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Abstract: Recent studies uncover that subcellular location of long non-coding RNAs (lncRNAs) can
provide significant information on its function. Due to the lack of experimental data, the number
of lncRNAs is very limited, experimentally verified subcellular localization, and the numbers of
lncRNAs located in different organelle are wildly imbalanced. The prediction of subcellular location
of lncRNAs is actually a multi-classification small sample imbalance problem. The imbalance
of data results in the poor recognition effect of machine learning models on small data subsets,
which is a puzzling and challenging problem in the existing research. In this study, we integrate
multi-source features to construct a sequence-based computational tool, lncLocation, to predict the
subcellular location of lncRNAs. Autoencoder is used to enhance part of the features, and the binomial
distribution-based filtering method and recursive feature elimination (RFE) are used to filter some of
the features. It improves the representation ability of data and reduces the problem of unbalanced
multi-classification data. By comprehensive experiments on different feature combinations and
machine learning models, we select the optimal features and classifier model scheme to construct a
subcellular location prediction tool, lncLocation. LncLocation can obtain an 87.78% accuracy using
5-fold cross validation on the benchmark data, which is higher than the state-of-the-art tools, and the
classification performance, especially for small class sets, is improved significantly.

Keywords: subcellullar location; multi-source features; the binomial distribution-based filtering;
logarithm-distance of Hexamer

1. Introduction

Only 2% of the transcriptional products are translated into proteins, and the remaining 98% are
non-coding RNAs. In a long period, researchers ignore the role of non-coding RNAs in life activities,
which are even considered as junk in the evolution. However, with the rapid development of life science,
more and more noncoding RNAs are proved to play vital roles in human gene transcription regulation,
cell growth, differentiation, breeding, and other life activities [1–4]. The research on non-coding
RNAs mainly focuses on micro RNAs (miRNA), circular RNAs (circRNA), small interfering RNAs
(siRNA), PIWI-interacting RNAs (piRNA), and long non-coding RNAs (lncRNA). The lncRNAs, with a
length of more than 200 nt noncoding RNA, which are the majority of noncoding RNAs, often play
essential roles in life activities and highly relate to various disease, including neurological disease and
tumors [5–9]. At present, the research on lncRNAs mainly starts from the two aspects of functional
acquisition and functional deficiency [10–13]. Overexpression and RNA agonists can be used for
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functional acquisition verification [14,15], while RNA inhibitors, antagonists, and promoter knockout
are suitable for functional deletion. However, not all experimental methods are applicable to lncRNAs.
For example, to be interfered with by RNA inhibitors, lncRNA should be located in the cytoplasm.
However, lncRNAs are selectively distributed in the nucleus and cytoplasm. Cells are divided into
different organelles; various organelles have different divisions of labor and are responsible for the
activities of cells with different functions, thus the information of subcellular localization of lncRNAs
can contribute to its function. Therefore, prediction of the subcellular localization of lncRNAs is very
significant. Determining lncRNAs in the distribution of various organelles can effectively contribute to
understanding its functions and molecular mechanisms of lncRNAs. However, existing experiment
methods are both time-consuming, expensive, and laborious, so it is necessary to study the prediction
of lncRNA subcellular localization.

In order to better study subcellular localization of lncRNAs, many databases have been provided.
Zhang et al. constructed a RNA subcellular location database, RNALocate, in which there are 1361
lncRNAs among 37,700 ncRNAs of multiple species [16]. The LncATLAS database [17] is the first
database to specifically include lncRNA subcellular localization data, which is based on high-throughput
sequencing data of 15 cell lines and includes 6768 lncRNA data from GENCODE annotation. By studying
the localization of lncRNAs in gastric cancer cells, Cheng and Leung et al. (2018) confirmed the
relationship between the localization of lncRNA cells and gastric cancer [18]. Subsequently, Feng et al.
first proposed a computational method to predict the subcellular localization of non-coding RNAs on
kinetoplast, mitochondria, and chloroplast [19]. Currently, there are limited computational prediction
methods for the subcellular localization of lncRNA, mainly including multi-classification of lncLocator
and iLoc-lncRNA, which contain five subcellular localization regions and four subcellular localization
regions, respectively, and DeepLncRNA based on binary classification, which contains two subcellular
localization regions. Zhen et al. extracted the K-mer features from the sequence, and then use the
stacked automatic encoder to learn higher level features from the K-mer features. After using the
oversampled data balance method, these features were fed to the integrated classifier composed of
random forest (RF) and support vector machine (SVM), and finally the prediction tool lncLocator
was derived [20]. Su and Huang et al. constructed a predictor named iloc-lncRNA [21] to predict the
subcellular localization of lncRNA. Through the binomial distribution screening method in pseudo
k-tuple nucleotide composition, the filtered K-mer data were fed to SVM [22].

In this study, we propose a novel multi-source heterogeneous feature fusion computational tool to
predict the subcellular location of lncRNAs, lncLocation.

First, to capture the panorama of lncRNA subcellular localization information from multiple
perspectives, we construct multi-source features of lncRNAs, including sequence composition features,
basic lncRNA features (ORF length and coverage, the EDP of ORF, mean hexamer score, GC content of
the non-ORF region, and Fickett nucleotide features), physical-chemical properties, and multi-scale
secondary structural features. Second, to further improve the representation and reduce the impact of
data imbalance, a computational framework of multi-source feature fusion is proposed to integrate
deep feature learning based on an autoencoder, and hybrid feature selection based on recursive
feature elimination and binomial distribution filtering. The 8-mer feature is further processed with the
filter filtering method based on a binomial distribution, and the other features are further processed
with the recursive feature elimination algorithm after further learning using an autoencoder. Third,
by comprehensive experiments on various machine learning models and features, the optimal model
lncLocation is determined. Then, lncLocation is compared to existing state-of-the-art methods for
lncRNA subcellular localization prediction, which shows higher prediction performance, especially for
the subcellular location with a small size. Furthermore, in the application case of lncLocation, we make
a whole human-genome prediction of lncRNA subcellular localization using lncLocation, and further
analyze the distribution of human lncRNA in four organelles. Finally, for convenience, an online web
server is developed for researchers to use.
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2. Results

2.1. The Effectiveness of Different Features

The model integrates features from multiple sources.
Different machine learning models were used to evaluate the performance of different features.

For a comprehensive model comparison, we constructed different machine learning models from
traditional machine learning models, including logistic regression, random forest, and support vector
machines, then integrated learning methods, such as XGBoost and LightGBM, to deep learning models,
including deep neural networks (DNNs) and convolutional neural networks (CNNs).

Here, we adopted a layered feature combination scheme. Compared with a single feature,
the layered feature combination is more effective and efficient.

(1) The different types of features extracted by the above methods were fed to different traditional
machine learning models, respectively. The performance of the different features under different
machine learning models is listed in Table 1.

Table 1. The comparison of basic features on different models.

Feature Method Precision Recall F-Score Accuracy

K-tuple features

Autoencoder(8-mer) + SVM 0.3622 0.2709 0.2388 0.6650
Autoencoder(8-mer) + RF 0.3558 0.2701 0.2379 0.6654
Autoencoder(8-mer) + LR 0.2081 0.2506 0.2040 0.6460

Autoencoder(8-mer) + XGBoost 0.3271 0.2741 0.2487 0.6559
Autoencoder(8-mer) + LightGBM 0.3031 0.2649 0.2308 0.6573

Autoencoder(8-mer) + EDP + SVM 0.3888 0.2682 0.2331 0.6647
Autoencoder(8-mer) + EDP + RF 0.2938 0.2712 0.2376 0.6661
Autoencoder(8-mer) + EDP + LR 0.3787 0.2906 0.2790 0.6430

Autoencoder(8-mer) + EDP +
XGBoost 0.3315 0.2716 0.2464 0.6522

Autoencoder(8-mer) + EDP +
LightGBM 0.2946 0.2668 0.2325 0.6606

Properties of open
reading frame

SVM 0.1622 0.2500 0.1967 0.6488
RF 0.3596 0.2863 0.2748 0.6387
LR 0.2641 0.2575 0.2120 0.6598

XGBoost 0.3023 0.2644 0.2404 0.6265
LightGBM 0.2477 0.2526 0.2098 0.6457

Fickett nucleotide
features

SVM 0.2843 0.2560 0.2120 0.6497
RF 0.3108 0.2814 0.2633 0.6570
LR 0.1985 0.2633 0.2167 0.6539

XGBoost 0.3874 0.2946 0.2910 0.6366
LightGBM 0.3636 0.2904 0.2844 0.6338

Physicochemical
properties

SVM 0.3232 0.2564 0.2098 0.6549
RF 0.2740 0.2673 0.2495 0.6127
LR 0.3449 0.2629 0.2229 0.6636

XGBoost 0.2752 0.2649 0.2399 0.6268
LightGBM 0.4111 0.3913 0.3728 0.7018

Mutli-scale secondary
structures

SVM 0.5076 0.4590 0.4356 0.7169
RF 0.4204 0.4171 0.4000 0.6927
LR 0.2648 0.2574 0.2133 0.6576

XGBoost 0.4318 0.4122 0.4023 0.6928
LightGBM 0.4248 0.4040 0.3870 0.7042

For testing purposes, the autoencoder converts 65,536-dimensional 8-mer data into 128-dimensional output.
The encoding layer consists of an input with 65,536 dimensions and three intermediate layers with nodes of 4096,
1024, and 256, respectively. The decoding layer corresponds to the encoding layer, and finally converts the 8-mer
sequence into the 128-dimensional real value vector. EDP represents the combination of the EDP of the 2-mer and
the EDP of the ORF.
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From Table 1, it can be seen that the physicochemical properties of sequences and multi-scale
structural features have a strong ability to classify lncRNA subcellular localization, which achieve
an accuracy of 70.18% and 70.42%, respectively, on LightGBM. Moreover, the multi-scale structure
features can obtain the highest accuracy rate of 71.69% on SVM. In general, all the features can obtain
good results on SVM. At the same time, it can be concluded that each feature plays a certain role in the
localization and recognition of lncRNA subcellular location.

(2) In order to further integrate features, reduce the redundancy of features, and improve the
classification performance, we grouped the features into fea.Tuple containing raw 8-mer features,
and fea.Bio consisting of the remaining features, respectively.

For fea.Bio, the new fea.Bio was obtained after feature screening. In order to further compare the
performance of different feature groups. XGBoost was used on the benchmark dataset. XGBoost can
automatically learn the optimal missing value according to the training loss and more effectively
process different types of sparse patterns in the data, which is more stable for different batches of
training [23–25].

While performing feature filtering on the fea.Bio, we tested the intermediate results of the
screening. The test results show that, compared with the sequence features extracted from the original
sequence, the advanced features reprocessed by the autoencoder have a higher representativeness
of the classification target. The former obtained a 70.99% accuracy on the test model, while the
advanced features coded in 32 and 64 dimensions obtained a 74.53% and 74.02% accuracy, respectively.
Although the representation of a single set of features on the same test model is different,
each characteristic has different attributes on the classification of the target, so sequence features
and secondary features were fused together and further filtered using recursive feature elimination
algorithms based on XGBoost. By testing the screening features, the accuracy rate was 78.83%. It can
be observed that the final screening feature significantly improves the test model results.

The 8-mer features by using the screening method were obtained, named new fea.Tuple [21].
We applied new fea.Bio and new fea.Tuple to the training of each model, then combined them into
a group of features for training, and finally obtained three control groups of each training model.
The final training data are shown in Figures 1–3 The values of the training results can be obtained from
the Supplementary Materials Tables S1–S3.

These models underwent careful parameter adjustment. Traditional machine learning models
and integrated learning use the grid search strategy [26], while, due to the large number of parameters
of deep learning models, the random search method is used.

Based on the comparison of various test results, the SVM classification combining both new
fea.Tuple and new fea.Bio has the best performance, so lncLocation was constructed. Here, the radial
basis kernel function is used as the kernel function, and the one-versus-one strategy is used as the
multi-classification strategy. In this case, the new fea.Tuple and new fea.Bio are used in the feature
group. The grid search strategy is used to optimize the regularization parameter C and the kernel
width parameter γ, where the search space was set as [2−5, 210] and [20, 2−15], respectively. The values
of parameter C and parameter γ are finally obtained. In the case of 5-fold cross-validation, the total
accuracy of the model was 87.78%, and the total accuracy was 89.69% on an independent set of
validation that accounted for 20% of the total sample. We adopted the strategy of stratified sampling
to ensure that the proportion of each subset in the cross-validation and each subset in the separate
validation set was consistent with the benchmark set, so as to make the final verification result more
objective and accurate.
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2.2. Comparison to Existing Methods

Finally, lncLocation was compared with some existing methods on the benchmark data
with 10-fold cross-validation. For comparison, we also list the test results of lncLocator and
iLoc-lncRNA. Because DeepLncRNA is a two-category classifier, its comparison results are omitted
here. The comparison results are shown in Table 2. As can be seen from Table 2, lncLocation is more
advantageous in identifying subsets which possess a small number, and gets better results in all subsets
except for the nucleus. Compared with iLoc-lncRNA, lncLocation increased the precision of cytoplasm
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by 25.59%, the recall of cytoplasm by 0.94%, the precision of ribosome by 0.17%, the recall of ribosome
by 19.45%, and the recall of exosome by 49.98%.

Table 2. The comparison between lncLocation and state-of-the-art predictor.

Location lncLocation iLoc-lncRNA lncLocator

Precision Recall
Overall

Precision Recall
Overall

Precision Recall
Overall

Accuracy Accuracy Accuracy

Nucleus 0.9583 0.7419 0.8778 0.9759 0.7756 0.8672 0.9217 0.3815 0.6650
Cytoplasm 0.8500 1.0000 0.6768 0.9906 0.3636 0.8801
Ribosome 1.0000 0.5556 0.9983 0.4651 0.9753 0.0700
Exosome 1.0000 0.3333 1.0000 0.1667 0.9727 0.0400

2.3. Web Server and User Guide

A user-friendly tool can greatly improve the efficiency of researchers. While providing open-source
prediction tools, we constructed a web server with a friendly interface. The server core is based
on python 3.7 and uses open source third-party libraries, including scikit-learn, pandas, numpy,
and tensorflow. A detailed list of third-party tools and corresponding version numbers can be found
in the lncLocation package’s instructions (https://github.com/FengSY-JLU/Core-lncLocation/) and the
server usage guide is given as follows:

Step 1. Access the lncLocation website (http://lnclocation.nat100.top/) in the browser, and users
can see the server page as shown in Figure 4.
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Step 2. Enter lncRNA sequence to be predicted in the input box of the page (in fasta format),
or upload the user sequence file in fasta format, and click ‘Submit’ to run lncLocation for prediction
of subcellular localization. Users can enter the sample sequences for testing by clicking the
‘Example’ button.

Step 3. In the output box of the page, the prediction results of lncRNAs are provided.

2.4. A Prediction on the Human Genome

Furthermore, we used lncLocation to predict the lncRNA subcellular location at the human-genome
scale, and obtained the distribution of 25,405 human lncRNA sequences in the four organelles. All the
predicted results can be obtained from Supplementary Materials File S2, the human lncRNA dataset
we used can be obtained from Supplementary Materials File S3, and the distribution ratio of lncRNA
in the four organelles is shown in Figure 5.
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3. Discussion and Conclusions

Due to the limited data of lncRNA subcellular localization verified by experiments, and the
data of different subcellular localization types being unbalanced, there are few labeled lncRNA
subcellular data, resulting in the imbalance between different subcellular location data. The problem
of multi-classification of small samples has always been a difficult problem in the field of machine
learning. In order to solve this problem, we proposed a multi-source heterogeneous feature extraction
scheme for the prediction of lncRNA subcellular location, lncLocation. The experimental results
demonstrate the effectiveness of the system and that the accuracy of the model is higher than that of
the existing multi-classification lncRNA subcellular localization tools. Moreover, the classification
performance of small-scale data subsets was also improved significantly, indicating the effectiveness
of multi-source heterogeneous feature fusion in lncRNA subcellular localization. Different feature
screening methods are used respectively for feature subsets with large differences to improve the
representation capability of smaller data subsets. A single feature extraction scheme cannot fully obtain
the subcellular localization content of lncRNA sequence. Feature extraction requires multiple kinds
of hierarchical structures. Multi-source features can further describe the sequence information from
different aspects, and hierarchical features can further reveal the intrinsic nature of the information.
Through the extraction of multi-source heterogeneous features and the secondary processing-based
autoencoder, the sequence representation ability was significantly improved, which shows that the
autoencoder can indeed learn higher level representations and further enhance the capacity of the
presentation of features that cannot be extracted manually. In our experiments, the recursive feature
elimination for further screening was demonstrated to efficiently reduce the redundancy, and further
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improve the generalization ability of the model, as the prediction precision of cross-validation increased
from 74.53% to 78.83%.

The different communication of different types of features and classifiers show different prediction
performances. Even for the same type of feature, the performances of different classifiers vary greatly.
Due to the small size of the sample, deep learning models are not better than traditional machine
learning models. This may be consistent with Occam’s razor principle. Among all possible models,
the best model is one that can explain the known data well and is very simple, which is the model
that should be selected [27,28]. In this study, the filtered k-tuple features were combined with the
multi-scale structure features, which was selected to construct lncLocation, and SVM showed the best
performance, compared to other combinations. To some extent, this demonstrates that the multi-scale
feature and k-tuple feature respectively contain different contents of lncRNA sequences on the target
of subcellular localization, which can effectively improve the representation ability of each other.

The feature extraction and integration scheme employed in this study can be directly used for
other RNA sequence analysis. In the future, more types of features should be extracted and integrated
by the multimodal machine learning models for prediction of lncRNA subcellular location, such as
lncRNA–protein associations and lncRNA expression data, to improve the prediction performance and
provide an effective and practical tool.

4. Materials and Methods

The subcellular localization of lncRNAs can be considered as a multi-classification problem.
lncLocation was constructed by the following five steps. The first step was to extract multi-source
features, including features based on the k-mer composition frequency (raw 8-mer, the EDP of 2-mer),
basic lncRNA features, physicochemical properties, and multi-scale secondary structure features.
After using the autoencoder to extract advanced features, a process, including the recursive feature
elimination (RFE) method and regularization method, was introduced to select the optimal features
and eliminate effects of dataset imbalance. For the sequence composition features, the binomial
distribution method and iterative feature selection (IFS) method were used to extract the most
informative 8-mer composition features. By comparing different multi-source feature combinations
and different classifiers, including traditional machine learning models and deep learning models,
the most suitable feature combinations and classifier were selected to construct lncLocation. Finally,
lncLocation was validated as being efficient and effective for the prediction of lncRNA subcellular
location on the benchmark dataset, compared to other existing state-of-the-art methods. The flowchart
of lncLocation is shown in Figure 6.
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4.1. Benchmark Dataset

The dataset was downloaded from RNALocate (http://www.rna-society.org/rnalocate/), which is
a comprehensive database focusing on collecting RNA localization information. Through manual
screening, 986 lncRNA sequences with annotated subcellular localization information were obtained.
In order to eliminate the impact of redundant sequences, the CD-HIT [29] program with a cutoff of 80%
was used to get rid of the redundant sequences. In total, 653 lncRNA non-redundant sequences were
finally obtained, including 4 subsets, 424 samples of cytoplasm, 156 samples of nucleus, 43 samples of
ribosome, and 30 samples of exosome. The data used can be obtained from Supplementary Materials
File S1. The detailed statistics of the dataset used in this paper are listed in Table 3.

Table 3. Benchmark lncRNA subcellular localization dataset.

Subcellular Localizations Support Number

Cytoplasm 426
Nucleus 156

Ribosome 43
Exosome 30

4.2. Multi-Source Feature Extraction

Multi-view features, including features based on the k-mer composition frequency, basic lncRNA
features, physicochemical properties, and secondary structure features, were extracted.

4.2.1. K-Tuple Features

The distribution of adjacent bases is different in different non-coding RNA transcripts [30],
and k-tuple is the most common method to obtain this distribution difference. K-tuple is a virtual
sequence fragment, which is widely used to encode RNA by cutting the sequence into a specific length
of nucleotide subsequence and analyzing its contents [31]. A specific lncRNA sequence S can be
described as:

S = (N1N2N3 · · ·Nm), (1)

where N represents the four different bases (i.e., A, C, G, T) in the lncRNA sequence, and m refers to
the length of sequence S. The pseudo amino acid composition (PseAAC) method [32], and the pseudo
k-tuple nucleotide composition (PseKNC) [22] method are proposed to transform the base sequence
into a real-value vector.

A k-mer pattern contains 4k entries. By counting the number or frequency of each k-mer entry,
it is finally converted into a vector of 4k dimensions. This frequency continuous conversion method
preserves more fully the internal information of the sequence, and the k-mer frequency has important
biological significance [33]. Some studies have revealed the unique evolutionary mechanism of 8-mer:

V(S) = [K1K2K3 · · ·K65536]
T. (2)

As raw 8-mer has a large characteristic dimension and a large number of redundant features,
in order to improve the performance of the model and remove the redundancy, further feature learning
and selection are usually carried out, such as using a stacked autoencoder to extract high-level
abstraction of lncRNA sequences from raw k-tuple features [20], and using the binomial distribution to
screen raw k-tuple features [21].

The entropy density profile (EDP) model uses Shannon artificial language to describe a fixed-length
sequence, which is a global statistical description of a given sequence. Like the k-Tuple model, EDP also
extracts features from the global perspective of the sequence and constructs corresponding dimensional
real-value vectors to describe sequence information. The use of EDP is based on both the amino acid
composition and 2-mer patterns [34,35]. The number of k-tuples depends on k, and there are 16 2-mer

http://www.rna-society.org/rnalocate/
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patterns (the k power of the number of nitrogen base), and finally, the sequence is converted to a
16-dimensional vector. There is a reasonable deduction that the EDP phase space contains bias between
the cluster of lncRNA sequences on different subcellular organelles [36]. Thus, the entropy density
profile of 2-mer can be described as:

Si = −
1
H

fi log fi, (3)

where H = −
16∑

i=1
fi log fi is the Shannon entropy, and fi is the abundance of the ith 2-mer [37].

4.2.2. Basic lncRNA Features

With the development of deep ribosomal sequencing (RIbo-Seq), PhyloCS, and mass spectrometry,
more and more evidence shows that although the ORF of lncRNA does not have protein coding ability,
some ORF of lncRNA can encode small peptides [38], which indicates that the contents contained in
the open reading frame are related to different functions among different lncRNAs. ORF length is
the longest length of entry range from the start codon (ATG) to the end codon (TAG, TAA, or TGA),
and the coverage refers to the ratio of ORF to full entry, which can be described as follows:

COVor f (s) =
ORF(S)

l(S)
, (4)

where ORF(S) and l(s) refer to the ORF length and full length of the sequence S, respectively. EDP of
ORF is used to quantify the ability of a sequence of ORF to encode small peptides:

EDPor f (s) = −
1
H

ci log ci, (5)

where H = −
20∑

i=1
ci log ci is the Shannon entropy, and ci is the i-th codon that can be translated into

amino acid.
The hexamer usage bias of the ORF length is the more discriminating feature [39]. We used

logarithmic likelihood ratios to measure the difference in the use of hexamers between sequences
belonging to a particular subset and other subsets, which could more effectively capture the difference
between sequences of different subsets [40]. The hexamer usage bias µ(s) is described as the
following formula:

µ(s) =
1
m

∑m

i=1
log

F j(Hi)

F(Hi)
, (6)

where F j(Hi) refers to the in-frame frequency of the i-th hexamer in the j-th subset, and F(Hi) refers to
the in-frame frequency of the i-th hexamer among all the rest of the subsets.

At the same time, we considered the frequency of Hexamer and introduced a method to quantify
the distance of Hexamer on different subsets: Logarithm-distance of Hexamer in LncFinder [41].
Considering the deviation of the data of the quad classification problem here, the two largest subsets
(cytoplasm and nucleus) were considered and the logarithmic distances of the four subsets were
calculated, respectively, which can be described as follows:

log DistCyto =
1
n

∑
ln

f reqseq(i)

f reqcyto(i)
,

(
i = 1, 2, . . . ., 4k

)
, (7)

log Distnuc =
1
n

∑
ln

f reqseq(i)

f reqnuc(i)
,

(
i = 1, 2, . . . ., 4k

)
, (8)

RatioDist =
log DistCyto

log Distnuc
, (9)
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where f reqseq(i), f reqcyto(i), and f reqnuc(i) are the i-th hexamer frequency of the unevaluated sequence,
cytoplasm, and nucleus, respectively; and n refers to the total number of the hexamer in the sequence.
The ratio of the distance RatioDist can be calculated from log DistCyto and log Distnuc.

Meanwhile, the non-ORF part of the sequences was also considered on account of 5′UTRs and
3′UTRs of a transcript showing a significant capacity in lncRNA identification. Due to the difference in
the GC content between 5′UTRs and 3′UTR [42], the coverage of 5′UTRs and 3′UTRs, as well as the GC
content in 5′UTRs and 3′UTRs, to describe the characteristics of non-ORF regions were all considered.
The coverage of 5′UTR is defined in the following:

COV5′UTR(s) =
5′UTR(S)

l(S)
, (10)

where 5′UTR(S) and l(s) refer to the 5′UTR length and full length of the sequence S, respectively.
Similarly, the coverage of 3′UTR can be obtained.

Fickett nucleotide features are simple semantic features, which compute the nucleotide composition
and positional frequency of the sequence [43]. Fickett nucleotide features have significant classification
efficiency due to differences in the nucleotide content and position in sequence clusters [39]. The position
frequency of nucleotides counts the degree to which each base is superior to the others at one position
in the subsequence fragment. Nucleotide composition is the percentage of a certain base (i.e., A, C,
G, T) of the sequence, and the nucleotide position frequency requires calculation based on the value
of the base at each position in the sequence fragment. For example, the position value of A can be
expressed as:

A1 = Number o f A′s in positions 1, 4, 7 . . . ,

A2 = Number o f A′s in positions 2, 5, 8 . . . ,

A3 = Number o f A′s in positions 3, 6, 9 . . . ,

Apos =
MAX(A1, A2, A3)

MIN(A1, A2, A3) + 1
, (11)

where A represents the nucleotide; and Cpos, Gpos, and Upos are calculated similarly. The percentage of
each base in the sequence also needs to be determined, and eventually each sequence is converted
to an 8-dimensional vector. In the original version of Fickett [43], the probabilities of these eight
values are further calculated using the lookup table, and the TESTCODE score is calculated using the
corresponding weights.

4.2.3. Physicochemical Properties

The electron-ion interaction pseudopotential (EIIP) is used to calculate the energy of delocalized
electrons in nucleotides as a new nucleotide coding scheme. Here, we introduced EIIP values as the
physicochemical properties of lncRNA sequences. The nucleotide EIIP values obtained from [44] are
[A—0.1260; C—0.1340; G—0.0806; U—0.1335].

The lncRNA sequence was converted to the EIIP numerical vector by using the nucleotide EIIP
value, which can be denoted as X[N]. The corresponding power spectrum can be obtained by using
the discrete Fourier transform:

H[k] =
∑N−1

n=0
X[n]e(− j2πkn/N)

, k = 0, 1, 2, . . .N − 1, (12)

and the corresponding power spectrum is defined as:

s[k] =
∣∣∣H[k]

∣∣∣2. (13)
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For lncRNAs belonging to different clusters, their spectral energy is also different. Therefore,
we used the 1/3 position signal, average energy, and signal-to-noise ratio as the characteristics. The E
and SNR are described as follows:

E =

∑N−1
k=0 s[k]

N
, (14)

SNR =
s
[

N
3

]
E

. (15)

Considering the difference of the EIIP power spectrum between lncRNA sequences, we further
conducted a descending order of the power spectrum to calculate the quantile statistics of the power
values (Q1, Q2, Q3, minimum, and maximum) in different ranges. The Q1, Q2, maximum, and minimum
values of quantile statistics were taken as physicochemical properties for model training.

4.2.4. Multi-Scale Secondary Structures

The secondary structure of lncRNAs is more conservative than the sequence, which is of great
significance for lncRNAs function inference of lncRNAs. The secondary structure of RNA plays
an important role in a variety of biological functions and is more stable than the features of the
primary sequence [45,46]. Here, we used the multi-scale secondary structure feature to further extract
the features of the sequence. Multi-scale secondary structure features can portray the structural
information from the three levels of stability, sub-elements (SSEs) combined with the pairing condition
and structure-nucleotide sequences [41].

The minimum free energy (MFE) shows the structural stability of an RNA, and the secondary
structure of lncRNA was obtained through the ViennaRNA package [47] based on the minimum free
energy algorithm. LncRNAs in different clusters have different stabilities, which could contain different
MFE. Let S[n] and SS[n] represent lncRNA sequences with a length n. SS[n] is marked with a dot bracket
notation, that is, here, the bases in the sequence were replaced with a dot bracket notation, the paired
bases were replaced with open and close brackets, and the non-paired bases were replaced with dot
notation. The sub-elements (SSEs) of lncRNA contains four components, i.e., stem(s), bulge(b), loop(l),
and hairpin(h). The SSE full sequence (SSE.Full Seq), one of the secondary structure-derived sequences,
can be obtained by replacing nucleotides in the sequence with corresponding SSEs. Successive identical
SSEs were marked as one SSE to obtain another derived sequence of the secondary structure, which was
named the SSE abbreviated sequence (SSE.Abbr Seq). P (pair) and U (un-pair) were used to replace the
bracket and dot in SS[n] to get Paired-Unpaired Seq:

Paired−Unpaired S[n] =
{

U, SS[n] = .
P, SS[n] , .

.

The nucleotide composition of the sequence S[n]was then used to derive three derived sequences of
structural characteristics from the secondary structural sequence SS[n] at a high scale level, which were
named acgu-Dot Sequence (acguD S[n]), acgu-Stem Sequence (acguS S[n]), and acgu−ACGU S[n]:

acguD S[n] =
{

D, SS[n] = .
S[n], SS[n] , .

,

acguS S[n] =
{

D, SS[n] , .
S[n], SS[n] = .
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acgu−ACGU S[n] =



A, S[n] = a ∧ S[n] , .
C, S[n] = c ∧ S[n] , .
G, S[n] = g ∧ S[n] , .
U, S[n] = u ∧ S[n] , .
S[n], SS[n] = .

.

The sequence of acguD replaces unpaired nucleotides with D, describing the coverage of SSE
STEM in the sequence. Similarly, the sequence of acguS describes the coverage of the sequence except
for the stem. The sequence of acgu − ACGU stores the nucleotide information of the sequence as
well as the SSEs information by distinguishing the nucleotide pairs from unpaired nucleotides in the
sequence of upper and lower letters. These three kinds of sequences describe the secondary structure
of sequences at a higher level. Then, the improved k-mer strategy [48] and the logarithmic distance of
k-mer [41] were used to extract the features of these structure-derived sequences, and each sequence
was finally transformed into a six-dimensional real value vector. In total, 65,536-dimensional raw
8-mer data and 70-dimension data, including sequence features, Fickett nucleotide features, GCcontent,
EDP of 2-mer, physicochemical properties, and multi-scale structural features, were further processed
using different feature learning and screening methods.

4.3. Feature Learning and Selection

In order to extract the most informative features and avoid overfitting, the feature learning
based on the autoencoder and two different feature selection methods were applied to different
types of features. Compared with other features, raw 8-mer features have a large number and more
redundant data. Therefore, features were divided into two categories for feature learning and feature
selection. Here, we simply refer to the two sets of features as fea.Tuple and fea.Bio, respectively,
where the fea.Tuple contains the original 8-mer feature, and the fea.Bio contains the remaining features.
For fea.Tuple, the filter filtering method based on binomial distribution was used, and for fea.Bio,
after the autoencoder was used for advanced feature extraction, the recursive feature elimination
algorithm was used. As shown in Figure 6, we denote the raw 8-mer features as fea.Tuple, and the
rest of the features as fea.Bio. The strategy of the binomial distribution and iterative feature selection
were used to select the most informative 8-mer features from fea.Tuple, and to obtain the filtered
feature, i.e., the new fea.Tuple. For fea.Bio, firstly, two stacked encoders were used to learn higher
level features of fea.Bio, and then the recursive feature elimination was used to further select the better
features, and obtain the filtered feature, i.e., the new fea.Bio. After testing and evaluating different
machine learning models, including support vector machines, random forests, logistic regression,
XGBoost, and lightGBM, and deep learning methods, including DNN and CNN, the optimal model
was selected. Finally, the new fea.Tuple and new fea.Bio were selected together to obtain the optimal
machine learning scheme. The details of the feature learning and selection are shown as follows.

4.3.1. Binomial Distribution Method and Iterative Feature Selection (IFS) Method for fea.Tuple

As the raw 8-mer feature contains 65,536 dimensions, there will be a lot of redundancy and
noise, which will affect the performance of the model, leading to a dimensional disaster. Moreover,
such a large-scale feature is not suitable for filtering with the recursive feature elimination algorithm,
which may cause a memory exception on the machine. So, we used the feature selection method based
on binomial distribution for feature selection [49,50].

The occurrence of a specific 8-mer in a certain lncRNA subcellular localization region is essentially
random, and the prior probability of the certain 8-mer in each location was assumed to be:

q j =
m j

M
, (16)
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where m j refers to the number of one 8-mer fragment of the j-th location ( j = 1, 2, 3, and 4, corresponding
to four subcellular localization regions), and M represents to the total number of all 8-mer in the dataset.

Then, the probability of the i-th 8-mer in the j-th category p(ni j)
was calculated according to the

prior probability:

p(ni j)
= ΣNi

m=ni j

Ni!
mi(Ni−m)

qm
j

(
1− q j

)Ni−m
, (17)

where the number of occurrences of a given 8-mer on the j-th classification subset and benchmark
dataset is represented by ni j and Ni, respectively. If the i-ith 8-mer on the j-th classification is not
biologically significant, then the probability of it should be very small. So, we used C to represent their
confidence level:

Ci j = 1− P
(
ni j

)
. (18)

Since there are four classifications corresponding to four C values (Ci1, Ci2, Ci3, Ci4), we took the
maximum of them as the confidence value for each 8-mer:

Ci = MAX(Ci1, Ci2, Ci3, Ci4). (19)

The optimal 8-mer subset was selected using iterative feature selection (IFS) according to the
ranking of 8-mer confidence values from high to low. The 8-mer with the largest C value was used
to test the model. Then, the 8-mer with the largest C value was added to the test model from the
remaining 8-mer subset. The above steps were repeated until the model accuracy no longer increased.
Finally, we obtaineed the feature set containing the optimal subset of 8-mer features, denoted as new
fea.Tuple.

4.3.2. Automatic Encoder and Recursive Feature Elimination (RFE) for fea.Bio

The fea.Bio was further processed through three steps.

Step 1: The extracted features were scaled by an automatic encoder with a symmetric network
structure to obtain two tensor data of 32 and 64 dimensions.

Step 2: The recursive feature elimination algorithm was used to filter the 96-dimensional
data encoded.

Step 3: In order to further eliminate the influence of the numerical scale and data noise between
different features, and make it more suitable for model training, the normalization method
was used to further process the data.

In order to enhance the representation ability of features, a symmetric autoencoder was used to
learn higher-level features from 70-dimensional features. Autoencoder is a multi-layer neural network
where the input and output layers represent the same meaning and have the same number of nodes.
The autoencoder is composed of an encoder and a decoder. Here, we used an encoder with three layers
of full connection layer, whose input was a 70-dimensional vector. The other two layers were 64- and
32-dimensional full connection layers, respectively. The corresponding encoder and decoder were
composed of 32 and 64 dimensions and a 70-dimensional output.

By extracting the output of the middle layer, the 70-dimensional features were coded into
a 32-dimensional vector. Then, the dimension of the self-encoder was adjusted to re-encode the
70-dimensional feature into a 64-dimensional vector, and finally a 96-dimensional feature vector
was obtained.

In order to obtain the features with more power for identification, the recursive feature elimination
algorithm [51–53] was used to further select the most informative features from the learned higher-level
features. The stability of RFE depends largely on the underlying model used during iteration. Here,
we used the XGBoost algorithm based on a parallel tree system [23]. As a boosting algorithm,
XGBoost has a relatively strong ability to filter data. We used a system with a 0.1 learning rate and
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50 subtrees to screen the features, and finally obtained a set of 32 dimensional features, denoted as
new fea.Bio. The order that was eliminated in this process is the sort of features. By testing the
32-dimensional data with the 70-dimensional data extracted from the original data in the model,
an effective improvement was obtained in the final results.

4.3.3. Model Selection

To further explore these features, we tested a variety of machine learning models,
including traditional classification models, such as support vector machines, random forests,
logistic regression, XGBoost, and lightGBM, and deep learning methods, including DNN and CNN.

Through comprehensive evaluation of the performance of different feature combinations and
machine learning models with 10-fold cross validation, SVM was used to construct lncLocation.

4.4. Performance Evaluation

For model comparison, we adopted 10-fold cross validation. The initial sampling was divided
into 10 subsamples, one single subsample was retained as the data for verification of the model, and the
other 9 samples were used for training. The cross-validation was repeated 10 times, one for each
subsample, and the results averaged 10 times, resulting in a single estimate.

To evaluate the efficiency of one model for subcellular localization of lncRNAs, we introduced
some criteria, including accuracy, precision, recall, and F1-score, which can be formulated as follows:

Accuracy =
Num(pred=lable)

Num(pred) ,

Precision(i) = TP(i)

TP(i)+FP(i) ,

Recall(i) = TP(i)

TP(i)+FN(i) ,

F1 = 1
n
∑n

i=1
2×Precision(i)×Recall(i)

Precision(i)+Recall(i)
,

where TP(i), FP(i), and FN(i) represent the true positive, false positive, and false negative of the ith
class, respectively.
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