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Atypical antipsychotics have become a common therapeutic option in both schizophrenia and bipolar disorder. However,
these medications come with a high risk of metabolic side effects, particularly dyslipidemia and insulin resistance. Therefore,
identification of patients who are at increased risk for metabolic side effects is of great importance. The genetics of fatty acid
metabolism is one area of research that may help identify such patients. Therefore, in this present study, we aimed to determine
the effect of one commonly studied genetic polymorphism from both fatty acid desaturase 1 (FADS1) and FADS2 gene on a
surrogatemeasure of insulin resistance and lipid levels in ametabolically high-risk population of patients largely exposed to atypical
antipsychotics.This study used a cross-sectional design, fasting blood draws, and genetic analysis to investigate associations between
polymorphisms, haplotypes, and metabolic measures. A total of 320 subjects with schizophrenia (𝑛 = 226) or bipolar disorder
(𝑛 = 94) were included in this study. The mean age of the population was 42.5 years and 45% were male. A significant association
between FADS1 and FADS2 haplotypes was found with insulin resistance while controlling for confounders. Further investigation
is required to replicate this finding.

1. Background

The use of antipsychotics, particularly the atypical antipsy-
chotics (AAPs), is considered the standard of care in
schizophrenia symptom management and is becoming a
common therapeutic choice in the management of bipolar
disorder [1–3]. The fact that AAPs are commonly used in
both of these populations may be due to the overlapping
symptomatology that is seen as well as the genetic overlap
that has been identified in several disease linkage studies
[4–7]. Although many studies support the use of AAPs in
the severely mentally ill, these medications come with a
high risk of metabolic side effects. This risk requires careful
monitoring and management as the cardiometabolic side
effects have been shown to increase the cost of care, decrease

adherence, and, most severely, have negative consequences
on length and quality of life [8–11]. Therefore, investigation
into lifestyle, diet, and genetic factors that may increase or
attenuate the risk of metabolic side effects in patients taking
AAPs is important and of high interest. One current line
of research within the area of AAP metabolic side effects
concentrates on fatty acid metabolism and its influence on
metabolic measures.

Fatty acids (FAs) serve many important physiological
functions including energy reserves, structural components
of cell membranes, precursors of eicosanoids, and regulators
of gene expression. The role FAs play in cell membranes is of
particular interest as they influence translocation of glucose
transporters and insulin receptor binding and signaling in
addition to cell membrane fluidity and permeability. This
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indicates that FAs may play an important role in the devel-
opment of insulin resistance and type 2 diabetes mellitus
[12–14]. FA levels in the blood are determined by both
dietary FA intake and to a larger extent endogenous FA
metabolism. Endogenous FA metabolism is mediated by a
series of elongation and desaturation steps controlled by
two rate-limiting enzymes called delta-5 desaturase (D5D)
and delta-6 desaturase (D6D). These enzymes, which are
expressed at high levels in the liver, brain, heart, and
lungs, are responsible for conversion of linoleic acid to n-
6 polyunsaturated fatty acids (PUFA) and 𝛼-linolenic acid
to n-3 PUFAs. Furthermore, it has been determined that
D5D is encoded by the fatty acid desaturase 1 (FADS1)
gene and D6D is encoded by the fatty acid desaturase 2
(FADS2) gene which are located on chromosome 11. Minor
alleles of polymorphisms within the FADS1/2 gene cluster are
commonly associated with lower D5D and D6D activities
and thus are used as a surrogate marker for desaturase
activity [15]. Many studies in various populations have shown
correlations with FADS1 and/or FADS2 polymorphisms and
FA or lipid levels [16, 17]. Additionally, there is also a growing
body of literature showing correlations between D5D and
D6D activity, insulin resistance, and risk for type 2 diabetes
mellitus. The two desaturases have an opposite effect on the
risk of developing diabetes. Specifically, an increased D5D
activity is associated with lower risk of developing diabetes,
whereas increased D6D activity is associated with a higher
risk. A few studies have indicated possible differences in
FA desaturase activity and FADS gene expression due to
the influence of antipsychotics; however this data primarily
comes from animal populations and postmortem brain stud-
ies.Thus, to our knowledge no studies have investigatedFADS
genetic variants and metabolic biomarkers from the mental
health population taking antipsychotics [18–23].

Therefore, in this present study, we aimed to determine
the effect of one commonly studied genetic polymorphism
(SNP) from both the FADS1 and FADS2 gene on a sur-
rogate measure of insulin resistance and lipid levels in a
metabolically high-risk population of patients diagnosed
with schizophrenia or bipolar disorder and largely exposed
to AAPs. We also aimed to use a haplotype analysis to
evaluate the combined effects of each gene’s variant on insulin
resistance and lipid levels.

2. Subjects and Methods

2.1. Study Population. Male and female participants were
recruited from outpatient mental health clinics in the South-
eastern Michigan area. Subjects were considered for inclu-
sion if they met the following criteria: (1) aged 18–80 and
diagnosed with schizophrenia, schizoaffective disorder, or
bipolar disorder, (2) currently taking an antipsychotic, and
(3) no medication changes for the previous 6 weeks. Subjects
were excluded based on the following criteria: (1) having an
active substance abuse or dependence diagnosis, (2) currently
taking a medication for diabetes (to avoid bias in the insulin
resistance measure), or (3) unwilling or unable to participate.

The study was approved by the University of Michigan
Institutional Review Board.

2.2. Clinical and Metabolic Measurements. Participants came
to the University of Michigan Clinical Research Unit
(MCRU) for a single visit. Study visits were completed in the
morning, within 2 hours of the participants’ usual wakening
time. Participants were required to fast overnight for the visit.
After obtaining an informed consent, participants underwent
the structured clinical interview for DSM-IV-TR diagnoses
(SCID) performed by a trained research assistant in order
to confirm their psychiatric diagnosis. Psychiatric diagnoses
were also confirmed by medical chart review when possible.
Subjects were asked about basic demographic information
(e.g., age, race, and gender), current medications (also con-
firmed by pharmacy records), and current or past cigarette
smoking. A registered nurse took height and waist measure-
ments along with a blood pressure measurement and a blood
draw. Body mass index (BMI, kg/m2) was calculated from
this information. The blood draw was collected for genetic
analysis and fasting labs such as lipids (which included total
cholesterol (TC), triglycerides (TG), high-density lipopro-
teins (HDL), and low-density lipoprotein (LDL)), blood
glucose, and insulin measurements were measured. Insulin
resistancewas calculated using the homeostaticmodel assess-
ment of insulin resistance [24] (HOMA-IR, [fasting insulin
(𝜇IU/mL) × fasting glucose (mmol/L)]/22.5) which has been
correlated to more invasive measures of insulin resistance
[25–28].

2.3. Selection of SNPs and Genotyping Methods. Whole blood
was used for DNA extraction using the salt precipitation
method [29].We aimed to conduct a candidate-gene study by
using one polymorphism from both the FADS1 and FADS2
genes. The variants, FADS1 rs174537 and FADS2 rs174570,
were chosen based on a literature review in which these
variants were associated with metabolic measures in various
large cohorts with replicated results [17, 29–34]. The FADS1
rs174537 (G/T) variant is located 14 kb upstream of the
FADS1 gene and has a minor allele frequency (MAF) of
approximately 33% (from the 1000 genomes project) while
the FADS2 rs174570 (C/T) is located in intron 1 of the FADS2
gene and has a MAF of approximately 24% (from the 1000
genomes project). Genotyping was completed by polymerase
chain reaction followed by pyrosequencing [35] (specific
assay conditions available upon request).

2.4. Haplotype Analyses. Linkage analysis between the FADS1
and FADS2 variants and evaluation of a haplotype block were
conducted by using Haploview 4.2 [36]. Pairwise haplotypes
were inferred using the PHASE 2.1 program and only haplo-
types with a frequency >1% were used in statistical analysis
[37, 38]. PHASE 2.1 uses a Bayesian statistical method for
determining haplotypes from population data. The compu-
tational algorithms used in the PHASE 2.1 program have
been shown to be superior compared to other commonly
employed haplotype inference methods like the expectation-
maximization (EM) algorithm.
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2.5. Statistical Analysis. Statistical analyses were performed
with JMP Pro 9.0 software (JMP, Version 9.0. SAS Institute
Inc., Cary, NC, 1989–2012). Hardy-Weinberg equilibrium
(HWE) was evaluated using Haploview 4.2. One-way anal-
ysis of variance (ANOVA) was used to assess differences
in mean values of clinical and metabolic variables within
psychiatric diagnosis and genetic variant groups (FADS1
SNP, FADS2 SNP, and FADS1/2 haplotypes) for continuous
variables (age, BMI, blood pressure, lipid levels, glucose,
insulin, and HOMA-IR). Chi-squared analysis was used to
compare dichotomous variables (gender, race, AAP status,
and smoking status) by psychiatric diagnosis and genetic
variant groups. A two-tailed value of 𝑃 < 0.05 was
considered statistically significant for these tests. To examine
our main hypothesis, the relationship between either SNP
or haplotype variants and lipid or HOMA-IR, a regression
model was constructed using the metabolic measures (TC,
TG, HDL, LDL, or HOMA-IR) as the dependent variable
and psychiatric diagnosis, age, race, gender, bmi, smoking
status, and AAP status as the independent variables. In
order to account for multiple testing and reduce the rate of
false positives, a Bonferroni correction was applied for our
regression analyses. Given tests were conducted for each SNP
and haplotype for the four lipid values (TC, TG, LDL, and
HDL) and HOMA-IR; only 𝑃 values < 0.003were considered
statistically significant (0.05/15 tests analyzed in regression).
Results are expressed as means ± standard deviation (S.D.)
or %.

3. Results

3.1. Study Population Characteristics. A total of 320 subjects
with schizophrenia (𝑛 = 226) or bipolar disorder (𝑛 =
94) were included in this study. The mean age of the pop-
ulation was 42.5 years, with 45% male and 70% identifying
themselves as Caucasian. Table 1 represents the demographic
and metabolic parameters of our study population. The
schizophrenia spectrum and bipolar disorder cohorts were
compared and significant differences were found for gender,
race, current smokers, AAP use, and three lipid measures
(TC, HDL, and LDL). Therefore, in our analyses of the
combined cohort regarding our main hypotheses, psychiatric
diagnosis was used as a confounder in order to account
for differences between the two populations taking antipsy-
chotics.

3.2. Genetic Distribution and Analysis for FADSVariants. The
FADS1 and FADS2 variants used in this study satisfied HWE
within the schizophrenia and bipolar populations as well as
in the combined sample (all 𝑃 > 0.1). Table 2 illustrates the
distribution of the variants within our population based on
a dichotomized, dominant genetic model (e.g., wildtype = 0
and heterozygote/homozygote = 1). This model was used
due to the low frequency of homozygote variants seen with
the FADS variants as well as previous studies establishing
this model as predictive of FA desaturase enzyme activity.
Of note, two samples were unable to be genotyped for the
FADS1 variant due to sample fatigue. Variant distribution did
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Figure 1: FADS haplotype block. Haplotype block analysis using the
four-gamete rule for the FADS1 and FADS2 SNPS investigated in this
study.

not significantly differ between schizophrenia and bipolar
diagnoses (𝑃 > 0.4). Within the combined sample, the
two variants were found to be highly linked from a linkage
disequilibrium test (𝐷 = 0.92) using Haploview version 4.2
[36] andwithin a haplotype block using the conservative four-
gamete rule (Figure 1). Pairwise haplotypes were calculated
and empirical haplotype frequencies are presented in Table 3.

3.3. Clinical and Metabolic Characteristics according to Geno-
type andHaplotype. Table 4 represents themetabolic charac-
teristics according to the FADS1 genotype, FADS2 genotype,
and FADS1/2 haplotypes, respectively, for the combined
sample. Significant differences are indicated within the table.
Of the metabolic measurements, significant differences were
identified with fasting insulin and HOMA-IR based on
haplotype.

3.4. Regression Analysis of Lipid and Insulin Resistance Mea-
sures Based on Genotype or Haplotype. Our candidate gene
hypotheses regarding the influence of FADS1 and FADS2
variants on lipid measures and insulin resistance were tested
on the combined sample using generalized linear regression
analysis adjusting for the following confounders: psychiatric
diagnosis, age, gender, race, BMI, smoking status, and AAP
status. This model was conducted for the FADS1 dominant
model, FADS2 dominant model, and the inferred haplotypes.
Due to multiple testing, only 𝑃 values below 0.003 were
considered statistically significant.

No statistically significant associations were found for
the FADS1 dominant model. An association was found for
the FADS2 dominant model with HOMA-IR (whole model
𝐹(9, 301) = 6.77, 𝑃 < 0.0001). However, this effect was
mainly due to BMI (𝑃 < 0.0001) since the effect of FADS2
variant (𝑃 = 0.02) did not meet the more conservative cutoff
value.

When using haplotypes as the independent variable in
our regression analysis, a trend with triglycerides was found
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Table 1: Demographic and metabolic characteristics of the schizophrenia, bipolar, and combined samples.

Schizophrenia
spectrum (𝑛 = 226)

Bipolar disorder
(𝑛 = 94)

Combined
(𝑛 = 320)

Age (year) 42.7 ± 11.6 41.8 ± 12.0 42.5 ± 11.7

Gender (% female) 37 63 44.7¥

Race (% Caucasian/% African American/% other∗) 65/26/9 81/12/7 70/21/9¥

Current smokers (%) 53 32 47¥

Currently on AAP (%) 85 74 82¥

BMI (kg/m2) 31.4 ± 7.24 31.8 ± 8.89 31.5 ± 7.74

SBP (mmHg) 122 ± 16.0 123 ± 17.7 122 ± 16.5

DBP (mmHg) 74.2 ± 11.4 72.9 ± 11.0 73.8 ± 11.3

TC (mg/dL) 179 ± 41.2 191 ± 45.7 183 ± 42.9
¥

TG (mg/dL) 130 ± 88.9 142 ± 108 134 ± 95.0

HDL (mg/dL) 53.1 ± 17.3 57.6 ± 15.1 54.4 ± 16.8
¥

LDL (mg/dL) 108 ± 34.8 118 ± 38.8 111 ± 36.2
¥

Glucose (mg/dL) 99.0 ± 18.5 95.2 ± 10.7 97.9 ± 16.6

Insulin (𝜇IU/mL) 20.3 ± 14.6 24.3 ± 21.6 21.5 ± 17.0

HOMA-IR 5.07 ± 4.23 5.90 ± 5.66 5.32 ± 4.70

Means ± S.D. or percentage.
AAP: atypical antipsychotic, BMI: body mass index, SBP: systolic blood pressure, DBP: diastolic blood pressure, TC: total cholesterol, TG: triglycerides, HDL:
high-density lipoprotein, LDL: low-density lipoprotein, and HOMA-IR: homeostasis model assessment-insulin resistance.
∗Other includes self-defined race categories of Asian, Hispanic, latino, and others.
¥Significant difference based on a P value cutoff of 0.05.

Table 2: FADS genetic distribution for the schizophrenia, bipolar, and combined samples.

Schizophrenia spectrum Bipolar disorder Combined

FADS1 rs174537 GG genotype 54.5 (122) 48.9 (46) 52.8 (168)
T allele 45.5 (102) 51.2 (58) 47.2 (150)

FADS2 rs174570 CC genotype 75.2 (170) 71.3 (67) 74.1 (237)
T allele 24.8 (56) 28.7 (27) 26.0 (83)

% (n); distribution based on dominant genetic model did not significantly differ between schizophrenia and bipolar diagnoses.

Table 3: Haplotype frequencies for combined sample.

Haplotype
number FADS1 rs174537 FADS2 rs174570 Frequency

1 G C 0.708
2 G T 0.006
3 T C 0.159
4 T T 0.127
Empirical haplotype frequencies. Gives total count for all haplotypes
inferred.

that did not meet multiple testing cutoff (whole model
𝐹(12, 290) = 2.57, 𝑃 = 0.003) due to the effect of BMI
(𝑃 = 0.002) and haplotype (𝑃 = 0.004). Finally, of
note, the significant association found above for HOMA-
IR and haplotypes remained significant after controlling for
confounders. The whole model was significant (𝐹(12, 292) =
5.86, 𝑃 < 0.0001) due to the effect of haplotype (𝑃 =
0.0004) and BMI (𝑃 < 0.0001).TheHOMA-IR values for this
significant association can be found in Figure 2.
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Figure 2: Association between HOMA-IR and FADS haplotype.
Insulin resistance according to haplotype of FADS1 and FADS2
polymorphisms adjusting for psychiatric diagnosis, age, gender,
race, BMI, smoking status, and AAP use. Means ± s.e. bars.

4. Discussion

Within our study, we found that HOMA-IR was associated
with the haplotype of two investigated FADS gene variants.
This is the first report of such an association found in a pop-
ulation of schizophrenia and bipolar patients largely exposed
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to AAPs. However, associations with insulin measures have
been reported previously in healthy Caucasian and Korean
populations. Associations between FADS1 polymorphisms
and insulin resistance in a population with European descent
arose from a GWAS meta-analysis conducted by Dupuis and
colleagues [39]. This finding was subsequently confirmed
via direct insulin resistance measures by Ingelsson and
colleagues [40]. More recently, a study found correlations
between HOMA-IR and variants in both the FADS1 and
FADS2 genes in a population of healthy Korean men [41]. All
of these studies used different polymorphisms found within
the FADS1 and FADS2 genes, and thus, our results reflect
gene cluster associations previously found but not necessarily
individual variant effects.

HapMap CEU data has shown that the FADS1 gene and a
large portion of the FADS2 gene are known to be in a linkage
disequilibrium block; therefore, haplotype analyses are a
natural extension of FADS genetic investigations. However,
there have been relatively few studies to date incorporating
FADS haplotype in the analyses [32, 33, 42] which could
be explained by the ability only to infer haplotypes when
familial genetic data is unavailable. Haplotype reconstruction
may be of particular importance in studies looking at insulin
resistance measures or diabetes risk as D5D (FADS1) and
D6D (FADS2) activities have been shown to have an opposite
relationship with diabetes risk. Thus, examining polymor-
phisms from only one FADS gene region at a time does not
take into account the opposing effects of the other FADS
region. Our data demonstrates that FADS1 and FADS2 vari-
ants had opposite relationships between HOMA-IR and the
minor allele (nonsignificant, Table 4), but when the variants
are combined into a haplotype, a relationship with HOMA-
IR is exposed. This finding may indicate the importance of
simultaneously considering variants from FADS1 and FADS2
when exploringmetabolicmeasures and particularly diabetes
biomarkers in studies.

A nonsignificant trend after amultiple testing adjustment
(𝑃 = 0.003) was identified for triglycerides and haplotype
which mirrored the results of the statistically significant
haplotype and HOMA-IR relationship. The same haplotype
identified to have the highest HOMA-IR value, GC/TC, was
found to have the highest TG level as well (147mg/dL).
The closest TG level was that of the GC/GC haplotype
(116mg/dL). This finding, although not statistically signifi-
cant with the multiple testing correction, may be of clinical
significance given the link between insulin resistance and
TGs. Hypertriglyceridemia is considered a defining feature
of insulin resistance and metabolic syndrome. TG-mediated
changes in very-low-density lipoprotein and lipoprotein
lipase activity ultimately lead to increased expression of
angiopoietin-like protein 4, and thus, insulin resistance [43].
An association between the GC/TC haplotype and both
HOMA-IR and triglyceride levels adds epidemiologic and
mechanistic plausibility to our findings.

Several limitations of our study need to be addressed.
First, this is a cross-sectional study and causal associations
cannot be drawn from the data; prospective, randomized
studies are needed in populations treated with AAPs to
draw further conclusions. Second, our study had differences

in demographics between the bipolar disorder and the
schizophrenia subjects.While these are important differences
to consider, we used psychiatric diagnosis as a confounder
in our main hypothesis testing; therefore, these differences
are a natural reflection of the diagnosis and recruitment area.
Third, our subject population was largely exposed to AAPs
with known metabolic side effects which makes translation
of our results to other disease populations or populations
exposed to other medications challenging. Fourth, we used
a surrogate measure of insulin resistance, which, although
not a direct measure of insulin resistance, has been highly
correlated to more invasive measures such as the glucose
clamps and the oral glucose tolerance test [25, 26]. HOMA-
IR was used to make our findings more translatable to the
clinic setting but more direct measures of insulin resistance
would be useful in supporting our study’s results. Our study
did not collect dietary data or individually measure D5D and
D6D fatty acid indices and these important measures should
be taken into account in future studies. Finally, we only
investigated one variant from each gene based on a literature
search. Although this was done to strengthen our candidate
gene approach, one cannot rule out themany polymorphisms
found in this gene cluster including the FADS1 rs174550
variant, which has been previously implicated in insulin
resistance.

Despite these limitations, our study is the first to identify
a relationship between a FADS1/2 haplotype and insulin
resistance in a severelymentally ill population taking antipsy-
chotics. Our population is unique in that it is at higher risk
for insulin resistance and dyslipidemia due to the side effects
associated with atypical antipsychotics. Indeed, those taking
AAPs had higher HOMA-IR and lipid values compared to
subjects taking typical antipsychotics (data not shown). AAP
status was used as a confounder in our pharmacogenetic
analysis; however, it adds evidence to the importance of
discovering factors that may increase the risk for metabolic
side effects including insulin resistance as this can lead to
higher rates of cardiovascular disease and life years lost.
The ability to personalize antipsychotic treatment based on
a patient’s metabolic risk profile, including pharmacogenetic
analysis, may be one step to minimizing the damaging side
effects of these drugs while maintaining their efficacy.

5. Conclusion

HOMA-IR was associated with a FADS1/2 haplotype in a
population with severe mental illness taking antipsychotics.
This study is the first to identify such an association; however
the results need to be repeated and further haplotype analyses
with other high-risk FADS variants would substantiate the
current findings.
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