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Genomic imprinting is essential for development and growth and plays

diverse roles in physiology and behaviour. Imprinted genes have traditionally

been studied in isolation or in clusters with respect to cis-acting modes of gene

regulation, both from a mechanistic and evolutionary point of view. Recent

studies in mammals, however, reveal that imprinted genes are often co-regu-

lated and are part of a gene network involved in the control of cellular

proliferation and differentiation. Moreover, a subset of imprinted genes acts

in trans on the expression of other imprinted genes. Numerous studies have

modulated levels of imprinted gene expression to explore phenotypic and

gene regulatory consequences. Increasingly, the applied genome-wide

approaches highlight how perturbation of one imprinted gene may affect

other maternally or paternally expressed genes. Here, we discuss these novel

findings and consider evolutionary theories that offer a rationale for such

intricate interactions among imprinted genes. An evolutionary view of these

trans-regulatory effects provides a novel interpretation of the logic of gene

networks within species and has implications for the origin of reproductive

isolation between species.
1. Genomic imprinting in development
Genomic imprinting is a mechanism of gene regulation whereby genes are tran-

scribed from either the maternally or the paternally inherited allele. In contrast

to the majority of genes that are expressed from both the parental chromo-

somes, this is the property of an exclusive minority of a few hundred genes

both in seed plants and mammals [1–3]. Imprinting evolved convergently in

the two groups and much progress has been made on understanding the under-

lying mechanisms [4]. In the current review, we concern ourselves primarily

with the data from mammals, though theoretical aspects of our discussion

can be generalized to imprinting in plants—and perhaps also social insects [5].

Imprinted genes are frequently, but not always, organized into clusters of

coordinately regulated genes [6]. Although hundreds of protein-coding genes

and non-coding RNAs (ncRNAs) are controlled by genomic imprinting in

eutherians, only eight of these, all involved in growth, are imprinted also in

metatherians (marsupials), with no evidence for parental-origin-specific,

mono-allelic gene expression in monotremes (e.g. platypus) [7]. Thus, genomic

imprinting probably evolved in a therian ancestor, when the extra-embryonic

lineage became essential for offspring development and with the emergence

of extensive maternal contributions to postnatal development.
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Genomic imprinting provides a dosage regulatory mech-

anism that has been demonstrated to be important for normal

embryonic growth and development via detailed genetic, epi-

genetic and phenotypic dissection of mouse mutant

models [8,9] and through studies on congenital imprinting

disorders in humans (e.g. [10]). A number of postnatal phe-

notypes are attributed also to improper imprinted gene

regulation, including diabetes, obesity, mental retardation,

feeding behaviour and cancer. The biochemical systems

underpinning these phenotypes control cell signalling, nutri-

ent transport, metabolism, protein synthesis and the action of

transcription factors [11].

The epigenetic mechanisms governing the parental-origin-

specific, mono-allelic expression of imprinted genes involve

differential DNA methylation marks [12]. Using knockout

mouse models, ‘imprinting control regions’ (ICRs) have been

identified that confer on the two parental alleles of an imprinted

locus different DNA methylation states, which are inherited

from the germ line to provide a stable parental-origin-specific

mark on each allele in the embryo. There is growing evidence

to also support contributions from post-translational histone

modifications in imprinted gene regulation [13].

The mechanisms that give rise to imprinted gene

expression have been studied in depth at numerous imprinted

loci, particularly in mice, and imprinting provides an ideal

paradigm to compare the active and silent alleles at a single

locus [14]. Well-known mechanisms include the action of

small and long non-coding RNAs (lncRNAs) working in cis
to regulate gene expression at imprinted loci [15,16], while

others employ allele-specific differential binding of the methyl-

ation-sensitive insulator protein CTCF, known as the ‘enhancer

competition mode’ of gene regulation [17,18].

Here, we review other levels of imprinted gene regulation

that are less well understood—namely, the co-regulation of

imprinted genes in an ‘imprinted gene network’ (IGN) [19]

and how several imprinted genes modify the expression of

others in trans. We interpret these phenomena in the light

of the main theories of the evolution of genomic imprinting,

which we first review below.
2. Evolutionary theories for imprinted gene
expression

Among various theories to explain the evolution of genomic

imprinting (reviewed in [20,21]) two have attracted broad

attention: the ‘kinship theory’, proposed by Haig [22], and

the ‘maternal–offspring co-adaptation theory’, proposed by

Wolf and co-workers [23–25].

The kinship theory of imprinting—often referred to as the

parental conflict theory—views the modulation of gene

expression levels as the ultimate function of imprinting. It

holds that imprinting evolved because of the opposing effects

that modifying a gene’s dosage can have on the fitness of one’s

mother’s and father’s kin. Within an individual, the maternally-

and paternally derived alleles of a gene can, therefore, ‘disagree’

over the optimal expression level: increasing the total dosage

might increase one’s maternal kin’s fitness and reduce one’s

paternal kin’s fitness, or vice versa. Under the kinship theory,

complete imprinted silencing is the expected resolution to this

within-gene conflict, and the maternally expressed genes

(called ‘MEGs’) and the paternally expressed genes (called
‘PEGs’) that result are expected to express at the maternally or

paternally derived allele’s optimal level, respectively [26].

The co-adaptation theory [23] sees imprinting as a way to

choose which of the two alleles at a locus to express. It rests on

the idea that one of the two alleles confers higher fitness because

of its epistatic interactions with other genes, which may reside in

other individuals or within the same individual [25]. Here ‘epis-

tasis’ is used in the statistical sense, which is common usage in

population genetics, in contrast to the biochemical sense,

which envisions genes residing in a shared molecular pathway

[27]. When natural selection acts on such epistatic interactions

between genes, populations become enriched for haplotypes

that associate favourably interacting—or ‘co-adapted’—alleles

[28]. Imprinting is predicted to evolve under two different scen-

arios. First, a mother’s genotype is more likely to have a relatively

high-fitness interaction with her offspring’s maternally inherited

than with its paternally inherited haplotype, as the offspring’s

maternally inherited haplotype is enriched for alleles that inter-

act well with the alleles of the mother’s genotype. This favours

the imprinted silencing in the offspring of the paternally

inherited alleles of genes involved in these interactions [23].

Second, one expects that the allelic interactions within any par-

ticular haplotype—e.g. allelic interactions within the paternally

derived haplotype—will produce higher fitness for their bearers,

on average, than will the interactions of alleles chosen from

opposite parental origins. This will be especially true for genes

that are physically linked on a chromosome, because tight link-

age prevents recombination from breaking up favourably

interacting alleles. This can select for imprinted expression of a

gene that interacts epistatically with an imprinted gene [24].
3. Network(s) of coordinately expressed
imprinted genes

Earlier developmental studies used chromosomal-translocation

mouse lines to generate maternal and paternal uniparental

disomies, or duplications, for individual chromosomes or

chromosomal regions. Besides unravelling specific roles of

imprinting, these studies provided evidence for phenotypic

cross-talk between different imprinted chromosomal domains

[29]. Subsequent research showed that many imprinted genes

are functionally related and part of common pathways.

The most striking example of this is provided by the insulin

(INS)–insulin-like growth factor (IGF) signalling pathway,

which comprises the imprinted IGF2, IGF2R, INS2 and the

growth factor receptor binding protein GRB10 encoding

genes. This pathway controls cellular proliferation and

growth. Other biological functions that involve multiple

imprinted genes include nutrient and ion transport, extracellu-

lar matrix control, and protein synthesis and degradation [11].

Insights into common roles and co-regulation have also

emerged from studies on human imprinting disorders.

Although linked to genetic or epigenetic changes at individ-

ual imprinted loci, some of these complex disorders show

considerable clinical overlap, with frequent occurrence of

common co-morbidities including aberrant growth, obesity

and type-2 diabetes [30].

Genes within individual imprinted domains often show simi-

lar developmental patterns of expression. Furthermore,

imprinted genes become upregulated in concert at different

domains upon differentiation, particularly in brain and placental

development [11,31]. Systems biology approaches have



Table 1. Predictions from two evolutionary theories (‘kinship’ and ‘co-adaptation’) for the outcome of knockout or overexpression studies with imprinted genes.

experimental treatment predictions from kinship theory predictions from co-adaptation theory

MEG knockout/knockdown MEG expression level down in cis

PEG expression level up in cis and trans

expression levels of MEGs more perturbed than expression levels of

PEGs in cis and trans

enrichment of MEGs among suite of genes showing effects

PEG knockout/knockdown PEG expression level down in cis

MEG expression level up in cis and trans

expression levels of PEGs more perturbed than expression levels of

MEGs in cis and trans

enrichment of PEGs among suite of genes showing effects

MEG overexpression PEG expression level down in cis and trans expression levels of MEGs more perturbed than expression levels of

PEGs in cis and trans

enrichment of MEGs among suite of genes showing effects

PEG overexpression MEG expression level down in cis and trans expression levels of PEGs more perturbed than expression levels of

MEGs in cis and trans

enrichment of PEGs among suite of genes showing effects
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confirmed that many imprinted genes are indeed co-regulated in

their expression levels. Through comparison of tissue-specific

gene expression datasets, initiallysome 15 co-regulated imprinted

genes were pinpointed [19]. Comprehensive follow-up studies

indicated that the imprinted gene network comprises at least 60

imprinted genes as well as many non-imprinted genes [32,33].

In agreement with earlier studies [34,35], in fibroblastic cells

forced to exit the cell cycle through removal of serum from the cul-

ture medium, all imprinted genes analysed became strongly

upregulated, and the same was observed for many non-

imprinted genes that are part of the network [32]. Concordantly,

ectopic overexpression of imprinted genes reduced the prolifer-

ation rate of cultured fibroblasts. Conversely, when cells were

induced to re-enter the cell cycle, expression of the imprinted

genes was strongly downregulated. Similar observations were

made in an in vivo model of induced muscle regeneration and

differentiation [32]. MEGs and PEGs behaved similarly in the

cell-based and the in vivo tissue regeneration studies.

The new data evoke an intricate network of imprinted

genes involved in cell-cycle exit and differentiation. Whether

the structure of this network, which also comprises many

non-imprinted extracellular matrix genes, is comparable

between different cell types, or whether different networks

exist, is not yet known. Regardless, the idea of a coordinately

regulated network of imprinted genes is gaining traction.

In addition, besides the different cis-regulatory actions of

the products of imprinted loci—including the often repressive

role of imprinted lncRNAs—recent studies show that the pro-

ducts of imprinted loci can directly regulate other imprinted

genes in trans. Empirical examples are reviewed below in ‘Cis
and trans regulation by imprinted genes: testing the evolution-

ary predictions’. These observations, combined with the notion

of an imprinted gene network, urge us to consider what the

main evolutionary theories predict about the interactions

between—and the interdependence of—imprinted genes.

4. Evolutionary predictions for the interactions
between—and interdependence of—
imprinted genes

The ‘kinship’ (or ‘parental conflict’) theory [22] and the ‘co-

adaptation’ theory [23] are germane to a discussion of the
imprinted gene network and the trans-regulatory effects of

imprinted genes. Both theories were originally formulated to

explain the evolutionary origin of imprinted silencing in cis,
but extensions to trans-regulatory interactions, which follow

naturally, have since been made [24,25,36,37]. As described

above, the kinship theory [22] of genomic imprinting centres

on the conflict between alleles of maternal and paternal

origin over a gene’s expression level. But as the conflict over

expression level within a locus is resolved by imprinted

expression in cis, it creates a second conflict between loci over

the same issue. This is because the level of expression that an

MEG or a PEG will evolve to is necessarily higher than is opti-

mal for most other genes in the genome. All paternally derived

alleles in a genome would experience higher fitness if MEGs

were to reduce their expression, and vice versa for maternally

derived alleles and PEGs [36,38].

Here we apply this evolutionary logic to predict the

nature of the trans-regulatory interactions between imprinted

genes. Under the kinship theory, the expectation of trans-

regulatory effects stems from the between-gene conflict

mentioned above. A hypothetical example illustrates the

basic premise. Suppose that a gene unlinked to the paternally

expressed Igf2 is capable of modifying the expression level of

Igf2 in trans. If increased expression of the trans-regulator

gene results in decreased expression of Igf2, then the mater-

nally derived allele of the trans regulator will favour greater

expression than the paternally derived allele will. This dis-

agreement between maternally and paternally derived

alleles at the trans-regulator gene is yet another within-gene

conflict over total expression level, and, consequently, the

prediction is for imprinted silencing of the paternally derived

allele [26]. We therefore expect that MEGs with direct trans-

regulatory effects will reduce the gene expression level of

PEGs, and vice versa for PEGs with trans-regulatory effects

on MEGs (table 1 and figure 1). The underlying logic for

our prediction is not new—we are simply extending the kin-

ship theory to a novel source of within-gene conflict. In fact, it

is analogous to the way the kinship theory explains the reci-

procal imprinting pattern of genes such as Igf2 and Igf2r,

whose products have opposing effects on the phenotype [39].

One of the seemingly paradoxical findings in the empiri-

cal studies on the imprinted gene network [19,32] is that

both MEGs and PEGs are coordinately upregulated and
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are predicted for MEGs that encode proteins. (b) Under the co-adaptation theory [23 – 25], imprinting is favoured by natural selection to coordinate the expression of
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likely for linked genes, leading to a prediction of imprinted genes with cis-regulatory effects on other imprinted genes. Additionally, unlinked genes are subject to
the same selective pressure, giving rise to the predicted parental-origin-specific pattern of trans-regulatory effects.
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downregulated. This appears to run counter to the kinship

theory’s expectation that MEGs and PEGs will exert opposing

effects on each other’s expression levels. We suggest one

possible explanation for this coordinate regulation, speculat-

ive as it may be: conflict of the sort described above [37]. In

other words, concomitant expression of MEGs and PEGs is

exactly what one predicts when such genes are in conflict. If

the products of MEGs and PEGs have antagonistic effects on

phenotype (e.g. Igf2 and Igf2r), then any signal that upregulates

gene expression for one will come to be used by the other to

upregulate itself. Under the assumption that maternally and

paternally derived genomes have different optimal pheno-

types, any time a signal causes a PEG to be upregulated, an

MEG with antagonistic phenotypic effects should evolve to

‘eavesdrop’ for that signal and respond with upregulation

itself. Consequently, as an organism produces or receives

such a signal, both MEGs and PEGs will respond in concert.

We suggest that regulatory eavesdropping of this sort might

help to explain why imprinted genes with opposite patterns

of expression cluster. Residing in the same chromosomal

domain might help imprinted antagonists, such as the micro-

RNAs (miRNAs) of the Dlk1-Dio3 domain (see below),

coordinate their expression with that of their targets, producing

the trans-homologue effects that are seen at several imprinted

gene clusters [40] (figure 2). At an even more specific level of

coordination, MEGs and PEGs with opposing effects on a

single phenotype can share enhancers, as is the case for H19
and Igf2 [44].

Note that correlated expression patterns do not in any

way contradict the idea that there are MEGs and PEGs with

antagonistic effects on each other’s expression levels, and

single-gene knockout experiments, of the type reviewed in

the next section, are well suited to isolate this type of trans
effect. One testable prediction that follows from our model

of network evolution is that vertebrates with similar develop-

mental programmes but without imprinting (e.g. zebrafish)

would not evolve similar patterns of coordinated regulation

of the homologous genes. Where there is no imprinting, the

presumption is that there are no conflicts of interest between

parental genomes, and genes with antagonistic effects on

phenotype (like Igf2 and Igf2r) would not be ‘listening in’

on the signals used to regulate other genes.

The co-adaptation theory predicts that when an imprinted

gene epistatically interacts with a second, bi-allelically

expressed gene within the same individual, the latter will

evolve imprinted silencing in a matching direction to the first

[24] (figure 1). Because of the associations that selection

builds between interacting loci, the interaction between two

co-inherited alleles is likely to be more adaptive for its bearer

than an interaction involving alleles inherited from different

parents. This creates selection pressure to silence one allele at

a locus in a parental-origin-specific fashion. The theory is suffi-

ciently general to accommodate various modes of interaction

between genes: one interpretation could be that the genes

encode proteins that interact during development; another is

that genes could interact at the transcriptional level [24]. The

predictions that follow from the co-adaptation theory are

straightforward (table 1). Physical linkage on the same chromo-

some increases the likelihood that interacting genes will evolve

the same direction of imprinted silencing and expression. With

respect to predictions about trans modification of gene

expression levels, if imprinted genes have such effects, and if

such interactions are subject to selection, the co-adaptation

theory predicts that the interacting genes would be expressed

from the same parental genome. The theory does not, however,

predict the direction of gene expression level modification in
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such trans interactions. For example, in studies where an MEG

is knocked out or over-expressed, the co-adaptation theory pre-

dicts that the gene expression levels of other MEGs, which are

in the same network, are more likely to be affected (or dysregu-

lated) than those of PEGs, but it does not offer a prediction of

whether these other MEGs will be upregulated or downregu-

lated. With respect to imprinted gene networks and the

coordinate regulation of sets of imprinted genes, the co-

adaptation theory predicts separate networks for MEGs and

PEGs [24].
5. Cis and trans regulation by imprinted genes:
testing the evolutionary predictions

Imprinted nuclear lncRNAs regulate gene expression through

diverse mechanisms, both in cis and in trans. One mechanism

of in cis action of non-coding RNA is exemplified by the

imprinted Airn lncRNA at the Igf2r locus. Airn is expressed

from the paternal allele of the ICR, and its transcription inter-

feres with recruitment of RNA polymerase-II to the Igf2r
promoter, thus ensuring the imprinted expression of Igf2r
from the maternally inherited allele only [15]. In the

embryo proper, the sequence of the lncRNA transcript

seems not to be critical, as the process of transcription itself

is sufficient to silence Igf2r in cis [45]. In the placenta, how-

ever, the Airn lncRNA mediates the recruitment of the

lysine methyltransferase G9A (also called EHMT2, KMT1C)

to other genes of the domain, which then become repressed

on the paternal allele [46]. Other imprinted lncRNAs that

regulate chromatin in cis include Kcnq1ot1, at the growth-

related Kcnq1 imprinted domain, the Nespas lncRNA at the
Gnas imprinted locus, and possibly also the Gtl2 (also

called Meg3) lncRNA at the Dlk1-Dio3 imprinted domain

[16,47,48]. In the mouse placenta, Kcnq1ot1 lncRNA mediates

the recruitment in cis of Polycomb repressive complexes and

G9A [49,50]. This contributes to the allelic repression of several

imprinted genes of this domain. A simple picture emerges: cis-

acting imprinted lncRNAs (or their transcription) are involved

in the imprinted repression of neighbouring genes on the same

parental chromosome. In the examples above, paternally

expressed lncRNAs are involved in repression on the paternal

chromosome, thus giving rise to MEGs. Achieving imprinted

expression in this way (i.e. by cis silencing) is strongly predicted

by the kinship theory. This pattern is also consistent with the

co-adaptation theory.

There is a growing appreciation for the idea that besides

their well-characterized roles in cis regulation, imprinted

lncRNAs may also function in trans and thus have the poten-

tial to regulate many loci across multiple chromosomes. One

example is IPW, which regulates imprinted gene loci in trans
by interacting with G9A (figure 2). IPW is expressed from the

paternally inherited allele of the Prader–Willi syndrome

(PWS) locus on human chromosome 15 [51]. Induced pluri-

potent stem cells (iPSCs) derived from PWS patients, which

lack expression of IPW, exhibit elevated expression of the

maternally expressed non-coding RNA genes at the DLK1-
DIO3 locus on chromosome 14 [41]. The expression of these

MEGs can be restored to near wild-type levels by overexpres-

sion of IPW in trans, identifying the imprinted lncRNA as the

regulator of an imprinted gene network. Through recruitment

of G9A, IPW appears to modulate histone H3 lysine-9 methyl-

ation at the ICR of the DLK1-DIO3 domain. This would explain

how the paternally expressed lncRNA IPW affects expression
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of all the maternally expressed ncRNAs (miRNAs, snoRNAs

and lncRNAs) of this domain, a pattern of trans regulation

predicted by the kinship theory, but inconsistent with the

co-adaptation theory.

Using a mouse model of H19 deletion, Gabory et al. [52]

showed that loss of the imprinted H19 lncRNA (an MEG)

engendered an upregulation of a network of at least six

imprinted genes, both MEGs and PEGs, residing on six differ-

ent chromosomes (figure 3). Wild-type expression levels were

restored following overexpression of H19 in trans, indicating

that the lncRNA itself is important for this function, rather

than its transcription. H19 transcripts recruit the methyl-

CpG-binding domain protein MBD1 to the differentially

methylated regions (DMRs) associated with at least some of

the imprinted genes in this network [53]. It is through inter-

action with histone H3 lysine-9 methyltransferase that the

H19 lncRNA-MBD1 complex extensively modulates imprinted

gene expression. The similar repressive effects of H19 lncRNA

on the expression of MEGs and PEGs are evolutionarily unex-

pected. However, the five genes that Monnier et al. [53] showed

to be directly targeted by both H19 and MBD1 comprise four

PEGs and one MEG that is not imprinted at the stage of devel-

opment they studied, in line with the predictions of the kinship

theory. The co-adaptation theory predicts an effect of H19 on

MEGs only (table 1).

Other imprinted genes use their protein products to per-

form a trans-regulatory function. Murine Peg3 encodes a

protein that binds to DNA through its zinc-finger motifs

[54]. ChIP experiments have identified numerous PEG3 bind-

ing sites in the genome, including at imprinted genes [54,55].

Of note, PEG3 binds the maternally expressed Zim1 gene,

and mouse models of Peg3 deletion exhibit elevated Zim1
transcript levels, suggesting that the normal function of

PEG3 is to repress Zim1 expression [55]. This is predicted

by the kinship, but not the co-adaptation, theory.

PEG3 also binds to the mouse Grb10 locus, an imprinted

gene that is expressed from the maternal allele in many tissues,

but not in brain, where its expression is from the paternal allele

only [56]. In neonatal brain isolated from Peg3 mutant mice,

expression of Grb10 is reduced relative to wild-type controls

[54]. Thus, PEG3 promotes expression of Grb10 in neonatal

brain, where this gene is paternally expressed. This PEG–PEG

interaction is consistent with the co-adaptation theory. PEG–

PEG interactions are not strongly predicted by the kinship

theory, though the direction of the effect on gene expression

levels—a PEG that enhances the expression of another PEG—

is not inconsistent with the theory. The effect of PEG3 on

Grb10 expression in other embryonic mouse tissues, where

Grb10 is expressed from the maternal chromosome, is unclear.

The imprinted transcription factor PLAGL1 (also called

ZAC1) binds to DNA through its zinc-finger domains and

regulates other imprinted genes [19] (figure 3). Plagl1/Zac1
is a PEG and studies in the mouse show that it promotes

expression of both MEGs and PEGs, including Igf2, H19,

Kcnq1ot1, Cdkn1c and Dlk1 [19,57]. The protein binds directly

to an enhancer that controls both Igf2 and H19 expression,

and to the promoter of Kcnq1ot1, the lncRNA that controls

the imprinted Kcnq1 domain [19]. Perturbation of

PLAGL1’s activating role is causally involved in transient

neonatal diabetes mellitus (TNDM) [58]. Reduction of

PLAGL1 expression in the human placenta is linked to

intra-uterine growth restriction and correlates with reduced

expression of IGF2 and H19, and of non-imprinted metabolic
genes in the same network [59]. Combined, these effects of

PLAGL1 on the imprinted gene network are not directly pre-

dicted by either the kinship or the co-adaptation theory

(table 1).

Whereas Plagl1 encodes a transcription factor, the precise

mechanism of PEG3’s action remains unclear. Like the

lncRNAs H19 and IPW, PEG3 seems to interact with lysine

methyltransferases and could thus affect chromatin regula-

tion at target genes [55]. Other imprinted regulators of IGNs

function through entirely different mechanisms. At the

mouse imprinted Dlk1-Dio3 domain, for example, Rtl1/Peg11
mRNA levels are influenced by miRNAs processed from

the maternally expressed Rtl1as/antiPeg11 transcript [42,60]

(figure 2). These imprinted miRNAs guide RISC-mediated

cleavage of Rtl1/Peg11 mRNA, thereby functioning to repress

Rtl1/Peg11 at the post-transcriptional level. Similarly, mater-

nally expressed miRNAs in this cluster seem to control the

expression of the paternally expressed protein-coding gene

Dlk1 in postnatal muscle [43]. Thus, through the action of

miRNAs, MEGs reduce the expression of PEGs. This is consist-

ent with the kinship theory’s expectation of conflict between

the maternally and paternally inherited genomes.

Indirect regulatory effects also probably contribute to the

gene network. The cell-cycle regulator CDKN1C, encoded by

an MEG, indirectly represses the phosphorylation and

activity of the retinoblastoma-1 (RB1) protein, expressed

from an MEG [61]. This finding is consistent with the co-

adaptation theory’s prediction of MEG–MEG interactions.

CDKN1C expression itself is downregulated by IGF2 and

PLAGL1/ZAC1 [57,62], both PEGs, which agrees with the

predictions of the kinship theory.

Whether imprinted trans regulation occurs also through

direct interactions between imprinted loci is unclear. Conven-

tional ‘chromosome conformation capture’ (3C) [63]

identified specific chromatin loops at the H19 locus and the

advent of 4C widened the scope of known contacts [64].

The H19 ICR was seen to interact with different chromosomes

and, in a few cases, up to four contacts in trans were detected

at once, although the vast majority turned out to be cis inter-

actions. Both imprinted and non-imprinted gene interactions

were detected, primarily in intergenic regions, which seemed

to argue in favour of a complex transcriptional network [64].

However, Krueger & Osborne [65] underscore the idea that

trans elements are a ‘common theme’ in mono-allelic gene

expression because inter-chromosomal interactions are often

linked to coordinated gene transcription through common

usage of ‘transcription factories’ [66].

Regardless of their precise modes of action, the data

suggest that imprinted trans-regulators do not influence the

allele-specificity of imprinted gene expression or the estab-

lishment or maintenance of imprints. This contrasts with

the situation in plants, particularly in Arabidopsis, where sev-

eral imprinted genes encode chromatin repressors involved in

the allelic repression of imprinted genes [1,2]. Rather, in

mammals imprinted trans-regulators function to modulate

levels of mRNA and protein produced from the already

transcriptionally active allele.
6. Conclusion
Above we reviewed the imprinted gene network(s) and the

rapidly growing literature on imprinted trans regulation in
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relation to evolutionary theories. About 10 imprinted cis- and

trans-regulators of imprinted gene expression have been

studied functionally thus far. Some seem to fulfil the predic-

tions of the kinship theory (IPW, Rtl1as/antiPeg11). The effects

of several others (e.g. PEG3, Plagl1/Zac1 and H19), however,

are harder to square with either the kinship or the co-

adaptation theory, and other hypotheses may be required to

complement the current theories. Systems biology approaches

have provided novel insights and have pinpointed a large

network of coordinately expressed imprinted and non-

imprinted genes. This important discovery suggests many

more regulatory links between imprinted genes than have

been unravelled so far. Expression levels within the network

as a whole are also strongly influenced by the state of the

cell cycle and by the differentiation status of the cell. This

may well be a confounding factor in explaining the effects

due to alteration of individual imprinted trans-regulators.

Overexpression of individual imprinted genes has indeed

been shown to affect the cellular proliferation status of cultured

cells, which, in turn, affects the levels of gene expression in the

imprinted gene network [19,32]. Above, we discussed novel

concepts that have emerged in imprinted gene regulation in

mammals in the light of evolutionary theories that bear on

the topic. The challenge will now be to obtain further insights

into the interdependence of imprinted gene expression, into

the biological processes to which these links are important,

and into their evolutionary conservation.

The growing evidence for trans-regulatory interactions

between imprinted genes raises the additional question as
to whether these contribute to phenotypic abnormalities in

embryos obtained by crossing closely related (sub)species.

Some evidence for this has been obtained from crosses

between different mouse species [67]. The co-adaptation

theory, with its emphasis on epistatic interactions between

genes, sees an obvious connection between imprinted genes

and speciation, which typically requires a breakdown of epi-

static interactions [68], while the kinship theory suggests that

these imprinted trans-regulatory effects are evolving under

conflict, producing just the type of perpetual evolutionary

force capable of promoting reproductive isolation [69].

Further studies are required, here as well, to assess to what

extent regulatory interactions within the imprinted gene

network(s) in mammals constitute an evolutionary barrier

against hybridization. Research on artificially induced

hybrids in Arabidopsis suggests that imprinted genes could

also contribute similarly to speciation in seed plants [70],

although the available evidence remains limited.
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