE increases gradually with the increase of noise
amplitude. Under different amplitudes of noise, the presented method (MCA+TQWT) can
obtain smaller RMSE. This proves that the robustness of the presented method in extracting
F-wave is better than ABS and PCA.

Table 2. Robustness comparison of the presented method (MCA+TQWT), ABS, and PCA.

Average
Amplitude of

Noise
0.02 mv 0.025 mv 0.03 mv 0.035 mv

MCA + TQWT 5.28 ± 0.27 6.35 ± 0.16 7.23 ± 0.34 7.23 ± 0.34
PCA 7.32 ± 0.31 8.11 ± 0.36 9.66 ± 0.48 10.61 ± 0.59
ABS 9.25 ± 0.35 9.79 ± 0.55 10.36 ± 0.75 12.25 ± 1.31

Note: The evaluating indicator is RMSE between the estimated and simulated F-waves.

It can be found from Table 3 that with different F-waves and corresponding parameters,
the proposed method (MCA+TQWT) can obtain smaller RMSE and larger SC. This proves
that the proposed method is more robust in extracting F-waves than the methods of other
studies cited in this paper.
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Table 3. Robustness comparison of the presented method (MCA+TQWT) and methods in other studies.

NMSE(10−2) SC

A B C A B C

WABSt [23] 68.7 72.2 69.8 0.39 ± 0.11 0.40 ± 0.21 0.38 ± 0.19
MLEBt [23] 69.3 73.5 72.1 0.42 ± 0.14 0.44 ± 0.13 0.41 ± 0.22

DD-NLEMt [14] 59.5 63.7 62.3 0.47 ± 0.18 0.51 ± 0.23 0.55 ± 0.36
Present method 49.3 51.2 50.3 0.61 ± 0.15 0.63 ± 0.15 0.62 ± 0.21

Note: A, B, and C represent three types of F-waves and the corresponding parameters in Table 1.

4. Discussion

Average beat subtraction (ABS) is the most commonly used method for extracting F-
waves from single-lead ECG. It is simple to implement but might leave high power residue,
especially for ECG with abnormal beats. Using interpolation can decrease the discontinuity
at the borders of the ventricular segment and thus reduce the inference to the analysis of
the dominant frequency of the F-waves. However, it still works poorly when few beats
are contained in the signals, or ectopic beats exist in signals. Sparse decomposition is a
novel method for extracting F-waves. It is not bound to the number of heartbeats contained
and therefore has lower requirements for the length of the signal. It has been identified
that sparse decomposition performs outstandingly in extracting F-waves, even from ECG
with only one heartbeat [24]. Inspired by this, this paper uses sparse decomposition to
extract F-waves.

The optimized resonance-based signal decomposition method is a unique morpho-
logical component analysis (MCA). It can sparsely decompose signals into oscillatory and
transient components with the help of high-resonance and low-resonance dictionaries
generated by tunable Q-factor wavelet transform. Tunable Q-factor wavelet transform
(TQWT) adopts high and low Q-factors to describe the characteristics of high and low
resonance components, respectively. To the best of our knowledge, no previous study used
this method for extracting F-waves . This paper proves the feasibility of utilizing MCA +
TQWT to extract F-waves by comparing it with ABS and PCA. The high and low Q-factors
are related to the quality of extraction. When the Q-factors are optimized by a genetic
algorithm (GA), MCA performs better than ABS and PCA in the extraction effect. In the
presence of an ectopic heartbeat and different leads, the QRST-wave still has low resonance
characteristics, and MCA still keeps a good extraction effect without adjusting the Q-factor.
This indicates that the presented method has potential application value in single-lead ECG
monitoring equipment.

Experimental results show that the presented method is vulnerable to the influence
of Gaussian noise. However, the presented method still performs better than ABS and
PCA. The extracted F-wave of the presented method is closer to the simulated F-wave
in comparison with ABS and PCA. Moreover, sparse decomposition is necessary for the
presented method, which will increase the amount of computation. Therefore, how to
reduce the amount of computation is a problem to be solved in the future.

5. Conclusions

This paper extracts F-waves of AF-ECG signals by the presented method (MCA + TQWT).
By adjusting the Q-value, AF-ECG can be decomposed into shock and harmonic components
that correspond to QRST-wave and F-wave, respectively. The Q-value is selected by a genetic
algorithm (GA). The proposed method is verified by adopting the combination of real ECG
signals and simulated F-waves as the object. Experimental results show that, in comparison
with ABS and PCA, the presented method has certain advantages in both the time-domain
and frequency domain, especially when AF is accompanied by ventricular premature beat.
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