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Effectiveness of Kanna photoscreener in detecting amblyopia risk factors
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Purpose: Amblyopia is a significant public health problem. Photoscreeners have been shown to have 
significant potential for screening; however, most are limited by cost and display low accuracy. The purpose 
of this study was validate a novel artificial intelligence (AI) and machine learning–based facial photoscreener 
“Kanna,” and to determine its effectiveness in detecting amblyopia risk factors. Methods: A prospective 
study that included 654 patients aged below 18 years was conducted in our outpatient clinic. Using an 
android smartphone, three images of each the participants’ face were captured by trained optometrists 
in dark and ambient light conditions and uploaded onto Kanna. Deep learning was used to create an 
amblyopia risk score based on our previous study. The algorithm generates a risk dashboard consisting 
of six values: five normalized risk scores for ptosis, strabismus, hyperopia, myopia and media opacities; 
and one binary value denoting if a child is “at‑risk” or “not at‑risk.” The presence of amblyopia risk 
factors (ARF) as determined on the ophthalmic examination was compared with the Kanna photoscreener. 
Results: Correlated patient data for 654 participants were analyzed. The mean age of the study population 
was 7.87 years. The algorithm had an F‑score, 85.9%; accuracy, 90.8%; sensitivity, 83.6%; specificity, 94.5%; 
positive predictive value, 88.4%; and negative predictive value, 91.9% in identifying amblyopia risk factors. 
The P  value for the amblyopia risk calculation was 8.5  ×  10−142 implying strong statistical significance. 
Conclusion: The Kanna photo‑based screener that uses deep learning to analyze photographs is an effective 
alternative for screening children for amblyopia risk factors.
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Amblyopia is the leading cause of childhood visual impairment 
in the world, affecting 1% to 6% of all children, with nearly 100 
million children suffering from it.[1,2] If left untreated, amblyopia 
could result in complete vision loss in one or both eyes.[3] 
Furthermore, amblyopia treatment is limited by age  (visual 
maturation period), and so early detection is crucial for a 
successful recovery.[4] Thus, vision screening is recommended 
for children less than 3 years of age in the United States and less 
than 5 years in India.[5,6] Traditional vision screening typically 
involves visual acuity testing and refractive error measurement, 
both of which can be quite challenging and time‑consuming 
due to the poor cooperation of children in this age‑group 
during such examinations.[1] Moreover, traditional methods 
are felt to have high overreferral rates, low sensitivity, and low 
specificity.[6] Thus, there is a need for more effective screening 
methodologies.

Although the AAP (American Academy of Pediatricians) 
recommends photoscreening in children under the age of 
5 years to positively identify amblyopia risk factors, this is 
practically difficult to achieve in India due to the limited 
resources and infrastructure.[7,8] Thus, most at‑risk children, 
especially in resource‑starved regions are not screened in time.

Instrument‑based infrared ARF photoscreening systems such 
as Plusoptix (Plusoptix GmbH, Germany), 2WIN (Adaptica, Italy), 
and SPOT  (Welch Allyn, USA) have been shown to identify 
the risk factors that are likely to lead to amblyopia or poor 
vision.[9‑11] They hold several advantages as compared with the 
traditional methods: They are faster, more objective, and require 
less cooperation from children. However, the high acquisition 
and management costs associated with such instruments have 
prevented their widescale use as a screening tool.[12]

Smartphone‑based ARF screening systems have been 
shown to be useful in predicting specific ocular disorders, 
such as diabetic retinopathy and leukocoria, and in vision 
screening.[13,14] GoCheckKids  (Gobiquity Inc., USA) is a 
smartphone‑based vision screening system for children that 
uses an iPhone 7 or Nokia Lumia and a customized phone 
case with built‑in image processing software that identifies 
certain amblyopia risk factors.[15] This system has been validated 
clinically in several studies[14,16-18] that analyze two separate 
detection methods: an automated algorithm and manual 
grading of photographs acquired from the smartphone system. 
Manual grading of photographs for GoCheckKids increases 
the sensitivity of the detection methodology significantly.[17]
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Our previous work described “Kanna,” a deep learning 
and image processing approach for detection of amblyopia 
risk factors using smartphones.[19]

Kanna is based on the acquisition of two images to predict 
the presence of ARF: one in normal ambient light conditions 
to help predict ptosis and strabismus and a low light image of 
the face to help identify media opacities, anisometropia, and 
isometropia.

To reduce variation from acquisition, the eye was 
localized using facial landmarks predicted by DL models. 
A convolutional neural network (CNN) was trained to detect 
six iris landmarks along the iris boundary using the UnityEyes 
data set  [Fig.  1].[19,20] An android application was written to 
modify the smartphone camera flash settings to remove the 
inbuilt preflash that removes red‑eye images in low‑light 
conditions.

To predict refractive ARF, Kanna uses the methods of 
eccentric photorefraction [Fig. 2].[19,21] Using the width of the 
bright crescent that occurs on one side of the reflex, Kanna 
calculates the refractive error of the eye. Depending on the side 
of the pupil at which the crescent is located, it can be classified 
as hyperopia or myopia (see Bobier and Braddick for a more 
detailed treatment).[21]

We had shown that such a methodology held significant 
promise as a screening system based on a pilot study with 50 
individuals in Murali et al. This work is a clinical validation 
and analysis of our previously proposed system.[19]

Methods
This was a prospective study that included 654 patients aged 
below 18 years, conducted in the pediatric ophthalmology 
outpatient department of Sankara Eye Hospital, Bangalore, 
India, from December 2018 to September 2019, after approval 
from the scientific and ethics review board of the institution. 
Oral and written consent was obtained from the parent/
guardian of the patient before recruiting in the study.

The sample size was calculated with a 5% level of 
significance, 90% power, 6% prevalence of amblyopia 

recorded in the outpatient department, and a 3% maximum 
error limit of detection of amblyopia using a hand‑held 
device.
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Data acquisition
An Android‑based smartphone  (OnePlus 6T) was used for 
collecting images of the patients. A  specialized android 
application described in Murali et al. was used on this phone 
for reliable and reproducible generation of red reflex and 
ambient images.[19] This screening system was compared with 
a comprehensive eye exam by one of the coauthors (KM, SR, 
VC) as the gold standard.

As part of the smartphone‑based screening, three images of 
the participant’s face were captured by trained optometrists in 
a closed room. The first two images were captured in darkened 
conditions (3–10 lm) at a distance of approximately 1 m. Of 
these two images, the first image was captured holding the 
smartphone horizontally with the camera closer to the left hand 
of the screener, and the second image was captured with the 
smartphone held vertically. The third image was captured in 
normal ambient light conditions (60–800 lm) at a distance of 
approximately 0.5 m. These requirements were arrived at based 
on testing different light conditions and distances as described 
in Murali et al.[19] This served to reduce interobserver variability 
by ensuring standard operating procedures for image capture.

Next, a comprehensive eye examination was conducted by 
a pediatric ophthalmologist and an optometrist. This included 
cover tests for distant and near ocular movements, detailed 
anterior segment examination, cycloplegic refraction, and 
fundus examination in the same order as mentioned. Data 
on the presence of any amblyopia risk factor such as ptosis, 
strabismus, refractive error, or media opacity were noted. 

Figure  2: Red reflex images: (a) Low light image acquisition 
(b) Emmetropic red reflex (c) Hyperopic red reflex (d) Myopic red reflex
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Figure 1: Generated eye image with iris contour and landmarks (from  
https://bit.ly/2OjnbIH)
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A unique photograph identification number was used to 
correlate the patient examination with the algorithm data.

Data processing
In practice, vision screening systems are required to predict 
if a participant is “at‑risk” and should be referred to an 
ophthalmologist for further testing or if the child is “not 
at‑risk.” Our algorithm generates a risk dashboard based 
on the 2003 AAPOS  (American Association for Pediatric 
Ophthalmology and Strabismus) guidelines[22] consisting of 
six values: five normalized risk scores for ptosis, strabismus, 
hyperopia, myopia, and media opacities, and one binary 
value denoting if a child is at‑risk or not at‑risk. The patient 
data were processed according to the 2003 AAPOS guidelines 
to compare effectively with the risk dashboard. The 2003 
AAPOS referral criteria are provided for the readers’ 
convenience:
●	 Anisometropia (spherical or cylindrical) >1.5D
●	 Hyperopia >3.5D in any meridian
●	 Myopia >3.0D in any meridian
●	 Astigmatism >1.5D at 90° or 180°; >1.0D in oblique axis (more 
than 10° from 90° or 180°)

●	 Any manifest strabismus
●	 Any media opacity >1 mm in size
●	 Ptosis ≤1 mm margin reflex distance.

The images were anonymized by using facial landmark 
detection models to extract the eyes of the participant and were 
uploaded to a secure cloud storage location for processing. Each 
participant’s ambient and horizontal low‑light photographs 
were run through the detection algorithm. In cases where the 
algorithm was not able to process one or more of the images, 
an “at‑risk” prediction was assigned to indicate that further 
testing was required. This approach was used to accommodate 
cases with large ptosis or strabismus where red reflex images 
could not be processed.

Microsoft Excel and the NumPy, SciPy, and Pandas libraries 
in the Python programming language were used for statistical 
analysis.[23‑25] Phi Coefficients were calculated for individual 
risk factors and overall amblyopia risk prediction. Based on 
the degree of freedom (DF) and sample size, a P value at a 0.05 
significance threshold was calculated. Several other metrics 
such as accuracy, sensitivity, specificity, positive predictive 
value, negative predictive value, and F‑score were calculated 
based on the confusion matrix.

Results
A total of 802 participants were screened, of which 148 
either revoked consent during or after the process or did not 
cooperate, leaving 654 participants with correlated patient data.

The participants were between the ages of 11 months to 
18 years with a mean age of 7.87. The male–to‑female ratio was 
1.17:1. The number of participants and phi coefficients for each 
amblyopia risk factor can be found in Table 1. The imageability 
rate  (percentage of respondents where smartphone‑based 
screening succeeded) was 97.4%. We find that amblyopia and 
strabismus predictions are strongly correlated and the other 
risk factors are moderately correlated.

The confusion matrix for amblyopia risk calculation can be 
found in Table 2. The P value for the amblyopia risk calculation 

was 8.5 × 10−142, which is much smaller than 0.05, meaning the 
results are strongly statistically significant.

The sensitivity and specificity of identifying amblyopia 
risk factors by our algorithm (Kanna) are 83.6% and 94.5%, 
respectively. Out of 654, there were 24 false positives that were 
either on the verge of being amblyogenic or had a slight error 
in calculation and 36 false negatives that were mainly due to 
the inability to get a clear red reflex in these cases.  The F‑score 
value was 85.9% with a positive predictive value of 88.4% and a 
negative predictive value of 91.9%. The accuracy metrics with 
95% confidence intervals can be found in Table 3.

Discussion
The proposed vision screening system has high accuracy 
for the identification of ARF and detects individual risk 
factors with moderate to high accuracy using a smartphone 
application.

Although the number of cases with ptosis and media opacity 
risk was limited, they still have a moderate correlation with 
clinical prediction. The medium correlation of anisometropia 
and isometropia is partially due to cases with excessive ptosis 
or strabismus where red reflex analysis is skipped and set to “no 
risk” by default. Media opacity detection could be increased 
by utilizing specialized models for detecting different media 
opacities.

Table 1: Data set and prediction composition with phi 
coefficients

Clinical Kanna Phi Coefficient

Amblyopia 219 207 0.79

Ptosis 11 3 0.42

Strabismus 56 56 0.79

Anisometropia 71 87 0.43

Isometropia 129 61 0.51
Media Opacities 16 17 0.47

Table 2: Confusion matrix for clinical validation

Kanna 
Positive

Kanna 
Negative

Row 
Total

Clinical Positive 183 36 219

Clinical Negative 24 411 435
Column Total 207 447 654 (N)

Table 3: Accuracy Metrics (P=8.57e-142<0.05 Significance)

Accuracy Metrics (%) 95% CI

F‑Score* 85.9 [81.54, 90.29]

Accuracy 90.8 [88.61, 93.04]

Sensitivity 83.6 [78.65, 88.47]

Specificity 94.5 [92.34, 96.63]

PPV 88.4 [84.04, 92.77]
NPV 91.9 [89.42, 94.47]

*F‑score is the harmonic mean of positive predictive value (PPV) and 
sensitivity. It is a measure of accuracy that takes into account both how 
sensitive and specific the model is to amblyopia
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We compared the results of our deep learning based 
algorithm with other ARF vision screeners such as Plusoptix, 
SPOT, iScreen, and GoCheckKids, and the results are given 
in Table  4. Both iScreen and GoCheckKids have automated 
grading and manual grading using Delta Center Crescent.[17] 
We find that our automated algorithm is superior to other 
automated solutions and is comparable with manual grading 
in GoCheckKids. Overall, our system is capable of detecting 
more risk factors and is more sensitive and specific than other 
ARF vision screening systems.[17]

This study addresses the limitations of our previous analysis 
of the Kanna photoscreener.[19,26] The sample size used for 
this study is much larger. Furthermore, an age‑appropriate 
population of children with an average age of 7.87  years 
was recruited in this study increasing the validity of our 
findings when compared with our initial pilot study.[26] While 
photoscreening is crucial only up to the age of 5, the age 
range from 11 months to 18 years was chosen to validate the 
potential of Kanna in school screening programs and observing 
that many other studies have used the same age limits for 
comparing photoscreeners. We also expect that the use of 
an android‑based tool could help complement the current 
human resources and methods available to screen children for 
amblyopia even in older children.

However, the sample pool is small for us to make a 
statistically relevant age‑wise analysis. This can be addressed 
in the subsequent studies.

We also saw further advantages than had been described 
earlier; particularly we find that our algorithm is highly 
accurate, sensitive, and specific and can detect individual 
risk factors with moderate to high correlation. Furthermore, 
it is of comparable or higher sensitivity and specificity when 
compared with other ARF vision screening solutions that use 
specialized hardware or smartphone attachments.

Isometropia ARF prediction showed low accuracy [Table 1]. 
However, this fallacy is due to the order in which the risk factors 
are detected in Kanna: ptosis, strabismus, media opacities, 
anisometropia, and isometropia. In cases of high severity of risk 
factors (e.g., complete occlusion due to ptosis), it is impossible 
to predict the remaining risk factors as the iris and red reflex 
would not be visible. In such situations, the processing is 
interrupted, the risk factors calculated up till then are shown, 
and the participant is predicted as positive by Kanna.

Many isometropia cases having high severity of other risk 
factors (especially anisometropia and strabismus) are predicted 

as positive for amblyopia without calculating the isometropia 
risk. Comparing amblyopia prediction in general with the 
isometropia risk factor gives a more comprehensive view. 
A total of 107 (82.9%) of the 129 participants with isometropia 
ARF were predicted as amblyogenic by Kanna.

The vision screener metrics calculated in Table  4 are 
based on the 2013 AAPOS guidelines, which show an 
improvement in accuracy to the 2003 AAPOS guidelines for 
GoCheckKids.[22,27] We expect that using the 2013 AAPOS 
guidelines would similarly increase our system’s predictive 
accuracy. However, the current model of Kanna as described 
in Murali et al. is based on the 2003 AAPOS criteria that are 
age agnostic.[19] This was done to simplify risk identification 
when used in a field survey where knowledge of the date of 
birth among the target population may not be accurate and 
may skew the results.

Due to the COVID‑19 (coronavirus disease 2019) pandemic, 
we anticipate that a no‑contact tool would be extremely 
useful for vision screening. As Kanna does not require any 
hardware add‑ons to the smartphone, it is more scalable 
compared to the available vision screeners that depend on 
customized hardware. This allows it to be useful also as an 
at‑home amblyopia screening tool encouraging caregivers to 
seek timely eye care.

Conclusion
We have demonstrated that the “Kanna” photoscreener that 
uses deep learning and computer vision on photographs of 
the face is able to reliably detect amblyopia risk factors and 
could be a scalable and effective option for screening children 
for amblyopia with minimal resources.
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