
CHD is very dangerous because it is directly related to the 
patient’s lifestyle; hence, prevention is important [2]. The two 
standard datasets used to predict the CHD risk level are the 
Framingham risk score (FRS) and prospective cardiovascu-
lar Münster (PROCAM) [3]. However, FRS and PROCAM 
are not tailored for Koreans; therefore, the accuracy of heart 
risk prediction using these methods is low when applied to 
Koreans [4,5]. 
	 Thus far, many previous studies have proposed methods to 
predict CHD using data mining, artificial intelligence, and 
machine learning techniques [6,7]. CHD prediction models 
based on data mining use various algorithms, such as arti-
ficial neural networks, decision trees, Bayesian theory, and 
genetic algorithms [8]. Anooj [9] proposed the generation 
of a fuzzy rule based on rule induction using decision trees 
to develop a clinical decision support system (CDSS) and 
predict the risk level. Khatibi and Montazer [10] developed 
a CHD risk prediction model based on the Dempster–Sha-
fer evidence theory by designing a fuzzy-evidential hybrid 
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I. Introduction

Coronary heart disease (CHD) has the highest mortality rate 
of all the non-communicable diseases throughout the world. 
Therefore, the prediction of CHD is necessary for reducing 
the management costs of CHD and for promoting health [1]. 
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inference engine using the FRS and PROCAM guidelines. 
Krishnaiah et al. [11] developed a CHD prediction system 
using a fuzzy K-NN classifier for measured values to remove 
uncertainty. CHD prediction models have been extended to 
a health management service model and a CDSS [12]. How-
ever, few studies have investigated the prediction of CHD in 
Koreans, which is an important requirement [5]. 
	 Therefore, it is necessary to develop a CHD prediction 
model for Koreans using data mining. In Korea, few stud-
ies have aimed to produce guidelines for CHD prediction 
thus far. Thus, rules based on guidelines are required, which 
should be produced using a data mining technique [13]. 
Certain biometric information related to CHD is also uncer-
tain, so a solution is required to address this problem; fuzzy 
logic may reduce the uncertainty of medical informatics [14]. 
Additionally, the FRS guidelines, which have been used as a 
predictive model, are not appropriate for Koreans. Therefore, 
a new prediction model should be produced based on local 
clinical data to predict CHD in Koreans using decision tree 
rule induction [15].
	 In this study, the model was developed data mining-driven 
CHD prediction model using fuzzy logic and decision-
tree. Datasets derived from the Korean National Health and 

Nutrition Examination Survey VI (KNHANES-VI) were 
utilized to produce the proposed model [16]. Furthermore, 
rules were generated using the classification and regression 
tree (CART) of the decision tree technique [17], whereas a 
fuzzy logic approach was employed to address the uncer-
tainty problem, which allowed CHD to be predicted.

II. Methods

1. Data Set 
The FRS, PROCAM, and Adult Treatment Panel III (ATP 
III) datasets have been used as standard guidelines for pre-
dicting CHD and CHD risk factors for the last 10 years. 
Therefore, the factors stated in these guidelines were used as 
a reference for data extraction. 
	 Clinical data were acquired from KNHANES-VI, which 
was a survey study conducted by the Korea Centers for Dis-
ease Control and Prevention. KNHANES provides a basis for 
policy establishment and the evaluation of the comprehen-
sive national health promotion plan. It contains data on the 
health and nutritional status of Koreans based on national 
statistics collected by the Korea Centers for Disease Control 
and Prevention [16].
	 Table 1 shows the extracted dataset. There were nine input 
variables and one output variable. Input variables are the 
important factors that are widely used for the prediction of 
CHD, namely, age, sex total cholesterol, low-density lipopro-
tein (LDL), high-density lipoprotein (HDL), systolic blood 
pressure, diastolic blood pressure, smoking, and diabetes [3]. 
The output variables are CHD risk factors that have prepro-
cessing the output variables (hypertension, hyperlipidemia, 
myocardial infarction, and angina pectoris). If subjects have 
more than one of these diseases, they are defined as having 
CHD (low risk and high risk).
	 The experimental subjects were 8,108 survey subjects from 
KNHANES-VI. There were 8,108 survey subjects in total, 

Table 1. The distribution of preoperative variables between low 
risk and high patients

Low risk 

(n = 488)

High risk 

(n = 260)
p-value

Age (yr) 50.11 (14.10) 53.06 (13.775) 0.006
Cholesterol (mg/dL)
   Total 206.69 (39.59) 201.40 (39.57) 0.082
   LDL 116.81 (33.90) 112.10 (35.99) 0.077
   HDL 43.99 (  9.57) 43.54 (  9.95) 0.552
Systolic BP (mmHg) 123.78 (16.04) 123.11 (15.70) 0.585
Diastolic BP (mmHg) 79.56 (11.20) 78.50 (11.07) 0.217
Sex
   Men 302 135
   Women 186 107
Smoking
   Smoke 318 169
   Non-smoke 170 91
Diabetes
   Yes 463 196
   No 25 64
Values are presented as mean (standard deviation) or number.
HDL: high-density lipoprotein, LDL: low-density lipoprotein, 
BP: blood pressure.

Figure 1. Data selection. KNHANES-VI: Korean National Health 
and Nutrition Examination Survey VI.

KNHANES-VI Data Set
Record: 8,108

779 selected

Final: 748 selected

Unsatisfied: 7,329

<20 year: 31
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and the exclusions were 7,329 uncertain respondents, 31 
people aged less than 20 years. The final dataset comprised 
748 subjects. Figure 1 illustrates the data selection process.

2. Coronary Heart Disease Risk Prediction Model
A classification model and a process for dealing with uncer-
tain data are required to predict CHD. The process of the 
CHD prediction model is shown in Figure 2.
	 The prediction model is a fuzzy-logic-based inference 
method that requires a rule base and fuzzy member-
ship functions. Rule induction was performed using the 
KNHANES dataset to generate the rules. The rule induction 
technique generated rules using the decision tree method. 
After that, the generated rules were transformed for using in 
the fuzzy inference engine. [18]. FRS and case studies with 
existing fuzzy functions were considered before the fuzzy 
membership functions were created [9,10]. Finally, the fuzzy 
membership functions were produced after the model was 
validated. The CHD risk level of a subject could be inferred 

using the rules generated by the decision tree and the fuzzy-
logic-based classification prediction model.

3. Rule Induction
Formal rules were extracted from the continuous dataset of 
observations by rule induction. In this study, a decision tree 
technique was used to generate the rules. CART is known to 
be a useful approach for pruning leaf nodes, which enhances 
the generalization capability of learned trees when the gener-
ated trees have an excessive number of steps and leaf nodes. 
CART can also perform analyses and interpretations to gen-
erate propositional knowledge, which is a set of rules used to 
generate ‘If-Then’ rules. Therefore, a CHD prediction model 
for Koreans was produced by applying the CART rule induc-
tion algorithm to KNHANES-VI.

4. Fuzzy Inference Engine
Fuzzy logic is a multi-valued logic that is useful for solving 
uncertainty problems, and it can address the degree of mem-

Figure 2. Coronary heart disease 
(CHD) r isk predict ion 
model. KNHANES-VI: Ko-
rean National Health and 
Nutrition Examination 
Survey VI, FRS: Fram-
ingham risk score, CART: 
classification and regres-
sion tree.

Fuzzy rule base

KNHANES-VI
(Training data set)

Paper evidence
(FRS guideline)

Decision tree (CART) Rule induction Validations testing

Coronary heart
disease
classification
model

Fuzzy membership
function

Fuzzy inference engine

Figure 3. Fuzzy inference model. COG: 
center of gravity.
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bership and degrees of truth. CHD-related data contains 
considerable uncertainty; hence, the data is inferred using 
fuzzy logic. Figure 3 shows the fuzzy inference model used 
by the CHD classification prediction model. 
	 The fuzzy inference model determines the CHD risk level 

by inference using the heart-disease-related input data. The 
continuous dataset and categorical dataset were used as the 
input data. The input continuous dataset comprised the age, 
total cholesterol, LDL cholesterol, HDL cholesterol, systolic 
blood pressure, and diastolic blood pressure. The uncertainty 
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Figure 4. Fuzzy membership function. HDL: high-density lipoprotein, LDL: low-density lipoprotein.
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of the continuous data was inferred by fuzzifying using the 
fuzzifier. The fuzzifier acquired the data via the fuzzy mem-
bership function. Figure 4 shows the fuzzy membership 
function. Six of the continuous input variables were fuzzified 
and the output variable was the CHD risk level.
	 The categorical dataset contained Boolean logic data 
types, such as sex, smoking, and diabetes; hence, the fuzzy 
membership function was not required. After the fuzzified 
functions and categorical data had been input, the fuzzy 
inference engine performed inference using the rules. The 
Mamdani max-min approach was used as the inference me
chanism, while defuzzification used the center of gravity 
(COG) method to display the final output.

III. Results

The proposed CHD risk prediction model was implemented 
and evaluated. Figure 5 shows the experimental scenario 
tested. The final data from the KNHANES dataset (748 / 
8,108 subjects) were categorized into a training set and a 

test set. The training set contained 525 subjects (70%), and 
it was used to create the rule induction and fuzzy member-
ship functions as well as the classification prediction model. 
The test set contained 223 subjects (30%), and it was used to 
verify the proposed model.
	 IBM SPSS modeler 14.2 was used for rule induction. CART 
was also used for rule induction where the pruning sever-
ity was 75%, the minimum records per child branch was 
two, the boosting number was restricted to 10 for individual 
options, and the highest probability rule model was used. 
MATLAB R2009b with a fuzzy tool box was used to produce 
the fuzzy inference model. A confusion matrix was used to 
evaluate the predictive model [19]. Table 2 shows the confu-
sion matrix.
	 The true positive (TP) value was the number of cases that 
correctly predicted CHD patients and the true negative 
(TN) value was the number of cases that correctly predicted 
healthy subjects as non-heart-disease patients. The false 
positive (FP) value was the number of cases that identified a 
patient as healthy who had CHD, and the false negative (FN) 
value was the number of cases that predicted that a patient 
had CHD who was healthy. 
	 Our model was compared with previous results using an 
artificial neural network (ANN) [20], support vector ma-
chine (SVM) [21], logistics regression (LR) [22], and deci-
sion tree C5.0 [23] to evaluate the performance. Finally, it 
was compared with propose model. The confusion matrix 
and ROC curve results are shown in Tables 3 and 4, respec-
tively. 
	 The experimental results showed that the ANN, LR, and 
SVM had relatively high accuracy rates of 62.78%, 63.23%, 
and 67.71%, respectively, although they were lower than that 
of the proposed model because ANN and SVM only made 
observations at the learning level. C5.0, which are decision 
tree-based methods, yielded accuracy scores of 53.36%. The 
proposed model had accuracy and sensitive scores of 69.51% 
and 93.10%, respectively, which were higher than those of 
the other models. The higher accuracy and sensitivity of the 

KNHANES-VI Data Set
Record: 8,108

Final: 748 selected Training set: 525 (70%)

Testing set: 223 (30%) Propose model

Evaluation:
Confusion matrix

ROC curve

Figure 5. Experimental environment. KNHANES-VI: Korean Na-
tional Health and Nutrition Examination Survey VI, 
ROC: receiver operating characteristic.

Table 2. Confusion matrix

Actual class
Prediction class

Positive Negative Row total

Positive TP (true positive) FN (false negative) TP + FN (total number of subjects with  
   given condition)

Negative FP (false positive) TN (true negative) FP + TN (total number of subjects without  
   given condition)

Column total TP + FP (total number of  
   subjects with positive test)

FN + TN (total number of subjects  
   with negative test)

N = TP+FN+FP+TN (total number of  
   subjects in study)
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proposed model can be attributed to the reduction of uncer-
tainty achieve by using fuzzy logic. CART, which was used 
for rule induction, cannot process uncertainty adequately. 
The propose model performs better than ANN and SVM in 
terms of accuracy and sensitive is the highest reason, ANN 
and SVM learning and resoning about the complex relation-
ship between the each training data; however, ANN and 
SVM do not resolve the problem of uncertainy. However, the 
propose model overcomes the problem of the uncertainty 
of the data by using fuzzy logic. However, specificity of pro-
posed model is lower than that of the other models. Thus, fu-
ture studies are required to develop a prediction model with 
higher specificity. The ROC curve result of the proposed 
model (0.594) was higher than that of the other models, and 
this can help in the decision support of the prediction of 
CHD.

IV. Discussion

This paper proposed a novel predictive model for CHD 

based on data derived from KNHANES-VI, which were col-
lected by the Korea Centers for Disease Control and Preven-
tion. The propose model decision supports the prediction of 
CHD by utilizing fuzzy logic and CART-based rule induc-
tion. Rule induction was performed using the KNHANES-
VI datasets to generate the rules using the CART method. 
The prediction model used an inference model based on 
fuzzy logic. The rules were generated using a CART decision 
tree method, and fuzzy membership functions were cre-
ated based on those used in previous case studies and FRS. 
A final dataset containing 748 subjects was selected from 
KNHANES-VI and used for the performance evaluation. 
The experimental results showed that the proposed model 
improved the prediction accuracy and sensitivity. Using 
the propose model is expected to offer decision support for 
CHD prediction.
	 Future research should focus on developing data mining 
based prediction methods that may also increase the accu-
racy and specificity of CHD prediction.

Table 3. Confusion matrix result

Accuracy Sensitivity Specificity PPV NPV

ANN 0.6278 0.7310 0.4359 0.7067 0.4658
SVM 0.6771 0.8966 0.2692 0.6952 0.5833
LR 0.6323 0.7586 0.3976 0.9006 0.4697
C5.0 0.5336 0.4897 0.6154 0.7030 0.3934
Proposed model 0.6951 0.9310 0.2564 0.6995 0.6667
ANN: artificial neural network, SVM: support vector machine, LR: logistics regression, PPV: postivie prediction value, NPV: nega-
tive prediction value, TP: true positivie, TN: true negative, FP: false positive, FN: false negative.
Accuracy = (TP + TN) / (TP + TN + FP + FN)
Sensitivity = TP / (TP + FN)
Specificity = TN / (FP + TN)
PPV = TP / (TP + FP)
NPV = TN / (TN + FN)

Table 4. ROC curve result

AUC p-value
p-value 95% CI

Lower bound Upper bound

ANN 0.583 ± 0.041 0.040 0.504 0.663
SVM 0.583 ± 0.041 0.041 0.502 0.664
LR 0.578 ± 0.041 0.055 0.498 0.658
C5.0 0.553 ± 0.040 0.196 0.474 0.631
Proposed Model 0.594 ± 0.041 0.021 0.513 0.675

ROC: receiver operating characteristic, AUC: area under ROC curve, CI: confidence interval, ANN: artificial neural network, SVM: 
support vector machine, LR: logistics regression.
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