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A B S T R A C T   

Worldwide, there is an urgent need to develop energy-cum-carbon smart and cost-effective rice 
production systems for farmer’s adoption. Data were collected from 280 farmer’s fields repre-
senting the South Asia rice production system. Out of these 75 fields following transplanted rice 
(TPR), 55 fields of wet direct seeded rice (WDSR), 60 fields of drill sown direct seeded rice in line 
(DSR L), 60 fields of traditional direct seeded rice (DSR) and 30 fields of DSR + beushning (DSR +
B). Results show that grain and straw yields in the TPR were 6056 and 7752 kg ha− 1, respectively; 
however, they were neither profitable, energy efficient, or eco-friendly. At the same time, the 
grain and straw yields in DSR L were recorded by 5832 and 7757 kg ha− 1, respectively. It was 
profitable with the highest net returns (1111.5 US$ ha− 1), energy use efficiency (12.77), energy 
productivity (0.41 kg MJ− 1), energy profitability (11.77 US$ MJ− 1), energy output efficiency 
(1314.3 MJ day− 1) environment friendly in terms of carbon efficiency 7.20, carbon sustainability 
index (6.20) and had most diminutive carbon footprint (0.14 kg CO2 eq kg− 1 grain) with a 
comparable carbon credit. DSR L is productive, economically viable, energy efficient, and envi-
ronmentally safer among rice production systems.   

1. Introduction 

Rice (Oryza sativa L.) is a staple diet to most of the world’s energy supply. It is grown on ~170 million hectares (Mha) in South Asia, 
yielding 782 million tonnes (MT) [1]. India has 43.8 million hectares of rice-growing land, producing 117.5 MT of rice, accounting for 
24% of global rice output [2]. Of the total rice area, ~53.9% is irrigated, ~27.1% is rainfed, ~6% is flood-prone, and ~13% is upland 
[3]. The rice-based production system is wasting infinitive natural resources and causing many problems for developing countries and 
the rest of the globe, including soil sickness, economic and environmental unsustainable, and human health problems. It’s because of 
stagnant production at a high cost, declining farm profitability, excessive agricultural energy consumption, and unsustainable man-
agement of scarce natural resources [4]. 

Traditional agricultural practices have a significant impact on greenhouse gas (GHG) emissions, accounting for 60% of nitrous 
oxide (N2O), 39% of methane (CH4), and 1% of carbon dioxide (CO2) emissions [5]. CH4 is the major contributor to rice production, 
whereas N2O and CO2 emissions are also significant in some systems [6]. The impounding of water in puddle transplantation of rice 
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(TPR) favors anaerobic conditions, leading to CH4 emission. The Indian rice field emits 96.2 MT CO2 equivalent (eq); these contributed 
to 18.4% of the world during 2016 [1]. 

A comprehensive solution for productivity, profitability, environmental, soil, and human health security may be used to ensure 
agricultural sustainability in the future [7]. It may be possible to develop an eco-friendly, carbon-cum-energy-efficient, rice-based 
production system for future sustainability by assessing all production techniques used by farmers [8]. Realizing the optimal use of 
existing agricultural resources is a significant challenge in agriculture for an energy-efficient production system compared to tradi-
tional rice-growing approaches [9]. As a result, it is committed to developing an energy-efficient, commercially viable, and ecolog-
ically responsible system [10,11]. The relationships between crop productivity, economics, and energy are closely linked [7]. Different 
production systems have been adopted in rice based on resource availability, considerably influencing the energy consumption pattern 
and GHG emissions. The evaluation of economic feasibility, energy efficiency, and carbon footprint (CF) may give insights into the 
environmental implications of agricultural production [12–15]. An organized energy flow analysis helps describe various activities 
and is also required for identifying and developing an effective and efficient rice production system. Because the area under traditional 
direct-seeded rice (DSR and DSR with beushning (DSR + B) has a substantial yield variability, efforts are being made to replace it with 
advanced drill-sown direct-seeded rice (DSR L) [16–21]. 

A quantum shifts towards DSR L to cherish the potential advantage of 12–40% water saving [22], reduced drudgery, 11–66% labor 
saving eliminating TPR [23], diesel energy (60%), 2–16% cost saving [24], and sustainable soil properties [25,26]. The conventional 
rice production systems’ energy use efficiency (EUE) has been declining, owing to higher energy input than energy output and 
environmental consequences [27]. The DSR L helps to earn more carbon credits than TPR, mainly by a 6–92% reduction in CH4 
emission [28]. Furthermore, carbon-efficient agricultural activities would aid in developing a carbon-efficient production system and 
reducing CF, which has been used as a quantitative measure of GHG emissions [29]. The CF is a valuable index for designing a 
climate-smart, sustainable, and eco-friendly production system [30], similar to techniques aimed at reducing CO2 emissions, 
increasing CH4 oxidation, minimizing CH4 production in submerged fields, and reducing N2O output [31]. 

Farming in rice-growing areas of India is representative of South Asia, with fragmented land ownership, little investment, inad-
equate irrigation systems, and insufficient money. The rice-growing system used is highly dynamic and diversified. Monsoon- 
dependent rice is grown by most rice producers in a considerable region. Therefore, an attempt has yet to be made to assess pro-
ductivity, profitability, energy usage, or CF for rice production systems in South Asia. The energy efficiency of five established or semi- 
developed rice production systems with various management approaches and varying levels of energy and carbon inputs were assessed 
in this study. To evaluate the energy and carbon fluxes of a rice production system, data were collected from 280 rice producer field 
sites. The study’s goals were to 1) identify the most productive and economic rice-growing system, 2) analyze energy-cum-carbon- 
efficient rice-growing systems, and 3) explore alternative management techniques for establishing a sustainable rice-growing sys-
tem. Because information on these topics is limited, the current study focused on all rice-cultivating techniques to determine practice 
for per-unit productivity, economic feasibility, energy, and carbon budgeting for long-term sustainability and to save the costly natural 
resources exploited in South Asia’s rice-dominant belt. Also, it will achieve the targets set out by the United Nations to battle climate 
change, generate a zero-carbon sink, and enhance above- and below-ground ecosystem services. 

2. Materials and methods 

Designing experiments based on traditional agricultural techniques has not been financially feasible or environmentally sustainable 

Table 1 
Major activities followed in the rice production system.  

Rice production 
system 

Abbreviation Description Tillage Seedbed Seed 
environment 

Seeding method 

Transplanted rice TPR Nursery land: Land is plowed, leveled and seeds 
are sown in dry condition 
Main field: Land is plowed and puddle and 20–25 
days old seedlings are transplanted, seedlings get 
transplanting sock and get recovers after 5–8 days 

Dry and wet Wet Dry and wet Manual 
transplanting 

Wet- Direct 
seeded rice 

WDSR Land is plowed and puddle, pre-germinated seeds 
(with 24 h soaking and 24 h incubation) are sown 
by manually, immediately after puddling, seeds 
settle down with suspended mud and protect the 
seeds 

Dry and wet Wet 
(puddle) 

Anaerobic Random 
broadcasting 

Drill sown direct 
seeded rice 

DSR L Land is plowed, harrowed but not puddle, leveled 
then dry seeds are drilled through seed drill, 
before the onset of monsoon for effective use of 
rain 

Conventional 
dry tillage 

Dry soil Aerobic Drilled through 
seed drill 

Direct seeded rice DSR Land is plowed, harrowed but not puddle, leveled 
then dry seeds are broadcasted before the onset of 
monsoon for effective use of rain 

Conventional 
dry tillage 

Dry soil Aerobic Manually 
broadcasted 

Direct seeded rice 
with 
beushning 

DSR + B Land is plowed, harrowed but not puddle, leveled 
then dry seeds are broadcasted before the onset of 
monsoon for effective use of rain 

Conventional 
dry tillage 

Dry soil Aerobic Manually 
broadcasted  
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since the 1960s. Individual farmers have adopted semi-advanced rice cultivation methods (Table 1) such as TPR, wet DSR (WDSR), 
DSR, DSR L, and DSR + B based on farm resource richness and affluence. 

2.1. Study location and climatic parameters 

Under the Indian Council of Agricultural Research (ICAR)-National Institute of Biotic Stress Management (from now on, ICAR- 
NIBSM), Raipur, Chhattisgarh, India, the current study was replicated on 280 fields between 2013 and 2016 for data gathering 
during four years (Fig. 1). The climate was sub-tropical, and weather conditions were stable during both years. The annual average 
rainfall received during the study period (15 June to 15 November) was 1084.2–1798.2 mm. The maximum weekly average tem-
perature varied from 26.5 to 41.2 ◦C, respectively, whereas the minimum average temperature ranged from 11.0 to 28.6 ◦C. In 0–20 cm 
soil depth, the soil is an Arang Series loamy texture (30–35% sand, 39–45% silt, and 20–23% clay), with 0.34–0.38% organic carbon, 
near-neutral pH (6.5–7.2), 1.40–1.42 Mg m− 3 bulk density (ρb) and low to medium in KMnO4 oxidisable nitrogen (205.8–350.6 kg 
ha− 1), medium in 0.5 N NaHCO3 extractable phosphorus (15.5–18.5 kg ha− 1), and high in 1.0 N NH4OAc exchangeable potassium 
(321.5–362.6 kg ha− 1). 

Fig. 1. Location map of the study area.  
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2.2. Experimental procedures 

The study area was selected for the adoption of the different rice production systems and uniformity in cultivation practices. Data 
was collected from a total of 280 farmers’ fields consisting of 75 fields of TPR, 55 fields of WDSR, 60 fields of DSR L, 60 fields of DSR, 
and 30 fields of DSR following beushning (wet cross-ploughing with country plough ~25–35 DAS of the dry seeded rice field, when 
~20 cm of water gets impounded in the crop field followed by laddering and seedling redistribution) [32,33] were included in the 
study. The data on crop production was collected by input used during the production process. The grain and straw yields were ob-
tained by crop cutting at 25 m2 area (5 m × 5 m) at three places of each field and averaged for interpretation. In the study area, farmers 
irrigated crops mainly through tube wells. Farmers growing rice cv. ‘Swarna’ (140–145 days, high yielding) was selected for the 
investigation to eliminate the varietal disparity. The details of agricultural practices adopted during the cropping season with different 
rice production systems are presented in Table 1. Although, at ICAR-NIBSM, all the rice production systems were adopted in three 
replications. Data were entered as three sites where every input was quantified and used for estimation. These were almost similar to 
the inputs used by rice growers in different production systems. 

2.3. Economic parameters 

As the majority of the farmers use the farm resources as inputs available free of cost, these are not considered while estimating the 
cost of production. The economic parameters of rice cultivation only consider the variable production cost. The inputs include ma-
chinery (tractor, cultivator, harrow, rotavator, sprayer, etc.), seed, fertilizer, pesticides, irrigation, harvesting, threshing and bagging, 
and human labor, excluding the cost of land were considered while estimating the cost of production. The various economic pa-
rameters were calculated based on the following equations (1)–(3) 

GR=(GYxPR) + (SYxPS) (1)  

NR=GR − PC (2)  

B : C=GR/PC (3)  

where, GR, gross returns (US$ ha− 1); GY, grain yield (kg ha− 1); PR, the market price of rice grain; SY, straw yield (kg ha− 1); PS, the 
market price of rice straw; NR, net returns (US$ ha− 1); PC, production cost; B: C, the benefit–cost ratio. 

For better comparisons, all the economic values were converted from Indian rupees (INR) to US$, using an exchange rate of 
2015–16 (65 INR = 1 US$). 

2.4. Energy analysis 

The energy analysis compared the performance of five rice production systems managed according to different energy inputs. The 
energy inputs are referred to as non-renewable and renewable. Manual labor, fuel, types of machinery, agrochemicals (herbicide, 
fungicide, and insecticide), and inorganic fertilizers (N, P2O5 and K2O) were non-renewable energy inputs, whereas seed, water etc., 
were renewable energy inputs. The energy output was computed using grain and straw yields of rice. The energy equivalents used 
during the study are presented in Supplementary Table 1. The energy indices were calculated using the formula [34–36] and equations 
(4)–(12). 

EO=(GYxEcg) + (SYxEcs) (4)  

NER=EO − EI (5)  

EUE=EO/EI (6)  

EP=GY/EI (7)  

EPf =NER/EI (8)  

HEPf =EO/LE (9)  

EIn=EI/PC (10)  

SE=EI/Y (11)  

EOE=EO/D (12)  

where, EO, energy output (MJ ha− 1); Ecg, energy coefficient grain; Ecs, energy coefficient straw; NER, net energy returns (MJ ha− 1); 
EI, energy input (MJ ha− 1); EUE, energy use efficiency; EP, energy productivity (kg MJ− 1); EPf, energy profitability (US$ MJ− 1), HEPf, 
human energy profitability; LE, labor energy (MJ ha− 1); EIn, energy intensity (MJ US$− 1); SE, specific energy (MJ kg− 1); Y, yield (kg 
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ha− 1); EOE, energy output efficiency (MJ ha− 1 day− 1); D, duration (day). 
Grain and straw were used to estimate energy output. In contrast, the rest of the energy parameters were calculated based on grain 

yield, as farmers sell to estimate energy output. Farmers sold rice grain in the market, and straw was used for domestic purposes or 
burnt in the field. 

2.5. Carbon footprint analysis 

The carbon equivalent (kg CO2eq ha− 1) of input used in the rice production system (Supplementary Tables 2 and 3) was used to 
estimate different carbon parameters as suggested by Lal [11]. The following equations were calculated using the following equations: 
the carbon input and output, carbon efficiency, carbon sustainability index, carbon credit, and CF. 

CO=BMx 0.44 (13)  

where CO, carbon output (kg CO2eq ha− 1); BM, biomass (grain + straw) in kg ha− 1; 0.44, is carbon content (44%) each plant biomass 
does contain as suggested by Lal [11] and Singh and Ahlawat [20]. 

CE=
CO
CI

(14)  

CSI =(CO − CI)/CI (15)   

C credit (US$ ha− 1 yr− 1) = Rate (t− 1 ha− 1 yr− 1) × 15 …                                                                                                              (16) 

where, CE, carbon efficiency; CI, carbon input (kg CO2eq ha− 1); CSI, carbon sustainability index; price per ton of CO2eq was 15 US$ 
(2015-16). 

The CF (kg CO2eq kg− 1 grain) of the rice production system was calculated as per the methodologies suggested by Gan et al. [42], 
Ma et al. [43] and Singh and Ahlawat [20]. 

CF =
CI
GY

(17)  

2.6. Statistical analysis 

The collected data underwent statistical analysis following the methodology outlined by Cochran and Cox [51]. To compare means, 
a Fisher’s protected least significant difference (LSD) test with a significance level set at p = 0.05 was employed, utilizing IBM SPSS 
Statistics version 24.0. Before conducting the analysis of variance (ANOVA), normality and homogeneity of variance were evaluated 
for rice yield, energy, and carbon parameters. The assessment was performed using the Shapiro-Wilk test for normality and the Bartlett 
test for homogeneity of variance, both conducted at a significance level of p = 0.05. Following these assessments, mean values were 
differentiated using Duncan’s Multiple Range Test (DMRT). 

3. Results and discussion 

3.1. Rice productivity 

Fig. 2 depicts that rice’s grain and straw yields tended to be higher on the TPR (6056 and 7752 kg ha− 1, respectively) but were on 

Fig. 2. Grain and straw yield (kg ha− 1) as influenced by different rice production systems (transplanted rice, TPR; wet-direct seeded rice, WDSR; 
drill sown direct seeded rice, DSR L; direct seeded rice, DSR; direct seeded rice with beushning, DSR + B) (same letters are statistically comparable to 
each other in similar color bar). (For interpretation of the references to color in this figure legend, the reader is referred to the Web version of 
this article.) 
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par with DSR L (5832 and 7757 kg ha− 1, respectively). In contrast, the traditional DSR system had considerably lower yields (4664 and 
6623 kg ha− 1, respectively). The rest of the rice production systems had significantly higher grain and straw yields, yet their effect was 
less concerning to TPR and DSR L. The higher grain and straw yields in TPR and DSR L were mainly due to optimum plant population, 
more tillers, and longer and heavier panicles with more grain panicle− 1 [15]. Furthermore, TPR, DSR L, and WDSR have been 
semi-evolved cultivation systems where plants were responsive to external inputs such as water, nutrients, and plant protection 
measures, and helped in synthesizing longer and broader leaves resulting in larger leaf area, and ultimately higher leaf area index 
(LAI). These trapped more solar radiation led to synthesizing additional photosynthesis, translocated to different plant parts, pro-
ducing higher yield attributes and leading to higher yield [26,52,53]. In contrast, traditional DSR plots had an inappropriate plant 
population (at some places, a dense population and another thin population), shorter panicles, lighter, and fewer grains panicle− 1 (data 
not presented), resulting in lower grain and straw yields. The TPR and DSR L production systems had optimum plant population and 
better microclimates for growth and development, hence utilizing solar radiation more efficiently. They produced higher rice grain 
yield [54]. In conformity with our results, reduction in yield under DSR was also recorded by Clerget et al. [55] and Yadav et al. [56]. 
Similar to our result, Bhushan et al. [57] reported no yield advantage in DSR L compared to TPR. These provided insight into rede-
signing the rice production system to increase the yield under DSR L. 

3.2. Energy utilization pattern 

The source-wise energy utilization pattern differed with different rice production systems (Table 2). The highest mean energy was 
consumed under TPR (17201.1 MJ ha− 1), followed by DSR + B (17103.9 MJ ha− 1), and the least in DSR (13666.4 MJ ha− 1). The WDSR 
and DSR L utilized reasonably lower energy inputs but were higher than DSR. The energy utilization of renewable and non-renewable 
energy under different rice production systems was varied. TPR utilized the highest indirect non-renewable energy comprising fer-
tilizer, pesticides, and farm machinery (9318 MJ ha− 1), and subsequently WDSR (9015 MJ ha− 1), whereas the lowest non-renewable 
energy under DSR (7601 MJ ha− 1). Seeds were an indirect renewable energy source, consumed highest with DSR + B (1900 MJ ha− 1) 
afterward in DSR (1520 MJ ha− 1) and lowest under TPR (608 MJ ha− 1). Likewise, diesel contributed 2393–3153 MJ ha− 1, the highest 
with TPR, whereas it was similar in WDSR, DSR, and DSR + B (Fig. 3). Direct renewable energy, viz. human labor, water, and animal 
power, was higher in DSR + B (4762 MJ ha− 1) after TPR (4122 MJ ha− 1), whereas it was lowest in DSR L (2083 MJ ha− 1). Thus, the 
data indicated that the percent contributions of indirect non-renewable energy ranged between 47 and 57%. The higher contribution 
was recorded with WDSR and the lowest with DSR + B. The rest of the rice production system lies between TPR and DSR + B. The 
energy contribution of seed ranged between 4 and 11%, the highest in DSR + B and DSR and the lowest with TPR. Direct renewable 
energy contributed 15–28%, higher under DSR + B and the weakest in DSR L. Further, the percentage contribution of these input 
energy in the rice production system illustrated that energy consumption was highest in fertilizer management (33.8–44.5%) sub-
sequently consumption of diesel (14.0–21.6%), irrigation (11.4–21.5%), seeds (3.5–11.1%), machinery used for various operations 
(8.9–10.6%), application of plant protection chemicals (3.5–4.5%), and the least by animal power (Fig. 4). The contributions of 
commercial energy, viz. machine, diesel, fertilizer, plant protection chemicals, etc., in different rice production systems ranged be-
tween 72.2 and 85.4%, being the highest in DSR L and the lowest in DSR + B. On the contrary, non-commercial energy, viz. animal 
power, labor, water, etc., ranged between 14.6 and 27.8%, with the highest in DSR + B and lowest in DSR L (Fig. 5). Jat et al. [58] 
stated that fertilizer application could contribute ~50% of the total energy in conventional tilled maize-wheat cropping systems. A 
slightly improved rice production system, i.e. DSR + B, relies more on animal power. Additionally, human laborers were engaged in 
various operations, maintaining a uniform plant population that consumed considerably more energy than DSR. Furthermore, this 
system additionally required 2000 m3 of water to be impounded to impose beushning. It has been observed that DSR + B utilized higher 
seed energy, mainly due to some of the plants being uprooted and drying while ploughing with a country plough. Also, trampling while 
maintaining the plant population further kills certain plants. Therefore, a higher seed rate (20–25%) has been suggested [32,33]. 

Modern or improvised rice production systems depended not on animal power but more on mechanical power. Nursery man-
agement and field preparation are additional desired activities for TPR. Furthermore, TPR consumed higher fertilizer energy with the 
lowest seed energy. Therefore, overall energy input was highest in TPR over many other rice production systems [54]. Likewise, WDSR 
essentially requires puddling before sowing sprouted seeds. The improvised rice production system has depended much on 
non-renewable energy; hence, it has been suggested to adopt agriculture systems requiring less tillage, water, fertilizers, and energy in 
a larger area to minimize the use of non-renewable energy [6,59]. Crews and Peoples [60] also stated that non-renewable energy, like 
fertilizers alone, contributed >40% of total energy input. Fertilizers, land preparation, sowing management, and plant protection 
further increased the share of total energy input. Laik et al. [61] estimated 20.6–34.4 GJ ha− 1 of energy inputs in rice production in the 

Table 2 
Energy input (MJ ha− 1) used in different rice production systems.  

Rice production system Bullock power Machinery Diesel Labor Water Seed Fertilizer Plant protection Total 

1 2 3 4 5 6 7 8 9 

TPR 0.0 1715.4 3153.4 957.0 3164.6 608.0 6994.0 608.7 17201.1 
WDSR 0.0 1411.8 2393.2 549.0 2552.6 1216.0 6994.0 608.7 15725.2 
DSR L 0.0 1523.9 3097.1 448.6 1634.6 1216.0 5782.0 608.7 14310.8 
DSR 0.0 1210.4 2393.2 517.6 1634.6 1520.0 5782.0 608.7 13666.4 
DSR + B 350.4 1658.0 2393.2 737.0 3674.6 1900.0 5782.0 608.7 17103.9  
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Fig. 3. Renewable and non-renewable energy inputs (MJ ha− 1) used in different rice production systems a).  

Fig. 4. Source-wise energy input in rice production system a) transplanted rice (TPR), b) wet-direct seeded rice (WDSR), c) drill sown direct seeded 
rice (DSR L), d) direct seeded rice and e) direct seeded rice with bueshning (DSR + B). 
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Eastern Indo-Gangetic Plain of India. Similar to our finding, the consumption of non-renewable energy like diesel, over 60% in Iran 
[40] and more than 50% in the Philippines [62] had been observed. Efforts must be made to substitute the complete production system 
with less demanding utilizing local resources and site-specific agricultural practices like conservation tillage where >30% of input 
energy can be saved [63,64]. In the DSR L rice production system, the number of tillage operations can be considerably reduced. In the 
study site, the energy consumed in various field operations in the rice production system was moderate because of renewable and 
non-renewable energy sources. This was lower than many other cereal-based systems [49,65] and also higher than traditional 
intensive cropping [62] (Quality et al., 2014). Like our findings, Jat et al. [58] found that fertilizer was the primary carbon input in the 
rice production system, followed by fossil fuel, i.e., diesel. DSR L has the least CF as it remarkably utilizes the resources to convert into 
economic output with a climate-smart production system [67]. 

3.3. Energy parameters 

The data in Table 3 illustrate that the rice production system significantly influenced the energy parameters; the total output energy 
produced ranged from 151358 MJ ha− 1 (DSR) to as high as 185927 MJ ha− 1 (TPR). Energy output relies on economic yield harvested 
under the rice production systems. The TPR produced significantly higher energy output (185927 MJ ha− 1) and net energy returns 
(168726 MJ ha− 1) than other rice production systems. The DSR L was the next best rice production system regarding energy output and 
net energy returns (182687 and 168377 MJ ha− 1, respectively). The traditional DSR production system yielded the most negligible 
energy output and net energy returns (151358 and 137691 MJ ha− 1, respectively). Furthermore, WDSR and DSR + B produced more 
energy, yet their effect on TPR was less. The increment in energy production (output and net) with TPR was 23% more, followed by 
DSR L (21 and 22%, respectively) compared to DSR. The WDSR and DSR + B recorded 10–13 and 8–12% more energy than DSR. The 
maximum energy output and net energy under TPR and DSR L were mainly due to the higher energy output in crop yield and 
comparatively lower energy expenditure [27,67]. In agreement with our findings, Nagarjun et al. [68] reported higher energy output 
and net energy return with thrice hand weeding at 20, 40, and 60 DAS (171614 and 160825 MJ ha− 1, respectively) in DSR mainly due 
to higher grain and straw yield. They also found that the variables where lower yield was recorded had the least energy productivity 
and vice-versa with thrice hand weeding. Syhamlal et al. [69] also corroborated that lower yield led to the least EUE. 

Fig. 5. Source-wise share of commercial and non-commercial energy inputs (%) used in different rice production system.  

Table 3 
Energy input, output, net energy return, energy ratio, specific energy, energy intensiveness, and human energy profitability of different rice pro-
duction systems.  

Production system Total 
energy 
input (MJ 
ha− 1) 

Energy 
output (MJ 
ha− 1) 

Net energy 
return (MJ 
ha− 1) 

Energy use 
efficiency 

Energy 
productivity 
(kg MJ− 1) 

Energy 
profitability 

Energy 
intensiveness 
(MJ US$− 1) 

Human energy 
profitability 

Transplanted rice 
(n = 75) 

17201.1 185927a 
±20547 

168726a 
±20547 

10.81b ±
1.19 

0.35b ± 0.04 9.81b ± 1.19 24.8c 194.3e±21.5 

Wet seeded rice (n 
= 55) 

15725.2 170489b ±
18157 

154764b ±
18157 

10.84b ±
1.15 

0.35b ± 0.04 9.84b ± 1.15 29.5a 310.6b ± 33.1 

Drill sown direct 
seeded rice (n 
= 60) 

14310.8 182687a 
±18073 

168377a 
±18073 

12.77a 
±1.26 

0.41a±0.04 11.77a±1.26 26.8b 407.3a±40.3 

Direct seeded rice 
(broadcasting) 
(n = 60) 

13666.4 151358c 
±19706 

137691c 
±19706 

11.08b ±
1.44 

0.34b ± 0.05 10.08b ±
1.44 

27.1b 292.4c±38.1 

Direct seeded rice 
with Beushning 
(n = 30) 

17103.9 165851b ±
24641 

148748b ±
24641 

9.70c 
±1.44 

0.30c±0.05 8.70c±1.44 26.7b 216.6d ± 32.2 

±, standard deviation; different letters in same column are significant different at p < 0.05 and same letters are comparable to each other. 
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Likewise, EUE was tented to be higher by 32% with DSR L (12.77) than DSR + B (9.7). The rest of the rice production systems also 
improved the EUE to 11–14% over DSR + B. Barut et al. [70] found higher EUE under no-till DSR than the conventional tilled DSR; as a 
conventional tilled desired more tractor traffic, it further increased under TPR [54]. Adoption of DSR L recorded 35% more EP than 
DSR + B (0.30 kg MJ− 1). In addition, other rice production systems also recorded an improvement in EP by 13–17% more than DSR +
B, according to those reported earlier [59,71]. Among rice production systems, the EPf was improved by 13–35% than DSR + B (8.70), 
the highest with DSR L (11.77) and the lowest in TPR (9.81), though they were considerably higher than DSR + B. The EIn was 
improved by 8–19% in different rice production systems over TPR (24.8 MJ US$− 1). The highest was recorded with WDSR (29.5 MJ US 
$− 1), followed by DSR (27.1 MJ US$− 1). The HEPf acquired was the lowest in TPR (194.3), although there was an improvement in it by 
12–110% as compared to TPR. The HEPf was higher in DSR L (407.3), followed by WDSR (310.6) and DSR (292.4), whereas a lower 
value was obtained under DSR + B (216.6) but was 12% more than TPR (Table 3). The SE was significantly higher in DSR + B (3.4 MJ 
kg− 1); it was 27.2% higher over DSR L and 15.5% over TPR, whereas DSR was lower by 12.3% than DSR + B. These indicated that DSR 
L had the least energy expended to produce a unit quantity of output, and DSR + B spent the highest point. DSR L was the 
energy-efficient production system with 1314.3 MJ ha− 1, even 3.9% more than TPR, whereas the rest of the rice production systems 
had lower EOE (Fig. 6). This was mainly due to the minor fertilizer and irrigation energy consumption. Tuti et al. [19] stated a similar 
trend of energy parameters in colocasia–based cropping systems. Based on the findings, energy, economics and agriculture are 
interdependent and have a close relationship Nagarjun et al. [68]. 

3.4. Carbon budgeting 

Almost all rice production systems have followed the same trend on various carbon inputs used for various agricultural operations. 
Fertilizers used in crop production consumed the highest carbon input (52.5–60.6%), followed by water as irrigation (11.9–23.3%) and 
diesel used in various field operations (11.5–13.7%), plant protection used to manage disease, weeds, and insects (5.2–6.9%) in 
different rice production systems (Fig. 7). The TPR production system consumed the highest carbon (1095.8 kg CO2eq ha− 1), with 
which 54.8% alone from fertilizer, 17.5% from water, and 15.7% from diesel, followed by WDSR (991.1 kg CO2eq ha− 1) in which 
fertilizer consumed 60.6% and water (15.6%), diesel (13%) of total carbon. The least carbon was consumed in DSR L (830.2 kg CO2eq 
ha− 1) compared to other rice production systems. Adopting a DSR-based rice production system has consumed considerably less 
carbon inputs. Surprisingly, WDSR has consumed 19.4% more carbon, by applying a higher fertilizer, water, and labor rate. Likewise, 
further modification in the rice production system finished 32.0% more carbon in TPR over DSR L. This was due to higher fertilizer, 
water, labor, puddling, and nursery management. Hence, it can be inferred that improvement in the rice production system consumed 
more carbon. However, DSR L has been recently adopted in a larger area with the lowest carbon consumption over other rice pro-
duction systems. Similar findings were reported in the pigeonpea–castor cropping system [71], diversified cropping system [7], rice 
[54], and the upland rice–toria cropping system [59]. 

3.5. Carbon parameters 

The rice production system significantly influenced the carbon output, efficiency, and CF (Table 4). Among the different rice 
production systems, TPR maintained significantly higher carbon output (6075.6 kg CO2eq ha− 1) after that in DSR L (5979.0 kg CO2eq 
ha− 1), whereas the lowest carbon output was recorded in DSR (4966.6 kg CO2eq ha− 1). The TPR had 22% more carbon output, fol-
lowed by DSR L (20%) > WDSR (12%) > DSR + B (10%) than that of DSR. Likewise, carbon efficiency was the highest with DSR L 
(7.20), followed by DSR (5.95) > DSR + B (5.70) > WDSR (5.62) > TPR (5.54). DSR L production system had the highest carbon 
efficiency, and it recorded a higher trend of TPR (23%) > WDSR (22%) > DSR + B (21%) > DSR (17%). The higher carbon efficiency 
was mainly attributed to lower carbon input by the rice production system than that of others. The CSI was recorded as the highest in 
DSR L (6.2), with 36.5% more than the TPR; DSR was the next best rice production system with a 9.0% improvement over TPR. DSR +
B and WDSR were comparable to TPR. The carbon credit explains how many carbon units can be sold; TPR was recorded with the 
highest carbon credit (91.1 $ t− 1 ha− 1 yr− 1) and was comparable to DSR L (89.7 $ t− 1 ha− 1 yr− 1). The rest of the rice production system 
had considerably lower carbon credit by 8.2% in WDSR, 10.5% in DSR + B, and 18.3% in DSR over TPR. This exhibited that TPR is the 

Fig. 6. Rice production system influences a) specific energy and b) energy output efficiency (same letters are statistically comparable).  
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efficient production system along with DSR L (Fig. 8). The DSR L has significantly lower CF (0.14 kg CO2eq kg− 1 grain) than the other 
rice production system. Although it was 32% lower than DSR + B, followed by 27% lower than DSR, TPR, and WDSR as these had 
similar CF (0.18 kg CO2eq kg− 1 grain). It has been stated that management practices influenced the CF; the consumption of non- 
renewable energy has lesser carbon credit Choudhary [54]. Singh et al. [7] found the highest CF in the rice–wheat cropping system 
(0.114 kg CO2eq ha− 1) followed by the maize–wheat system; it was mainly due to the application and conversion efficiency of nitrogen 

Fig. 7. Contribution of carbon input (%) in different rice production systems a) transplanted rice, b) wet-direct seeded rice, c) drill sown direct 
seeded rice, d) direct seeded rice and e) direct seeded rice with beushning. 
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fertilizer to economic yield [20,43,72]. Yadav et al. [59] revealed that the no-till field had~74% less GHG emissions from diesel and 
higher carbon efficiency (10.36) than the conventional till area. This was mainly associated with higher carbon input than that of 
carbon output. Adoption of good agronomic practices in crop production, helps in minimizing CF and also improves the crop yield. This 
can be further improved by adopting conservation tillage, placement of mulch, use of organic fertilizer, and diversifying crop rotations 
[73,74]. Environmental sustainability is a major concern in the modern production system; but it also adversely influences climate 
[75]. Adopting the DSR L production system is climate-smart and climate-resilient, attaining comparable economic yield to the TPR 
production system; it will resolve the issue of ecological sustainability [76]. It was also recorded that DSR L has the least CF with lower 
energy input. The areas where irrigation is being supplied through lifting underground water could be further improvised by adopting 
rainwater harvesting structures. 

Adopting resource, energy, and carbon-efficient rice production systems is paramount in the present-day situation [77]. The DSR L 
production system requires less water, diesel, machinery, and fertilizer over TPR and others, and comparable yield, resulting in 
profitable, energy, and carbon-efficiency. DSR L production should be disseminated on a large scale emphasizing the precise utilization 
of inputs. In the DSR L system, further energy and carbon efficiency can be improvised by altering agronomic management practices 
[78]. 

3.6. Economics parameters 

The data on production cost, gross and net returns, and B: C were analyzed (Table 5). TPR had a higher mean production cost (691.8 
US$ ha− 1) followed by DSR + B (640.7 US$ ha− 1). The lowest cost of production was observed for DSR (503.8 US$ ha− 1) and DSR L 
(533.0 US$ ha− 1). The gross returns were largely dependent on grain and straw rice yields; TPR had higher gross returns (1703.1 US$ 
ha− 1) and the lowest in DSR (1321.7 US$ ha− 1). The rest of the rice production system had a gross return between these two. Based on 
the data, DSR L was the second-best rice production system comparable to TPR but superior to DSR, DSR + B, and WDSR. The net 
returns tended to be highest in DSR L (1111.5 US$ ha− 1). The next best rice production system regarding net returns was WDSR 
(1016.8 US$ ha− 1), followed by TPR (1011.3 US$ ha− 1). The lowest net returns were obtained in DSR + B (817.2 US$ ha− 1), and DSR 
(817.9 US$ ha− 1). The net returns largely depended on the economic yield harvested and the production cost involved. The DSR L had 
a considerably higher yield with comparatively lower production costs, which led to higher net returns. Our findings are corroborated 
by earlier findings of Chaudhary et al. [15], Yadav et al. [6], Yadav et al. [59]. It has been stated that in DSR L, a better growth 
environment helped the plants synthesize more yield attributes and resulted in higher yield, with considerably less production cost 
ultimately guided to obtain net returns. Likewise, the B: C obtained was the highest in DSR L (3.09), followed by WDSR (2.90), 
although both were comparable. But it had considerably more than that of other rice production systems. Nevertheless, TPR produced 
a higher economic yield but was also associated with higher production costs, thus recording a lower B: C. The TPR rice production was 
found to be the most input intensive, such as water-guzzling, deterioration of soil health, and environmental pollution by exhaustive 
tillage, less responsive to nutrients, and energy-expensive [79]; therefore, the cost of production was comparatively higher [54]. 

Table 4 
Carbon budgeting under different rice production systems.  

Production system Carbon input (kg CO2eq 
ha− 1) 

Carbon output (kg CO2eq 
ha− 1) 

Carbon 
efficiency 

Carbon footprint (kg CO2eq kg− 1 

grain) 

Transplanted rice (n = 75) 1095.8 6075.6a±671.4 5.54c±0.61 0.18a±0.02 
Wet seeded rice (n = 55) 991.1 5574.6b ± 593.7 5.62c±0.60 0.18a±0.02 
Drill sown direct seeded rice (n = 60) 830.2 5979.0a±591.5 7.20a±0.71 0.14b ± 0.01 
Direct seeded rice (broadcasting) (n =

60) 
834.5 4966.6c±646.6 5.95b ± 0.77 0.18a±0.03 

Direct seeded rice with Beushning (n =
30) 

953.9 5439.1b ± 808.1 5.70BCE±0.85 0.19a±0.03 

±, standard deviation; different letters in same column are significant different at p < 0.05 and same letters are comparable to each other. 

Fig. 8. Rice production system influences a) carbon sustainability index and b) carbon credit (same letter represents statistically comparable).  
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Correspondingly, some rice production systems also required inputs to perform specific operations such as nursery management, 
puddling and transplanting in TPR; puddling in WDSR, bueshning in DSR + B, and drill sowing in DSR L than the traditional DSR. 

The adoption of DSR L unequivocally demands reduced energy inputs while delivering superior EO and NER, thus ensuring the 
highest levels of energy efficiency, productivity, and profitability. Moreover, DSR L boasts the lowest carbon inputs while yielding the 
highest carbon output and efficiency, coupled with reduced CF. These combined attributes culminate in reduced production costs, 
maximized NR, and an impressive B: C. Consequently, DSR L emerges as an exemplary rice production system, excelling in produc-
tivity, profitability, and carbon and energy efficiency. 

4. Conclusions 

The farmers’ adopted approaches were reported on the findings from 280 farmer locations. This study measures carbon and energy 
inputs and outputs for per unit productivity, profitability, energy consumption efficiency, and environmental indices to create a safer, 
more ecologically friendly rice production system in South Asia. The data also supports the following conclusions.  

1. TPR had a 29% better grain yield than regular DSR, followed by DSR L with a 25% higher yield. Conversely, TPR used the most 
significant amount of agricultural input, resulting in higher production costs (691.8 US$ ha− 1) and energy use (17201.1 MJ ha− 1). 
Compared to standard DSR, DSR L is used more wisely per unit inputs, resulting in lower production costs (533.0 US$ ha− 1) and 
energy utilization (14310.8 MJ ha− 1).  

2. The DSR L had a greater net returns (1111.5 US$ ha− 1) and B: C (3.09), which was 35.9% and 17.6% higher than traditional DSR, 
respectively, and was lucrative among other rice production methods.  

3. TPR had the highest energy net returns (168726 MJ ha− 1), followed by DSR L (168377 MJ ha− 1). DSR L was found to be an energy- 
efficient rice production system, with the highest energy use efficiency (12.77), energy productivity (0.41 kg MJ− 1), energy 
profitability (11.77US$ MJ− 1), and human energy profitability (407.3) among the various rice production systems.  

4. The DSR L was more ecologically friendly than other rice production systems, with better carbon efficiency (7.20) and a lower 
carbon footprint (0.14 kg CO2eq kg− 1 grain). 
The adoption of DSR L as a practical alternative rice production technique would surely benefit rice farmers, crop models, gov-
ernment planners, and policymakers with the use of this information. DSR L is recommended for widespread deployment, 
notwithstanding its benefits, such as its relative productivity, economic feasibility, energy-cumulative efficiency, and environ-
mental friendliness. It may be added to several programs for wider application. 
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