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ABSTRACT: The increased speed and sensitivity in mass
spectrometry-based proteomics has encouraged its use in biomedical
research in recent years. Large-scale detection of proteins in cells,
tissues, and whole organisms yields highly complex quantitative data,
the analysis of which poses significant challenges. Standardized
proteomic workflows are necessary to ensure automated, sharable,
and reproducible proteomics analysis. Likewise, standardized data
processing workflows are also essential for the overall reproducibility of results. To this purpose, we developed PaDuA, a Python
package optimized for the processing and analysis of (phospho)proteomics data. PaDuA provides a collection of tools that can
be used to build scripted workflows within Jupyter Notebooks to facilitate bioinformatics analysis by both end-users and
developers.
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■ INTRODUCTION

Data analysis in (phospho)proteomics is constantly evolving.
State of the art mass spectrometers are able to identify and
quantify thousands of proteins in a single shot-gun experiment,
generating large volumes of data. The era of next-generation
proteomics has further driven the use of mass spectrometry
(MS) in biomedical research by allowing biological samples to
be processed in high-throughput fashion.1 The need to cope
with complex experimental designs and big data has driven the
search for more efficient approaches for proteomics data
analysis.
Bioinformatics has already dealt with the challenges of large-

scale data processing in other “omics” fields. An illustration of
high-throughput analysis in genomics and transcriptomics is
given by Galaxy.2,3 This established web-based platform allows
data mining and workflow construction from standalone scripts.
Moreover, Galaxy offers an open and collaborative environment,
which facilitates genomics research through improved accessi-
bility, reproducibility, and transparency. Quantitative
(phospho)proteomics can also benefit from such platforms,
and their advancement is reliant on the availability of scriptable
analysis tools. For instance, Röst et al. developed the OpenMS
software, which offers both standard workflows and individual
tools that together with a Python scripting interface allow high-
throughput MS data analysis.4 Reproducibility of analyses is
dependent on stored workflow files containing complete records
of the analysis history, and allows different users to apply them
on their own data.5

Lately, the combination of programming language alongside
documentation language is gaining interest. This concept, first
introduced by Donald Knuth as Literate Programming in the

1980s, promotes the use of descriptive documented pipelines to
make analyses more robust, more portable, more easily
maintained, and eventually pieces of literature.6 The open
source Jupyter Notebooks system has been developed in this
context with the aim to share and reproduce interactive data
analysis.7 Notably, Jupyter supports over 40 programming
languages popular in data science (e.g., Python, R, or Julia), and
can leverage big data tools for high-throughput analysis. By
combining explanatory text, raw code, charts, and figures,
Jupyter Notebooks can be used by scientists as complete and
detailed program documentation alongside publication.8

To perform the analysis of quantified (phospho)proteomic
data in Jupyter, we have developed PaDuA, a Python package
first optimized for MaxQuant output data.9,10 Of the available
proteomics quantification software, MaxQuant is the most
commonly used freely available software package for analyzing
large-scale mass-spectrometric data sets.10 Modeled on
established (phospho)proteomics analysis methods, PaDuA
provides tools for data processing, filtering, and statistical
analysis both within the Jupyter notebook environment and in
other scriptable systems. Results are read and written in tabular
format so that further analysis with other platforms like
Perseus11 or R12 is possible. Since the analysis procedure is
split up in small blocks of code, it is possible to repeat and
optimize the analysis as a whole but also partially. The final
analysis can be easily shared as a notebook file, guaranteeing
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reproducibility of results over time. It also allows researchers to
reuse and adapt the workflows for their own analysis, supporting
standardization of methods.
We have already applied PaDuA for investigating molecular

responses of a large-scale (phospho)proteomics experiment
upon drug treatments.13 In this study, we demonstrate the
versatility of PaDuA on two published phospho- and proteomics
data sets and the reproducibility of these analyses using Jupyter
notebooks.

■ EXPERIMENTAL PROCEDURES

PaDuA Development

PaDuA source code is freely available for download from
https://github.com/mfitzp/padua and available under the BSD
2-clause (Simplified) license. The software is released as a
standard Python package, and it is compatible with both Python
2.7 and 3.4+ and made available via the Python Package Index
(PyPi). It features a complete set of standard proteomics
processing, analysis, and visualization tools accessible via the
fully documented (http://padua.readthedocs.io/en/latest/)
application programming interface (API). PaDuA makes
extensive use of other open source libraries including the
Python scientific and numerical computing libraries SciPy and
NumPy for data analysis,14,15 pandas DataFrame objects for
internal data representations,16 and scikit-learn for machine
learning algorithms.17 Publication quality figures are generated
via Matplotlib with export in vector and high resolution
formats.18 PaDuA is designed to perform analysis by selecting
columns from output tables generated by MaxQuant. This
software package is available in different versions, which may
slightly differ in the columns’ header, affecting the performance
of PaDuA. The use of a template containing standard labeled
columns matching the ones listed in the quantified MaxQuant
tables could overcome this limitation.

PaDuA Workflow Strategy

The PaDuA analysis workflow is illustrated in Figure 1. Search
output files generated byMaxQuant are imported into a running
Jupyter Notebook environment together with the experimental

design and then processed through two consecutive steps: Data
Processing and Statistical Analysis, each represented by a
separate Jupyter notebook. The final output provides a complete
list of publication-quality figures and tables that can be exported
in a number of formats. Analyses can be quickly updated in case
of reprocessed MaxQuant inputs simply by rerunning the
workflow. Existing notebooks can be shared among other users
and stored as recorded documentation for past projects.

Input and Output. PaDuA supports input from all file types
offered by the Pandas library, including CSV, Excel, HDF, SQL,
JSON, and Python pickle format. Standardized tab-delimited
formats are used as input for data processing, and as output for
R,12 Phosphopath,19 and Perseus.11 A table labeled as design in
CSV format is required for mapping individual samples to
experimental conditions. This table contains at least two
columns: “Label” as for sample labels derived from MaxQuant
output, and “Group” as for categorical column corresponding to
classification of samples according to the treatment. Depending
on the experimental workflow, more columns could be listed in
design: “Timepoint” as numeric column corresponding to the
time point, “Replicate” as for numeric column corresponding to
the number of biological replicate, and “Technical” as for
numeric column corresponding to the number of technical
replicates. These group types are not restricted, and other
groups can be set if required by an experiment. Moreover, in the
included workflows, the pickle format is used as input for
Statistical Analysis to simplify reloading of processed data.

Data Processing. Initial steps for (phospho)proteomics
analysis are focused on refining data sets to the final format
needed for statistical analysis. This is achieved through standard
processing and filtering steps that can be consistently and rapidly
applied with PaDuA. Either intensity (or LFQ) or ratio columns
can be selected for quantification analysis. In addition, PaDuA
supports basic data normalization strategies and log2 trans-
formation, which are commonly applied before statistical
analysis, while more complicated normalization strategies are
possible using Python libraries specialized for this purpose. Filter
tools can be used to simplify the overall data set, and each
analysis step generates DataFrame objects, which can be further
inspected within the notebook environment or exported in

Figure 1. PaDuA works within the Jupyter Notebook environment and uses MaxQuant output search files and the experimental design table as input.
Data Processing and Statistical Analysis notebooks are used for filtering and analyzing data, respectively. Results can be exported to other platforms like
R or Perseus, shared among different users or stored with back-up projects. The full analysis can be reprocessed infinite times (dot lines).
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various output formats. Finally, PaDuA supports two data
imputation strategies to automatically fill missing values with
estimated quantities based on statistical models including (i)
random sampling from a normal distribution and (ii) least-
squares modeling of present values based on structural equation
modeling (SEM), as already described by Webb-Robertson et
al.20 The data processing workflow concludes with export of the
final DataFrame, both as CSV and Python pickle format.
Statistical Analysis. PaDuA data analysis is structured

around two included submodules: Analysis and visualize. The
former performs statistical analysis returning the numerical
results of the operation, while the latter generates plots for the

same analysis. Supported statistical analysis tools include quality
control tools, which evaluate the quality of each sample (i.e.,
sample-wise Pearson correlation and enrichment analysis), and
several multivariate methods that are well suited to isolate
important variation in large data sets such as principal
component analysis (PCA), partial least-squares regression
(PLS-R), partial least-squares discriminant analysis (PLS-DA),
and analysis of variance (ANOVA). Plot visualizations include
mainly volcano plots and clustering analysis such as hierarchical
clustering, Venn diagrams, and KEGG pathways. All standard
data plotting functions from the Pandas library may be also used.

Figure 2. (A) Data Processing notebook illustrates summaries of the phosphoproteomics identification data as standard graphs. Panel I shows the
percentage of phosphosites belonging to different localization probability groups; panel II displays the list of identified phosphoproteins,
phosphopeptides and phosphosites (Class I); panel III represents the percentage of modified phosphosites on serine, threonine and tyrosine (Class I).
(B) Rank intensity plot shows phosphoprotein intensity values versus their corresponding ranks. Annotation of phosphophoproteins can be visualized
by overlaying on the S curve the results of GO enrichment analysis. (C) Box plots of percentage of phosphopeptide enrichment for both unstimulated
(control) and stimulated samples with PGE2.
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■ RESULTS AND DISCUSSION

To benchmark PaDuA as a versatile and reproducible data
analysis tool, two different data sets publicly available in
Proteomics Identifications Database (PRIDE) were selected.
The first (PXD000293) was generated using a label-free
quantification approach on a large-scale Ti4+-IMAC phospho-
peptide enrichment.21 In this study, de Graaf et al. demonstrated

the qualitative and quantitative reproducibility of such approach
in monitoring the temporal phosphorylation signaling of Jurkat
T-cells upon stimulation of the G protein coupled receptors with
their ligand Prostaglandin E2 (PGE2). The binding between G
protein coupled receptors and PGE2, indeed, leads to the
activation of intracellular signaling transduction cascades
including cAMP/PKA as well as the PI3K-dependent ERK1/2
pathways. For this experiment, Jurkat cells were cultured in three

Figure 3. (A) Bar plot of phosphopeptide enrichment analysis for each single sample. Red bars display a phosphopeptide enrichment percentage below
20%. (B) Distribution of phosphosite events plotted as a Gaussian curve area at each time-point. Stimulated samples (red) show reduction of
phosphorylation respect to the control (gray) over time.
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biological replicates and harvested after 0, 5, 10, 20, 30, and 60
min of PGE2 stimulation. Phosphopeptides were enriched using
three independent Ti4+-IMAC enrichment columns for every
biological replicate, and each column was analyzed twice by
nanoliquid chromotography−tandem mass spectrometry
(nLC−MSMS). For the second data set (PXD000497), Smit
et al. used a dimethyl labeling strategy to quantify (phospho)-
proteome changes inmelanoma cells after drug treatment.22 The
subsequent integration with next generation sequencing data
obtained by melanoma cell transduced with shRNA library
allowed the authors to identify ROCK1 as novel therapeutic
target that can be used in the treatment of melanoma patients.
For the proteomics experiment, melanoma cells were cultured in
three biological replicates and treated without drug (control)
and with PLX4720 (BRAF inhibitor). Both control and treated
samples derived from 1 and 3 days were collected and labeled as
“Light” (L), “Medium” (M), and “Heavy” (H), respectively.
Jupyter notebooks showing the workflow analyses for both data

sets are further provided as.ipynb format together with the design
tables in the Supporting Information.

Demonstration data: phospho-data

Data Processing. Phospho(STY)Sites, modif icationSpecif ic-
Peptides, and Evidence are the .txt files selected from the
phosphoproteomics data set PXD000293. These are the output
tables generated by MaxQuant containing the list of quantified
phosphosites, modified peptides, and identified peptides,
respectively. Both Phospho(STY)Sites and its design table
(Supporting Information) are initially imported as input files.
A filtering step is immediately performed using MaxQuant
metadata annotations to remove peptides flagged as “contam-
inants” and “reverse”. Next, identified phosphopeptides are
further filtered to ensure confident site localization of the
modification with a probability typically at 0.75. PaDuA also
calculates relative percentage of phosphorylations in different
localization probability groups, displaying these as pie charts. In
the current phosphopeptide data set, 77% of the phosphosites

Figure 4. (A) Correlation plot of the independent phosphoproteomics experiments shows Pearson coefficient correlation values as a heat-map. (B)
Hierarchical clustering of samples across the time course experiment. Samples are z-scored along the 0-axis (y) by default. (C) PI3K/AKT network
visualized in PhosphoPath using the PaDuA output containing the significant regulated phosphosites and their quantitative ratios.

Journal of Proteome Research Article

DOI: 10.1021/acs.jproteome.8b00576
J. Proteome Res. 2019, 18, 576−584

580

http://dx.doi.org/10.1021/acs.jproteome.8b00576


are Class I (>0.75), while Class II (>0.5≤ 0.75) and III (>0.25≤
0.5) each contain around 11% (Figure 2A, panel I). A useful
overview of the quality of the experimental data is provided by a
summary list of the total number of phosphoproteins,
phosphopeptides, and phosphosites (Class I) as shown in
Figure 2A (panel II). Relative abundances of modified amino
acids are also rapidly calculated in PaDuA, and in this data set,
over 83% of phosphorylated amino acid sites are serine, 15% are
threonine, while just 1.33% are tyrosine (Figure 2A, panel III). A
global overview of biological function of the identified
phosphoproteins, in combination with their intensity distribu-
tion, can be observed in PaDuA using the rank-intensity plot,
containing Gene Ontology (GO) annotations queried from the
PANTHER database23,24 (Figure 2B). PaDuA emulates the
expand side table process of Perseus:11 All the columns
containing 1, 2, and 3 modifications for the same phosphopep-
tide are folded into rows, obtaining a unique column containing
up to three modifications for each peptide. This step is necessary
to facilitate the subsequent normalization step, which is based on
the subtraction of the median of the column for each sample.
Moreover, this simplifies the following quantification steps
where each column corresponds to a sample condition. After
normalizing intensity columns, a final multi-index table
(DataFrame) can be obtained by matching the design table

with selected columns from the input search. This DataFrame
contains sample annotations arranged horizontally, and
quantified values arranged vertically (Figure S-1). The use of
this multi-index matrix allows easy filtering of the number of
quantified values based on either time points, or number of
biological or technical replicates. For these phosphoproteomics
data, PaDuA calculates 10 732 phosphorylation events in at least
two out of three biological replicates.

Statistical Analysis. The .pickle file resulting from the data
processing is then used for the next analysis step. The percentage
of phosphopeptide enrichment in the data set can be calculated
dividing the phosphopeptide relative abundances through the
nonmodified peptide relative abundances from the MaxQuant
modif icationSpecif icPeptides or Evidence files, annotated with the
same experimental design of design table. Bar-plots and box-plots
are used to visualize the phosphopeptide enrichment trend and
to detect potential outliers. Enrichment scores can be calculated
per group or per single sample, and percentage values
correspond to the number of quantified phosphorylated
peptides with respect to the total number of peptides. Figure
2C shows the average phosphopeptide enrichment being higher
than 90% for both control and samples stimulated with PGE2
with two outliers for PGE2 stimulated samples. These outliers
can be visualized in a bar-plot as shown in Figure 3A, displaying

Figure 5. (A) PCA analysis of quantitative proteome data with sample annotations: Colors distinguish early treated (red) from late-treated samples
(blue). In yellow, the third experimental group is indicated, which consists of the ratio between 3 days and 1 day treatment. For each sample, the
biological replicate number is reported. (B)Weight of principal component 1 identifies key proteins, which affect the separation between the early and
late-treated samples. (C) Volcano plot as visualization of one-sample t-test of protein expression levels at 3 days versus control. Statistically significant
values with p-value < 0.05 and fold change≥ 2 are labeled in red. Values with p-value < 0.05 and fold change≤ 2 are labeled in blue. All the values with
p-value > 0.05 are labeled in gray. (D) Bar plot of GO enrichment analysis of significant up-regulated pathways at 3 days treatment. (E) Venn diagram
of significantly regulated proteins at 1 day and 3 days of treatment versus control.
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in red the technical replicates 1 and 6 of biological replicate 1 at
30 min after stimulation with PGE2. This feature in PaDuA
allows the user to quickly recognize the two failed enrichments,
which can be removed from the multi-index DataFrame to
ensure quality of the data. Another informative function is given

by “comparedist”, which calculates and compares the number of
phosphorylation events happening in different samples or
conditions. In the data used here, the number of phosphor-
ylation events was found to be reduced over time after PGE2

stimulation compared to the control (Figure 3B). To gain

Figure 6. (A) Box plot of NRAS protein expression at both 1 day and 3 days of treatment versus control. (B) KEGG pathway shows protein regulation
after 3 days of drug treatment in MAPK signaling.
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further insight into the data set, PaDuA allows the construction
of multiscatter plots based on Pearson correlation analysis. The
heat-map visualization of these plots allows a rapid check of data
integrity (Figure 4A). For studying temporal regulation patterns,
PaDuA provides a hierarchical clustering function, illustrated in
Figure 4B, where eight clusters are used to display the temporal
dynamics of the significantly regulated phosphorylated sites.
Further GO enrichment analysis of any of the clusters can be
performed selecting ‘function’, ’process’, ‘cellular_location’,
‘protein_class’, or ‘pathway’ from the PANTHER database.
Finally, PaDuA can export filtered lists of significant
phosphosites to PhosphoPath formats19 for subsequent
temporal signaling network and enrichment analyses in
Cytoscape.25 As already shown by de Graaf et al.,21 PI3K-
AKT signaling is one of the most significantly enriched pathways
in this phosphorylation data set (p-value = 5.49 × 10−78), and its
network is illustrated in Figure 4C.

Demonstration Data: Proteomics Data

Data Processing. For the proteomics workflow, Pro-
teinGroups is the .txt file containing the quantified protein
groups fromMaxQuant, and therefore the one selected from the
proteomic-data set PXD000497 for further analysis. Both
ProteinGroups and its design table (Supporting Information)
are imported as input files, followed by common filtering steps as
removing reverse database identifications and contaminants.
Moreover, to ensure all proteins are quantified according to 1%
FDR, peptides only identified because containing post-
translational modifications are removed. In this way, PaDuA
allows the selection of ratio intensity columns to further process
isotopically labeled proteomics data. After building the
annotated multi-index table DataFrame, a final filtering step
can be performed to select protein groups quantified in at least
two out of three biological replicates. For this proteomics data
set, PaDuA calculates 4785 protein groups over the three
sampled time-points.
Statistical Analysis. The resulting .pickle file is then used as

input for the data analysis notebook (Supporting Information).
Principal component analysis (PCA) can be used as quality
control tool to capture differences between groups while
identifying possible outliers. Moreover, PCA allows to select
interesting proteins from the input data on the basis of the
relationship between experimental groups and features. PaDuA
supports PCA with sample annotations, emphasizing the
visualization of clusters and variation. Figure 5A shows a
separation of samples between 1 and 3 days drug treatment
versus control (1 day/control and 3 days/control) along
principal component 1 (PC1), revealing a poor clustering of
biological replicates at 3 days, which is further reflected in the
inability to cluster biological replicates of 3 days/1 day. In
addition, as a result from the PCA analysis, PaDuA generates the
score and weight plots, which can be used to interpret the main
biological response causing the difference between clusters. An
example of weight plot related to PC1 is visualized in Figure 5B.
Selecting an arbitrary cutoff on the weight axis allows researchers
to identify proteins that contribute most (weights > 0.05) or less
(weights < 0.05) to the separation along the PC1 axis. Among
the proteins with weights >0.05, we can observe the tran-
scription factors TAF1 and MAFF, which possess DNA-binding
activity, and CYR61 and GPR56, which play active roles in cell
adhesion. One-sample or two-sample independent t tests can be
used to calculate proteins significantly regulated after drug
treatment. These analyses are visualized as volcano plots, which

may be annotated with regulated proteins or gene names,
together with information on total number of up, down, and
significantly regulated values. As an example, we show a two-
sample t-test analysis of 3 days versus 1 day treatment, revealing
30 and 71 proteins significantly up- and downregulated,
respectively, with a p-value < 0.05 and a fold change cutoff of
2 (red dots in Figure 5C). Enrichment analysis of significant up-
regulated proteins−calculated in PaDuA with PANTHER
database and using ‘Homo sapiens’ as default background reveals
metabolic pathways significantly upregulated (p-value <0.05), as
shown in Figure 5D. To classify common regulated proteins
under different conditions, PaDuA can display Venn diagrams,
form which the identified subsets of proteins can be easily
exported as CSV file for further analysis. Figure 5E displays 227
significantly regulated proteins of which 21 are in common
between 1 and 3 days drug treatment versus control.
Quantitative expression of these proteins can be further
visualized through basic plotting tools such as box-plots. Figure
6A illustrates ratio expression of the protein NRAS at both 1 and
3 days versus control. As reported by Smit et al.,22 NRAS is up-
regulated after 3 days drug treatment compared to control and 1
day treatment. Finally, PaDuA is able to map protein
quantitation values onto signaling pathways with a built-in
script that generates a gradient-colored KEGG pathway26

(Figure 6B). Thanks to this feature, it is possible to rapidly
evaluate the regulation of the cellular response after 3 days of
drug treatment by mapping it onto the MAPK pathway, which
easily visualizes the upregulated proteins which may play a role
in melanoma BRAF inhibitor resistance such as RAS and
Cdc42.22

■ CONCLUSIONS
We have presented PaDuA, a new Python library for large-scale
(phospho)proteomics data analysis. We primarily developed
PaDuA with the idea to propose a new concept of standardized
data analysis and data sharing. There is a constantly growing
need in the proteomics community for such workflow especially
in project-based environment. Nowadays, MaxQuant represents
one of the most well-known and freely available quantification
platform currently used in proteomics. Therefore, our proof of
concept for PaDuA is based on MaxQuant output, with the
intent that both users and programmers can contribute to
further development of PaDuA in an interactive manner.
We have shown the versatility of the tool by applying standard

workflows strategies to two example data sets. Built in Python,
PaDuA benefits from the existing ecosystem of data analysis
tools including Jupyter Notebooks. Users with only basic Python
programming knowledge can work with standardized note-
books, while more proficient programmers can integrate and
customize the analysis within other tools and environments.
PaDuA is a valuable platform for rapid and automatable analysis
of both isotopically labeled and label-free MS data.
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