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A B S T R A C T   

Purpose: To establish and validate a nomogram model incorporating both liver imaging reporting and data system 
(LI-RADS) features and contrast enhanced magnetic resonance imaging (CEMRI)-based radiomics for predicting 
microvascular invasion (MVI) in hepatocellular carcinoma (HCC) falling the Milan criteria. 
Methods: In total, 161 patients with 165 HCCs diagnosed with MVI (n = 99) or without MVI (n = 66) were 
assigned to a training and a test group. MRI LI-RADS characteristics and radiomics features selected by the 
LASSO algorithm were used to establish the MRI and Rad-score models, respectively, and the independent 
features were integrated to develop the nomogram model. The predictive ability of the nomogram was evaluated 
with receiver operating characteristic (ROC) curves. 
Results: The risk factors associated with MVI (P<0.05) were related to larger tumor size, nonsmooth margin, 
mosaic architecture, corona enhancement and higher Rad-score. The areas under the ROC curve (AUCs) of the 
MRI feature model for predicting MVI were 0.85 (95% CI: 0.78–0.92) and 0.85 (95% CI: 0.74–0.95), and those 
for the Rad-score were 0.82 (95% CI: 0.73–0.90) and 0.80 (95% CI: 0.67–0.93) in the training and test groups, 
respectively. The nomogram presented improved AUC values of 0.87 (95% CI: 0.81–0.94) in the training group 
and 0.89 (95% CI: 0.81–0.98) in the test group (P<0.05) for predicting MVI. The calibration curve and decision 
curve analysis demonstrated that the nomogram model had high goodness-of-fit and clinical benefits. 
Conclusions: The nomogram model can effectively predict MVI in patients with HCC falling within the Milan 
criteria and serves as a valuable imaging biomarker for facilitating individualized decision-making.   

Introduction 

Hepatocellular carcinoma (HCC) is the most common type of pri-
mary liver cancer with the fifth highest incidence and has the third 
highest mortality rate globally due to its late-stage diagnosis and poor 
prognosis [1,2]. Currently, the Milan criteria (one HCC ≤ 5 cm or three 
HCCs ≤ 3 cm without extrahepatic metastasis or major vessel invasion), 
which align with early-stage HCC, are discriminatory in regard to 
selecting patients with clinical benefits for surgical resection or trans-
plantation [3], while inhibitor-based immunotherapy or metronomic 
capecitabine are first-line therapies for advanced-stage HCC [4]. 
Microvascular invasion (MVI) is widely recognized as a crucial risk 
factor associated with early recurrence and poor prognosis in HCC 

patients after therapy because of its aggressive biological behavior [5]; 
thus, the potential presence of MVI is recommended with a wide 
resection margin, inappropriate inclusion criteria for liver trans-
plantation and frequent disease monitoring in HCC patients [6,7]. 
Therefore, preoperative prediction of MVI in HCC patients meeting the 
Milan criteria has particular clinical significance for guiding early-stage 
treatment decisions and improving patient outcomes. 

Recent studies have shown the possibility of predicting MVI with 
serological tests, and the clinical utility of serum markers such as alpha- 
fetoprotein and total bilirubin in predicting MVI is inevitably limited by 
their relatively low diagnostic accuracy [8–11]. Fortunately, MRI fea-
tures were indicated to be more valuable for predicting MVI, but these 
qualitative findings have been inconsistent, and interobserver 

* Corresponding author at: No.185, Juqian ST, Tianning District, Changzhou 213003, Jiangsu, China. 
E-mail address: suzhxingwei@suda.edu.cn (W. Xing).  

Contents lists available at ScienceDirect 

Translational Oncology 

journal homepage: www.elsevier.com/locate/tranon 

https://doi.org/10.1016/j.tranon.2022.101597 
Received 9 October 2022; Received in revised form 4 November 2022; Accepted 21 November 2022   

mailto:suzhxingwei@suda.edu.cn
www.sciencedirect.com/science/journal/19365233
https://www.elsevier.com/locate/tranon
https://doi.org/10.1016/j.tranon.2022.101597
https://doi.org/10.1016/j.tranon.2022.101597
https://doi.org/10.1016/j.tranon.2022.101597
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/


Translational Oncology 27 (2023) 101597

2

variability was evident in a growing number of studies [10]. This is 
partly because few studies have applied the liver imaging reporting and 
data system (LI-RADS) to predict MVI in HCC following the Milan 
criteria, which provides a comprehensive and standardized interpreta-
tion of HCC imaging with major and ancillary features [12]. Moreover, 
radiomics can be used for evaluating regional microscopy of tumors at 
the millimeter scale by extracting quantitative signatures and has 
demonstrated promising performance for the prediction of MVI [13,14]. 
However, radiomics based on contrast-enhanced MRI (CEMRI) for the 
prediction of MVI in patients with HCC falling into the Milan criteria has 
not been explored until now. Thus, the development of a combined 
model incorporating LI-RADS features and radiomics derived from 
CEMRI to predict MVI in HCC patients falling into the Milan criteria is 
desirable. 

The nomogram is one of the most effective prediction models, as it is 
evidence-based and individualized, enabling preoperative diagnosis and 
facilitating clinical decision-making of tumors with high accuracy and 
ease of understanding [15,16]. To provide a noninvasive imaging 
biomarker for the preoperative prediction of MVI, this study aimed to 
identify and validate a unique nomogram model that integrates LI-RADS 
characteristics and radiomics based on CEMRI to predict MVI in HCC 
patients meeting the Milan criteria. 

Materials and methods 

Patients 

This retrospective study was approved by the Institutional Ethics 
Committee (2022-CL027–01), and the requirement for informed consent 
was waived. From June 2016 to June 2022, a total of 265 consecutive 
patients with HCC confirmed by pathology were analyzed. Patients 
meeting the following criteria were excluded: 1) preoperative CEMRI 
examination of the upper abdomen was absent; 2) HCC diagnosis did not 
satisfy the Milan criteria (one HCC ≤ 5 cm or three HCCs ≤ 3 cm without 
macrovascular invasion or extrahepatic metastasis) according to CEMRI 
findings; 3) interval time between CEMRI and pathology was more than 
one month; 4) HCC-related therapy prior to surgical resection; 5) poor 
CEMRI image quality owing to breathing artifacts; and 6) incomplete 
pathological descriptions of MVI. 

Ultimately, 161 patients were enrolled and then randomly assigned 

to the training group (n = 112) or the test group (n = 49) at a ratio of 7:3 
according to the CEMRI number order. The process of patient selection is 
shown in Fig. 1. 

MVI analysis 

MVI analysis was performed by one well-trained pathologist (15 
years of experience in liver pathology) who was unaware of the preop-
erative data. MVI was defined as the microscopic presence of tumor cell 
nests in the portal vein, hepatic vein or large capsular vessel lined by 
endothelial cells and was classified into three pathological grades: a) 
M0: no MVI; b) M1: less than 5 MVI occurring in a peritumor (<1 cm); 
M2: more than 5 MVI found in distant liver tissues (>1 cm). 

MRI protocol and LI-RADS interpretation 

MRI was performed in a 3.0-T Magnetom scanner (Verio, Siemens 
Healthiners, Germany) with a 12-channel abdominal matrix coil, with 
the following protocol: 1) in-phase and out-phase T1-weighted imaging 
(T1WI) in turbo-spin‒echo; 2) fast spin‒echo T2-weighted imaging 
(T2WI); 3) T2WI with fat-suppressed fast spin‒echo; and 4) diffusion 
weighted imaging (DWI) in echo planar imaging with a b value = 0, 800 
s/mm [2]. 5) For gadoxetic acid contrast enhancement, images for the 
precontrast phase of T1WI, arterial phase (AP, 25~35 s), portal venous 
phase (PVP, 60~70 s) and delayed phase (DP, 180 s) were obtained with 
3D volumetric interpolated breath-hold examination (VIBE) techniques 
after injecting 0.2 ml/kg Gd (Gd-DTPA, Magnevist, Bayer Schering 
Pharma, Berlin, Germany) at a bolus rate of 1 ml/s prior to a 20 ml saline 
flush using a power injector. Finally, 10~15 min were required for a 
complete MRI examination. The detailed sequence and parameters are 
shown in Table S1. 

Two radiologists with 7 years (HFL) and 12 years (QW) of experience 
in liver MR imaging who were blinded to the pathology results analyzed 
the MRI images, and any discrepancies were settled by consensus. The 
following LI-RADS (v2018) features were analyzed [12]: (a) major fea-
tures: nonrim arterial phase hyperenhancement (NAPHE), non-
peripheral washout, and enhancing capsule; (b) ancillary features 
favoring HCC in particular: nonenhancing capsule, nodule-in-nodule, 
mosaic architecture, blood products in the tumor, and higher fat con-
tent in the mass than in the adjacent liver tissue; (c) ancillary features 

Fig. 1. The detailed flowchart from patient selection to nomogram model establishment is shown in Fig. 1.  
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favoring malignancy but not HCC in particular: restricted diffusion, 
mild-moderate T2 hyperintensity, corona enhancement, fat sparing in 
the tumor, and iron sparing in the tumor; (d) baseline findings of HCCs: 
tumor size, margin (nonsmooth or smooth), shape (rirregula or regular). 

Tumor segmentation and extraction of radiomics features 

3D-Slicer software (version 5.0.3; http://www.slicer.org) was used 
to extract radiomics features from the AP, PVP and DP images by a 
radiologist (HFL). First, all images were resampled with linear interpo-
lation algorithms at a voxel spacing of 1 × 1*1 mm to correct the pixel- 
spacing differences and reduce the heterogeneity. Afterward, the 3D 
region of interest (ROI) that covered the entire tumor volume was 
manually delineated along the tumor boundary on each consecutive 
transverse slice. Notably, the ROI needed to include the area of necrosis 
and hemorrhage within the HCC and to exclude visible satellite lesions. 

The Pyradiomics package (Version 2.1.2, http://www.radiomics.io 
/pyradiomics.html) was used to extract 107 radiomics features from 
each CEMRI sequence. The radiomics features consisted of the 
following: I) shape features (n = 14), 3D shape-related features; II) first- 
order histogram features (n = 18), spatial distribution of multiple voxel 
values; III) texture features (n = 75), heterogeneity differences via a 
density histogram and the relative spatial locations of pixels, including 
24 gray-level cooccurrence matrix (GLCM) features, 14 gray-level 
dependence matrix (GLDM) features, 16 gray-level run-length matrix 
(GLRLM) features, 16 gray-level size zone matrix (GLSZM) features, and 
5 neighboring gray-tone difference matrix (NGTDM) features. Overall, a 
total of 321 features were extracted for every HCC. 

Feature selection and radiomics model development 

Three-step procedures were conducted sequentially to reduce 
dimensionality and identify the optical radiomics for predicting MVI. 
Before feature selection, all extracted radiomics features were stan-
dardized by the Z score method. First, MRI images of forty patients were 
randomly selected for resegmentation and feature extraction twice by 
the same radiologist (HFL) and another senior radiologist (QW). Then, 
both intra- and interradiologist intraclass correlation coefficients (ICCs) 
> 0.70 for those 40 cases served as the inclusion criteria to select stable 
features for further analysis. Second, the maximum relevance minimum 
redundancy (mRMR) method was adopted to reduce dimensionality and 
to eliminate redundant and irrelevant features. Third, the least absolute 
shrinkage and selection operator (LASSO) algorithm was applied to 
identify the most valuable features with nonzero coefficients after the 
10-fold cross-validation penalty procedure for predicting MVI. Finally, 
the radiomics score (Rad-score) was calculated and constructed for each 
HCC lesion through a linear combination of selected features that were 
weighted by their respective coefficients. 

Nomogram model establishment and verification 

To predict the probability of MVI in HCC falling within the Milan 
criteria, a nomogram was generated by integrating LI-RADS features and 
the Rad-score. Univariate and multivariate logistic regression analyses 
were conducted to identify risk factors associated with MVI, and these 
independent factors were incorporated to establish a predictive nomo-
gram model in the training groups by regression analysis and were 
verified in the test groups. Then, a calibration curve with the Hosmer‒ 
Lemeshow test and decision curve analysis (DCA) were used to evaluate 
the goodness-of-fit and net clinical benefits of the nomogram model in 
predicting MVI, respectively. 

Statistical analysis 

Statistical analyses were performed using the R software-integrated 
EmpowerStats software [17] (version 4.0; http://www.empowerstats. 

com/cn/). Continuous variables were described as the mean ± stan-
dard deviation or median (interquartile range) after a normality distri-
bution test with the Shapiro‒Wilk method, and categorical variables 
were shown as percentages. Independent t tests (normal distribution) or 
Mann‒Whitney U tests (skewed distribution) and chi-square (χ [2]) or 
Fisher’s tests were performed to detect significant differences between 
the MVI (+) and MVI (-) groups. The diagnostic efficiency of the three 
models (MRI features, Rad-score, and nomogram) in discriminating MVI 
was evaluated with receiver operating characteristic (ROC) curves. 
Sensitivity, specificity, accuracy, and the area under the ROC (AUC) 
were calculated, and the difference in AUC value among different 
models was compared by the Delong method. For all tests, a two-tailed P 
value of < 0.05 was considered statistically significant. The detailed 
flowchart from patient selection to nomogram model establishment is 
shown in Fig. 1. 

Results 

Baseline characteristics of participating patients 

In this study, a total of 161 patients (male/female: 123/38; mean 
age: 62.9 ± 10.1 years) were included and randomly divided into 
training (n = 112) and test (n = 49) groups. Notably, four patients (3 in 
the training group and 1 in the test group) presented two HCCs. Among 
the 165 HCCs, 40.0% (66/165) were pathologically identified as having 
MVI (MVI+), and 60.0% (99/165) were confirmed to have no MVI (MVI- 
). Furthermore, 40.0% (46/115) and 40.0% (20/50) of HCCs were 
confirmed as MVI+ in the training and test groups, respectively. No 
significant differences were found in age, sex, etiology, cirrhosis, HCC 
number, MVI presence, alpha-fetoprotein (AFP), alanine aminotrans-
ferase (ALT), aspartate aminotransferase (AST), or total bilirubin (TB) 
between the training and test groups. The baseline characteristics of the 
participating patients are shown in Table 1. 

Diagnostic performance of the MRI feature model 

Regarding various LI-RADS MRI features, larger tumor size (>3 cm), 
nonsmooth margins, nodule-in-nodule, mosaic architecture and corona 
enhancement were indicated to be independent factors associated with 
MVI (P<0.05), with no other significant differences found between the 
two groups (P > 0.05), as shown in Table 2. The typical MRI features for 
MVI+ in HCC patients are shown in Fig. 2. After combining these sig-
nificant MRI features, the MRI feature model for predicting MVI in HCC 
falling within the Milan criteria presented a sensitivity of 89.13%, a 
specificity of 66.67% and an AUC value of 0.85 (95% CI: 0.78–0.92) in 
the training group, and they were 80.00%, 73.33% and 0.85 (95% CI: 
0.74–0.95) for the test group, respectively. 

Rad-score model construction 

Fig. 3 shows the detailed workflow of feature selection and Rad-score 
model construction. After excluding radiomics signatures with ICC <
0.70, 97, 99, and 97 stable features remained for AP, PVP and DP, 
respectively. Through mRMR, thirty features (14 with AP, 9 with PVP, 
and 7 with DVP) were retained for LASSO. Ultimately, the six most 
valuable features associated with MVI were combined to construct the 
Rad-score model based on the following formula: Rad-score =

0.30464*Shape-MajorAxisLengthAP + 0.04237*Glcm-CorrelationAP - 
0.02774*Glrlm-RunVarianceAP - 0.04997*Glszm-ZoneVarianceAP +

0.13854*Glszm-SmallAreaLowGrayLevelEmphasisPVP + 0.19174*First-
older-SkewnessDP. The sensitivity, specificity and AUC value of the Rad- 
score model in predicting MVI were 80.43%, 73.91% and 0.82 (95% CI: 
0.73–0.90) for the training group and 60.00%, 96.67% and 0.80 (95% 
CI: 0.67–0.93) for the test group, respectively. 
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Univariate and multivariate analyses of risk factors associated with MVI 

Univariate analysis demonstrated that significant risk factors for MVI 
were related to larger size (OR=6.9, 95% CI: 3.0–16.1, P<0.001), non-
smooth margins (OR=3.0, 95% CI: 1.2–7.6, P = 0.02), nodule-in-nodule 
(OR=10.2, 95% CI: 1.2–87.8, P = 0.03), mosaic architecture (OR=4.1, 
95% CI: 1.9–9.1, P<0.001), corona enhancement (OR=8.4, 95% CI: 
3.6–19.7, P<0.001) and higher Rad-score (OR=108.1, 95% CI: 
17.2–680.7, P<0.001). 

After multivariate analysis, the retained independent predictors for 
MVI in HCC falling Milan criteria were related to larger size (OR=4.1, 
95% CI: 1.3–12.9, P = 0.02), nonsmooth margin (OR=4.4, 95% CI: 
1.1–18.0, P = 0.04), mosaic architecture (OR=3.2, 95% CI: 1.0–9.6, P =
0.04), corona enhancement (OR=3.7, 95% CI: 1.1–12.2, P = 0.03) and 
higher Rad-score (OR=10.2, 95% CI: 1.0–102.2, P = 0.04), as presented 
in Table 3. 

Nomogram model establishment and validation 

The established nomogram model (Fig. 4) derived from the above 
five independent predictors demonstrated AUC values of 0.87 (95% CI: 
0.81–0.94) and 0.89 (95% CI: 0.81–0.98) for predicting MVI in HCC 
falling into the Milan criteria in the training and test groups (Fig. 5A- 
5B), respectively, as shown in Table 4. The calibration curves suggested 
that the predictive nomogram and the actual probability of MVI were 
well fitted in both the training (Fig. 5C) and test (Fig. 5D) groups. 
Additionally, the DCA results showed that the predictive nomogram 
curve was higher than the default lines for either all or none of the pa-
tients having MVI over all reasonable threshold probabilities (Fig. 5E-F). 

Furthermore, the combined nomogram model demonstrated better 

performance than the MRI features and the Rad-score model for pre-
dicting MVI in HCC falling into the Milan criteria, with AUC values of 
0.87 vs. 0.85 (P = 0.13) for the nomogram compared with the MRI 
features and 0.87 vs. 0.82 (P = 0.02) for the nomogram compared with 
the Rad-score model. However, no significant difference in the AUC 
value (0.85 vs. 0.82, P = 0.30) was found in the comparison between the 
MRI features and the Rad-score model, as shown in Fig. 5 and Table 4. 

Discussion 

In this study, we established and verified a nomogram model inte-
grating qualitative LI-RADS features and quantitative radiomics signa-
tures derived from CEMRI for the prediction of MVI in HCC falling 
within the Milan criteria. We concluded that a larger tumor size (HCC >
3 cm), nonsmooth margins, mosaic architecture, corona enhancement 
and higher Rad-score were significantly associated with MVI, and both 
MRI features and the Rad-score model were important in predicting 
MVI. Moreover, the combined nomogram model exhibited improved 
diagnostic ability with high goodness-of-fit and improved clinical ben-
efits in predicting MVI compared with the MRI features model or the 
Rad-score model alone, indicating the effectiveness of this combined 
imaging tool in preoperatively predicting MVI and in assisting individ-
ualized decision-making in HCC patients who fall within the Milan 
criteria. 

A recent meta-analysis demonstrated that an HCC tumor diameter >
5 cm was significantly associated with MVI and showed a pooled spec-
ificity of 89.3% (95% CI: 81.4–94.1) for predicting MVI [10], as also 
reported by Rungsakulkij N [18]. However, a few studies have been 
conducted to predict MVI using a 3 cm HCC tumor diameter as the 
diagnostic value, and the 5-year overall survival and recurrence-free 
survival rates of patients in the HCC ≤ 3 cm group were 67.8% and 
52%, respectively, significantly higher than the corresponding survival 
rates of 42.3% and 29.3% in the HCC > 3 cm group [19]. In this study, 
HCC size > 3 cm was identified as an independent predictor of MVI, 
because larger tumors are more likely to exhibit infiltrative growth and 
to destroy the peritumoral capsule [20]. This suggests that a 3 cm 
diameter is a crucial threshold in preoperatively predicting MVI for HCC 
falling within the Milan criteria, which is useful insight for improving 
the current understanding regarding HCC size criteria for surgical 
resection or liver transplantation. Nonsmooth margins are described as 
being of multicentric origin and of the multinodular type or as invasive 
growth in solitary nodules that are densely vascularized, indicating the 
malignant biological behavior of tumor capsule destruction and pro-
trusion into the nontumoral parenchyma [21]; thus, nonsmooth margins 
are associated with MVI risk in HCC. The nodule-in-nodule feature was a 
risk factor associated with MVI in the training group, which was in 
accordance with Wei et al. [22] but presented an insignificant difference 
in the test group and was excluded from multivariate analysis, indicating 
that the nodule-in-nodule feature was unstable in predicting MVI in HCC 
within Milan criteria. 

The mosaic architecture is characteristically composed of random 
compartments or internal nodules that differ in enhancement, attenua-
tion, intensity, shape, size and separation by fibrous tissues within a 
tumor. Pathologically, this architecture reflects tumor viability, fatty 
infiltration, hemorrhage, necrosis or copper deposition [23]. Therefore, 
the observation that the mosaic architecture is accompanied by rapid 
disease progression, diverse biological heterogeneities and a greater 
propensity for vascular invasion contributed to the results in this study; 
the mosaic architecture was more frequently observed and was a risk 
factor associated with MVI. However, mosaic architecture features were 
not considered a risk factor for MVI in the study of Wei et al. [22], who 
speculated that their study included a relatively large number of HCCs >
5 cm (45.9%), which demonstrated a higher rate of mosaic architecture 
features. Corona enhancement indicates drainage of the contrast agent 
from the HCC tumor into the peritumoral parenchyma and appears as 
peritumoral enhancement during PVP or DP, reflecting vascular 

Table 1 
Baseline characteristic of enrolled patients.   

Total (n =
161) 

Training group 
(n = 112) 

Test group 
(n = 49) 

t/χ2/ 
Z 

P 
value 

Age 
(Years) 

62.9 ±
10.1 

62.9 ± 9.6 62.9 ± 11.4 0.03 0.98 

Gender      
Male 123 

(76.4%) 
85(75.9%) 38(77.6%) 0.23 0.41 

Female 38(23.6%) 27(24.1%) 11(22.4%)   
Etiology      
HBV/HCV 124 

(77.0%) 
86(76.8%) 38(77.6%) 0.11 0.46 

Other- 
None 

37(23.0%) 26(23.2%) 11(22.4%)   

AFP      
≥20 ng/ml 67(41.6%) 46(41.1%) 14(28.6%) 0.21 0.42 
<20 ng/ml 94(58.4%) 66(58.9%) 28(71.4%)   
ALT (U/L) 72.0 ±

108.6 
75.1 ± 115.9 64.9 ± 90.4 − 0.60 0.55 

AST(U/L) 73.7 ±
156.7 

82.6 ± 183.5 53.4 ± 58.2 − 1.52 0.13 

TB (μmol/ 
L) 

17.5 ±
28.5 

16.1 ± 8.1 20.6 ± 31.2 0.99 0.32 

Cirrhosis      
Present 71(44.1%) 61(54.5%) 20(40.8%) − 0.56 0.29 
Absent 90(55.9%) 51(45.5%) 29(59.2%)   
No. of HCC      
Solitary 157 

(97.5%) 
109(97.3%) 48(98.0%) 1.34 0.51 

Two 4(2.5%) 3(2.7%) 1(2.0%)   
MVI 

presence      
M0 99(60.0%) 69(60.0%) 30(60.0%) 5.60 0.06 
M1 46(27.9%) 28(24.3%) 18(36.0%)   
M2 20(12.1%) 18(15.7%) 2(4.0%)   

HBV, hepatitis B virus; HCV, hepatitis C virus; AFP, alpha-fetoprotein; ALT, 
alanine aminotransferase; AST, aspartate aminotransferaset; No, number; MVI, 
microvascular invasion. 
Note: MVI incidence was calculated based on the numver of HCC (n = 165). 
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Table 2 
LI-RADS MRI features and Rad-Score of included patients in the training and test groups.  

MRI characteristics Training group Test group Pinter  

MVI + (n = 46) MVI - (n = 69) Pintra MVI + (n = 20) MVI - (n = 30) Pintra  

Tumor size (>3/≤3 cm) 34(73.9%)/12 
(26.1%) 

20(29.0%)/49 
(71.0%) 

<0.001* 13(65.0%)/7 
(35.0%) 

17(56.7%)/13 
(43.3%) 

0.007* 0.13 

Tumor margin (Nonsmooth/Smooth) 39(84.8%)/7 
(15.2%) 

45(65.2%)/24 
(34.8%) 

0.02* 16(80.0%)/4 
(20.0%) 

12(40.0%)/18 
(60.0%) 

0.005 0.03* 

Tumor shape (Irregular/ Regular) 31(67.4%)/15 
(32.6%) 

56(81.2%)/13 
(18.8%) 

0.09 15(75.0%)/5 
(25.0%) 

17(56.7%)/13 
(43.3%) 

0.19 0.14 

Major features        
NAPHE (Present/ Absent) 41(89.1%)/5 

(10.9%) 
61(88.4%)/8 
(11.6%) 

0.90 20(100.0%)/0 
(0.0%) 

27(90.0%)/3 
(10.0%) 

0.15 0.40 

Nonperipheral washout (Present/ Absent) 43(93.5%)/3 
(6.5%) 

60(87.0%)/9 
(13.0%) 

0.26 19(95.0%)/1 
(5.0%) 

25(83.3%)/5 
(16.7%) 

0.21 0.59 

Enhancing capsule (Present/ Absent) 42(91.3%)/4 
(8.7%) 

63(91.3%)/6 
(8.7%) 

1.00 19(95.0%)/1 
(5.0%) 

27(90.0%)/3 
(10.0%) 

0.52 0.88 

Ancillary features, favoring HCC in particular        
Nonenhancing capsule (Present/ Absent) 0(0.0%)/66 

(100.0%) 
0(0.0%)/69 
(100.0%) 

1.00 0(0.0%)/20 
(100.0%) 

0(0.0%)/30 
(100.0%) 

1 1 

Nodule-in-nodule (Present/ Absent) 6(13.0%)/40 
(87.0%) 

1(1.4%)/68 
(98.6%) 

0.01* 2(10.0%)/18 
(90.0%) 

1(3.3%)/29 
(96.7%) 

0.33 0.02* 

Mosaic architecture (Present/ Absent) 31(67.4%)/15 
(32.6%) 

23(33.3%)/46 
(66.7%) 

<0.001* 14(70.0%)/6 
(30.0%) 

10(33.3%)/20 
(66.7%) 

0.01 0.90 

Blood products (Present/ Absent) 9(19.6%)/37 
(80.4%) 

8(11.6%)/61 
(88.4%) 

0.24 1(5.0%)/19 
(95.0%) 

3(10.0%)/27 
(90.0%) 

0.52 0.31 

Fat in tumor (Present/ Absent) 4(8.7%)/42 
(91.3%) 

6(8.7%)/63 
(91.3%) 

1.00 1(5.0%)/19 
(95.0%) 

0(0.0%)/30 
(100.0%) 

0.22 0.18 

Ancillary features favoring malignancy, not HCC in 
particular        

Restricted diffusion (Present/ Absent) 45(97.8%)/1 
(2.2%) 

66(95.7%)/3 
(4.3%) 

0.53 20(100.0%)/0 
(0.0%) 

29(96.7%)/1 
(3.3%) 

0.41 0.61 

Mild-moderate T2 hyperintensity        
(Present/ Absent) 45(97.8%)/1 

(2.2%) 
66(95.7%)/3 
(4.3%) 

0.53 20(100.0%)/0 
(0.0%) 

28(93.3%)/2 
(6.7%) 

0.24 0.87 

Corona enhancement (Present/ Absent) 33(71.7%)/13 
(28.3%) 

16(23.2%)/53 
(76.8%) 

<0.001* 13(65.0%)/7 
(35.0%) 

9(30.0%)/21 
(70.0%) 

0.02 <0.87 

Fat sparing in tumor (Present/ Absent) 5(10.9%)/41 
(89.1%) 

2(2.9%)/67 
(97.1%) 

0.73 1(5.0%)/19 
(95.0%) 

1(3.3%)/29 
(96.7%) 

0.77 0.74 

Iron sparing in tumor (Present/ Absent) 1(2.2%)/45 
(97.8%) 

0(0.0%)/69 
(100.0%) 

0.40 0(0.0%)/20 
(100.0%) 

0(0.0%)/30 
(100.0%) 

1.00 1.00 

Rad-Score 0.18±0.27 − 0.18±0.28 <0.001* 0.16±0.28 − 0.14±0.18 <0.001* <0.001* 

LI-RADS, liver imaging reporting and data system; NAPHE, non-rim arterial phase hyperenhancement; Pintra, difference between the MVI+ and MVI- groups; Pinter, 
difference between the training and test groups. *represents P < 0.05. 

Fig. 2. Typical MRI features for MVI with HCC in a 58-year-old male patient. In the S8 lobe, a 4.3 × 4.0 cm sized irregular mass with nonsmooth margin showing T1 
hypointensity with blood products (A), mild-moderate T2 hyperintensity (B), restricted diffusion (C), NAPHE feature (D) with subsequent washout and enhancing 
capsule on PVP and DP (E-F). Notably, mosaic architecture and corona enhancement were also present. After hepatectomy, M2 was pathologically diagnosed. 
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invasion and intrahepatic metastases that can be visible as satellite 
nodules within the drainage vessels around HCC. This indicates that 
corona enhancement is an aggressive feature associated with HCC bio-
logical behavior [24]. Similarly, Zhang et al. [25] found that corona 
enhancement was associated with early recurrence in HCC patients 
meeting the Milan criteria after curative resection, emphasizing that 
corona enhancement is a key predictor of MVI and patient prognosis. 

Moreover, the MRI feature model suggested good performance in 
predicting MVI, indicating its potential for interpreting the macroscopic 
and feature biological properties of HCC; however, the reproducibility 
and comparability limitations with the MRI features are major concerns 

because of visual assessment. As a newly developed imaging technique, 
radiomics uses numerous microscopic signatures to quantitatively 
reflect tumor phenotypes, heterogeneities, microenvironments, and 
biological behaviors at the cellular and genetic levels [13,14]. In this 
study, six selected optimal radiomics features that were converted into 
quantitative Rad-scores were identified as independent predictors of 
MVI, suggesting that radiomics provided additional value to LI-RADS 
features for individualized MVI prediction. Considering the lack of 
highly accurate factors for predicting MVI, computational-assisted 
models integrating different prognostic and determinant factors associ-
ated with MVI have become a viable alternative for better clinical 

Fig. 3. The detailed workflow of radiomics model construction in a 64-year-old male with HCC. (A) Manual segmentation of the whole tumor in the AP; (B) 3D- 
shape, volumetric reconstruction of the ROI; (C) First-order histogram. Each colored line represents the corresponding coefficient of each feature, and LASSO ad-
justs λ (D). After tuning λ (E) in the LASSO model via tenfold cross-validation based on minimum criteria, the black vertical bar defines the best value of λ. The 
optimal weighting parameters λ = 0.0598 and Log(λ) = − 2.8162 were selected, and six nonzero radiomics features were finally selected to construct the model. 

Table 3 
Univariate and multivariate analysis for MVI with HCC in the training group.   

Univariate Analysis Multivariate Analysis 

Variables OR 95%CI P value OR 95%CI P value 

Tumor size (>3/≤3 cm) 6.9 3.0–16.1 <0.001* 4.1 1.3–12.9 0.02 * 
Tumor margin (Nonsmooth/Smooth) 3.0 1.2–7.6 0.02* 4.4 1.1–18.0 0.04 * 
Tumor shape (Irregular/ Regular) 1.1 0.4–3.1 0.81    
NAPHE (Present/ Absent) 1.1 0.3–3.5 0.90    
Nonperipheral washout       
(Present/ Absent) 2.1 0.5–8.4 0.27    
Enhancing capsule (Present/ Absent) 1.0 0.3–3.8 1.00    
Nodule-in-nodule (Present/ Absent) 10.2 1.2–87.8 0.03* 2.2 0.1–40.3 0.59 
Mosaic architecture (Present/ Absent) 4.1 1.9–9.1 <0.001* 3.2 1.0–9.6 0.04* 
Blood products (Present/ Absent) 1.9 0.7–5.2 0.24    
Fat in tumor (Present/ Absent) 1.0 0.3–3.8 1.00    
Restricted diffusion (Present/ Absent) 2.0 0.2–20.3 0.54    
Mild-moderate T2 hyperintensity       
(Present/ Absent) 2.0 0.2–20.3 0.54    
Corona enhancement (Present/ Absent) 8.4 3.6–19.7 <0.001* 3.7 1.1–12.2 0.03* 
Fat sparing in tumor 1.1 0.2–5.3 0.87    
Iron sparing in tumor 0.0 0-∞ 0.99    
Rad-score 108.1 17.2–680.7 <0.001* 10.2 1.0–102.2 0.04 *  
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management. Lei et al. [26] established a nomogram by combining data 
related to tumor diameter, number, and capsule status as well as serum 
markers and MRI features to predict MVI in patients with hepatitis B 
(HBV)-related HCC within the Milan criteria, contributing to AUC values 
of 0.81 (0.78–0.85) and 0.80 (0.75–0.86) in the training and validation 
cohorts, respectively. Zhao et al. [27] developed a preoperative scoring 
model incorporating intratumoral arteries, nonnodular HCC type, and 
absence of a tumor capsule on contrast-enhanced computed tomography 
(CT) for predicting MVI with all reasonable tumor sizes, and this model 
had AUC values of 0.87 and 0.86 in the training and test groups, 
respectively. 

In our study, this nomogram model incorporating LI-RADS and 
radiomics features based on CEMRI achieved satisfactory prediction of 
MVI with AUC values of 0.87 and 0.89 in the training and test groups, 
respectively. In addition, the calibration curve and DCA results 
demonstrated the high goodness-of-fit and clinical benefits of this 
nomogram. Notably, the nomogram model had a significantly higher 
AUC than the MRI features model and Rad-score models, indicating that 
it is an advisable and effective tool for predicting MVI and may provide 
references for subsequent treatments and clinical decision-making. 
Notably, among our risk factors, the Rad-score was more important 
than a single MRI feature in the nomogram model. This finding was in 
line with the results of Ji et al. [28], in which the radiomic signature was 
the top predictor, followed by clinicoradiologic factors, emphasizing the 
importance of radiomics in predicting MVI. 

There are several limitations in this study. First, owing to the limited 
sample size and potential selection bias concerning the excluded 

patients with absent preoperative CEMRI examination, which may 
negatively decrease the generalizability and relability of our study re-
sults, multicenter prospective studies in larger cohorts are warranted to 
confirm the predictive ability of this nomogram model. Second, peri-
tumoral hypointensity in the hepatobiliary phase (HBP) was identified 
as a risk factor associated with MVI [22], and it was hypothesized that 
tumor invasion of peritumor microvessels damages peritumoral hepa-
tocytes and therefore reduces uptake of the contrast agent 
Gd-EOB-DTPA. However, the peritumoral manifestation on HBP was not 
discussed in this study because the contrast agent remains expensive and 
is not widely accessible to HCC patients. Third, to eliminate irrelevant 
signatures, the optimal radiomics features were merely extracted from 
CEMRI images, as CEMRI characteristics were the major features in 
diagnosing HCC, and the CEMRI image radiomics analysis findings were 
more similar to the actual tumor heterogeneity [29]; however, this se-
lection procedure might exclude some potential features from DWI or 
T2WI [30]. Finally, this study only analyzed the relationship between 
MVI prediction and the nomogram model. We will increase the corre-
lation between the nomogram model and recurrence and prognosis in 
future studies to make our research more clinically practical. 

Conclusion 

In conclusion, larger tumor size, nonsmooth margins, mosaic archi-
tecture, corona enhancement and higher Rad-score were identified as 
effective imaging markers for preoperatively predicting MVI in patients 
with HCC falling into the Milan criteria. Moreover, the nomogram 

Fig. 4. The nomogram to predict MVI for HCC. To display the nomogram, first, all independent predictor points can be found on the line "Points". Then, the five 
predictor points are added to the line "Total Points". Finally, a vertical line is drawn downward from "Total Points" to the MVI status axes. 
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combining LI-RADS and radiomics features based on CEMRI demon-
strated improved performance in predicting MVI, with high goodness-of- 
fit and clinical benefits, and this model may provide a noninvasive tool 
for predicting MVI and for guiding individualized treatment decision- 
making for HCC patients falling into the Milan criteria. 
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Fig. 5. The ROC curve (A-B), calibration curve (C-D), and DCA curve (E-F) of the nomogram model for predicting MVI in HCC within the Milan criteria in the 
training and test groups. Calibration curves depict the agreement of the nomogram model between the predicted risks (X-axis) of MVI and the actual observed MVI 
(Y-axis). The red solid line represents the performance of the nomogram, and the closer the red line is to the diagonal dashed line, the better the predictive efficacy of 
the nomogram. The nomogram model (red line) provides increased clinical benefit compared with both all (gray line) and none (horizontal black line) patients 
expressing MVI across a full range of reasonable threshold probabilities. 

Table 4 
Diagnostic performance of the difference models in predicting MVI in HCC within Milan criteria.  

Different models Training group P value Test group 

Accuracy Sensitivity Specificity AUC (95%CI) Accuracy Sensitivity Specificity AUC (95%CI) 

MRI features 75.65% 89.13% 66.67% 0.85 (0.78–0.92) P1= 0.30 76.00% 80.00% 73.33% 0.85 (0.74–0.95) 
Rad-Score 76.52% 80.43% 73.91% 0.82 (0.73–0.90) P2= 0.13 82.00% 60.00% 96.67% 0.80 (0.67–0.93) 
Nomogram 80.87 80.43% 81.16% 0.87 (0.81–0.94) P3= 0.02 82.00% 70.00% 90.00% 0.89 (0.81–0.98) 

P1, AUC comparison between MRI features and Rad-score; P2, MRI features vs. Nomogram; P3, MRI Rad-score vs. Nomogram. 
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