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Purpose:	 Amblyopia	 is	 a	 significant	 public	 health	 problem.	 Photoscreeners	 have	 been	 shown	 to	 have	
significant	potential	for	screening;	however,	most	are	limited	by	cost	and	display	low	accuracy.	The	purpose	
of	this	study	was	validate	a	novel	artificial	intelligence	(AI)	and	machine	learning–based	facial	photoscreener	
“Kanna,”	and	to	determine	 its	effectiveness	 in	detecting	amblyopia	risk	 factors.	Methods:	A	prospective	
study	 that	 included	 654	patients	 aged	below	18	years	was	 conducted	 in	 our	 outpatient	 clinic.	Using	 an	
android	 smartphone,	 three	 images	 of	 each	 the	 participants’	 face	were	 captured	 by	 trained	 optometrists	
in	 dark	 and	 ambient	 light	 conditions	 and	 uploaded	 onto	 Kanna.	 Deep	 learning	was	 used	 to	 create	 an	
amblyopia	risk	score	based	on	our	previous	study.	The	algorithm	generates	a	 risk	dashboard	consisting	
of	six	values:	five	normalized	risk	scores	 for	ptosis,	strabismus,	hyperopia,	myopia	and	media	opacities;	
and	 one	 binary	 value	 denoting	 if	 a	 child	 is	 “at‑risk”	 or	 “not	 at‑risk.”	 The	 presence	 of	 amblyopia	 risk	
factors	(ARF)	as	determined	on	the	ophthalmic	examination	was	compared	with	the	Kanna	photoscreener.	
Results: Correlated	patient	data	for	654	participants	were	analyzed.	The	mean	age	of	the	study	population	
was	7.87	years.	The	algorithm	had	an	F‑score,	85.9%;	accuracy,	90.8%;	sensitivity,	83.6%;	specificity,	94.5%;	
positive	predictive	value,	88.4%;	and	negative	predictive	value,	91.9%	in	identifying	amblyopia	risk	factors.	
The P value	 for	 the	 amblyopia	 risk	 calculation	 was	 8.5	 ×	 10−142	 implying	 strong	 statistical	 significance.	
Conclusion:	The	Kanna	photo‑based	screener	that	uses	deep	learning	to	analyze	photographs	is	an	effective	
alternative	for	screening	children	for	amblyopia	risk	factors.
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Amblyopia	is	the	leading	cause	of	childhood	visual	impairment	
in	the	world,	affecting	1%	to	6%	of	all	children,	with	nearly	100	
million	children	suffering	from	it.[1,2]	If	left	untreated,	amblyopia	
could	 result	 in	 complete	 vision	 loss	 in	 one	 or	 both	 eyes.[3] 
Furthermore,	amblyopia	 treatment	 is	 limited	by	age	 (visual	
maturation	period),	 and	 so	 early	detection	 is	 crucial	 for	 a	
successful	recovery.[4]	Thus,	vision	screening	is	recommended	
for	children	less	than	3	years	of	age	in	the	United	States	and	less	
than	5	years	in	India.[5,6]	Traditional	vision	screening	typically	
involves	visual	acuity	testing	and	refractive	error	measurement,	
both	of	which	can	be	quite	challenging	and	time‑consuming	
due	 to	 the	poor	 cooperation	of	 children	 in	 this	 age‑group	
during	 such	examinations.[1] Moreover, traditional methods 
are felt to have high overreferral rates, low sensitivity, and low 
specificity.[6]	Thus,	there	is	a	need	for	more	effective	screening	
methodologies.

Although	the	AAP	(American	Academy	of	Pediatricians)	
recommends	photoscreening	 in	 children	under	 the	 age	 of	
5	years	 to	positively	 identify	amblyopia	 risk	 factors,	 this	 is	
practically	difficult	 to	 achieve	 in	 India	due	 to	 the	 limited	
resources	and	 infrastructure.[7,8]	Thus,	most	 at‑risk	 children,	
especially	in	resource‑starved	regions	are	not	screened	in	time.

Instrument‑based	infrared	ARF	photoscreening	systems	such	
as	Plusoptix	(Plusoptix	GmbH,	Germany),	2WIN	(Adaptica,	Italy),	
and	SPOT	 (Welch	Allyn,	USA)	have	been	shown	 to	 identify	
the	 risk	 factors	 that	are	 likely	 to	 lead	 to	amblyopia	or	poor	
vision.[9‑11]	They	hold	several	advantages	as	compared	with	the	
traditional	methods:	They	are	faster,	more	objective,	and	require	
less	cooperation	from	children.	However,	the	high	acquisition	
and	management	costs	associated	with	such	instruments	have	
prevented	their	widescale	use	as	a	screening	tool.[12]

Smartphone‑based	ARF	 screening	 systems	 have	 been	
shown	 to	be	useful	 in	predicting	 specific	ocular	disorders,	
such	as	diabetic	 retinopathy	and	 leukocoria,	 and	 in	vision	
screening.[13,14]	 GoCheckKids	 (Gobiquity	 Inc.,	 USA)	 is	 a	
smartphone‑based	vision	screening	system	for	children	that	
uses	an	 iPhone	7	or	Nokia	Lumia	and	a	 customized	phone	
case	with	built‑in	 image	processing	 software	 that	 identifies	
certain	amblyopia	risk	factors.[15]	This	system	has	been	validated	
clinically	 in	 several	 studies[14,16‑18]	 that	 analyze	 two	 separate	
detection	methods:	 an	 automated	 algorithm	 and	manual	
grading	of	photographs	acquired	from	the	smartphone	system.	
Manual	grading	of	photographs	 for	GoCheckKids	 increases	
the	sensitivity	of	the	detection	methodology	significantly.[17]
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Our	previous	work	described	“Kanna,”	 a	deep	 learning	
and	 image	processing	approach	 for	detection	of	 amblyopia	
risk	factors	using	smartphones.[19]

Kanna	is	based	on	the	acquisition	of	two	images	to	predict	
the	presence	of	ARF:	one	in	normal	ambient	light	conditions	
to	help	predict	ptosis	and	strabismus	and	a	low	light	image	of	
the	face	to	help	identify	media	opacities,	anisometropia,	and	
isometropia.

To	 reduce	 variation	 from	 acquisition,	 the	 eye	 was	
localized	using	 facial	 landmarks	predicted	by	DL	models.	
A	convolutional	neural	network	(CNN)	was	trained	to	detect	
six	iris	landmarks	along	the	iris	boundary	using	the	UnityEyes	
data set [Fig. 1].[19,20]	An	android	application	was	written	 to	
modify	the	smartphone	camera	flash	settings	to	remove	the	
inbuilt	 preflash	 that	 removes	 red‑eye	 images	 in	 low‑light	
conditions.

To	predict	 refractive	ARF,	Kanna	uses	 the	methods	 of	
eccentric	photorefraction	[Fig. 2].[19,21] Using the width of the 
bright	 crescent	 that	occurs	on	one	 side	of	 the	 reflex,	Kanna	
calculates	the	refractive	error	of	the	eye.	Depending	on	the	side	
of	the	pupil	at	which	the	crescent	is	located,	it	can	be	classified	
as	hyperopia	or	myopia	(see	Bobier	and	Braddick	for	a	more	
detailed	treatment).[21]

We	had	shown	that	such	a	methodology	held	significant	
promise	as	a	screening	system	based	on	a	pilot	study	with	50	
individuals in Murali et al.	This	work	is	a	clinical	validation	
and	analysis	of	our	previously	proposed	system.[19]

Methods
This	was	a	prospective	study	that	included	654	patients	aged	
below	18	years,	 conducted	 in	 the	pediatric	 ophthalmology	
outpatient department of Sankara Eye Hospital, Bangalore, 
India,	from	December	2018	to	September	2019,	after	approval	
from	the	scientific	and	ethics	review	board	of	the	institution.	
Oral	 and	written	 consent	was	 obtained	 from	 the	 parent/
guardian	of	the	patient	before	recruiting	in	the	study.

The	 sample	 size	 was	 calculated	with	 a	 5%	 level	 of	
significance,	 90%	 power,	 6%	 prevalence	 of	 amblyopia	

recorded	in	the	outpatient	department,	and	a	3%	maximum	
error	 limit	 of	 detection	 of	 amblyopia	 using	 a	 hand‑held	
device.
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Data acquisition
An	Android‑based	 smartphone	 (OnePlus	 6T)	was	used	 for	
collecting	 images	 of	 the	 patients.	A	 specialized	 android	
application	described	in	Murali	et al. was used on this phone 
for	 reliable	 and	 reproducible	 generation	 of	 red	 reflex	 and	
ambient	images.[19]	This	screening	system	was	compared	with	
a	comprehensive	eye	exam	by	one	of	the	coauthors	(KM,	SR,	
VC)	as	the	gold	standard.

As	part	of	the	smartphone‑based	screening,	three	images	of	
the	participant’s	face	were	captured	by	trained	optometrists	in	
a	closed	room.	The	first	two	images	were	captured	in	darkened	
conditions	(3–10	lm)	at	a	distance	of	approximately	1	m.	Of	
these	 two	 images,	 the	first	 image	was	captured	holding	 the	
smartphone	horizontally	with	the	camera	closer	to	the	left	hand	
of	the	screener,	and	the	second	image	was	captured	with	the	
smartphone	held	vertically.	The	third	image	was	captured	in	
normal	ambient	light	conditions	(60–800	lm)	at	a	distance	of	
approximately	0.5	m.	These	requirements	were	arrived	at	based	
on	testing	different	light	conditions	and	distances	as	described	
in Murali et al.[19]	This	served	to	reduce	interobserver	variability	
by	ensuring	standard	operating	procedures	for	image	capture.

Next,	a	comprehensive	eye	examination	was	conducted	by	
a	pediatric	ophthalmologist	and	an	optometrist.	This	included	
cover	 tests	 for	distant	and	near	ocular	movements,	detailed	
anterior	 segment	 examination,	 cycloplegic	 refraction,	 and	
fundus	 examination	 in	 the	 same	order	 as	mentioned.	Data	
on	the	presence	of	any	amblyopia	risk	factor	such	as	ptosis,	
strabismus,	 refractive	 error,	 or	media	 opacity	were	noted.	

Figure 2: Red reflex images: (a) Low light image acquisition 
(b) Emmetropic red reflex (c) Hyperopic red reflex (d) Myopic red reflex
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Figure 1: Generated eye image with iris contour and landmarks (from  
https://bit.ly/2OjnbIH)
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A	unique	 photograph	 identification	 number	was	 used	 to	
correlate	the	patient	examination	with	the	algorithm	data.

Data processing
In	practice,	vision	screening	systems	are	required	to	predict	
if	 a	 participant	 is	 “at‑risk”	 and	 should	 be	 referred	 to	 an	
ophthalmologist	 for	 further	 testing	 or	 if	 the	 child	 is	 “not	
at‑risk.”	Our	 algorithm	generates	 a	 risk	dashboard	based	
on	 the	 2003	AAPOS	 (American	Association	 for	 Pediatric	
Ophthalmology	and	Strabismus)	guidelines[22]	consisting	of	
six	values:	five	normalized	risk	scores	for	ptosis,	strabismus,	
hyperopia,	myopia,	 and	media	 opacities,	 and	 one	 binary	
value	denoting	if	a	child	is	at‑risk	or	not	at‑risk.	The	patient	
data	were	processed	according	to	the	2003	AAPOS	guidelines	
to	 compare	 effectively	with	 the	 risk	dashboard.	 The	 2003	
AAPOS	 referral	 criteria	 are	 provided	 for	 the	 readers’	
convenience:
●	 Anisometropia	(spherical	or	cylindrical)	>1.5D
●	 Hyperopia	>3.5D	in	any	meridian
●	 Myopia	>3.0D	in	any	meridian
●	 Astigmatism	>1.5D	at	90°	or	180°;	>1.0D	in	oblique	axis	(more	
than	10°	from	90°	or	180°)

●	 Any	manifest	strabismus
●	 Any	media	opacity	>1	mm	in	size
●	 Ptosis	≤1	mm	margin	reflex	distance.

The	 images	were	 anonymized	by	using	 facial	 landmark	
detection	models	to	extract	the	eyes	of	the	participant	and	were	
uploaded	to	a	secure	cloud	storage	location	for	processing.	Each	
participant’s	 ambient	 and	horizontal	 low‑light	photographs	
were	run	through	the	detection	algorithm.	In	cases	where	the	
algorithm	was	not	able	to	process	one	or	more	of	the	images,	
an	“at‑risk”	prediction	was	assigned	to	indicate	that	further	
testing	was	required.	This	approach	was	used	to	accommodate	
cases	with	large	ptosis	or	strabismus	where	red	reflex	images	
could	not	be	processed.

Microsoft	Excel	and	the	NumPy,	SciPy,	and	Pandas	libraries	
in	the	Python	programming	language	were	used	for	statistical	
analysis.[23‑25]	Phi	Coefficients	were	calculated	 for	 individual	
risk	factors	and	overall	amblyopia	risk	prediction.	Based	on	
the	degree	of	freedom	(DF)	and	sample	size,	a P value	at	a	0.05	
significance	 threshold	was	 calculated.	 Several	other	metrics	
such	as	 accuracy,	 sensitivity,	 specificity,	positive	predictive	
value,	negative	predictive	value,	and	F‑score	were	calculated	
based	on	the	confusion	matrix.

Results
A	 total	 of	 802	 participants	were	 screened,	 of	which	 148	
either	revoked	consent	during	or	after	the	process	or	did	not	
cooperate,	leaving	654	participants	with	correlated	patient	data.

The	participants	were	between	 the	ages	of	 11	months	 to	
18	years	with	a	mean	age	of	7.87.	The	male–to‑female	ratio	was	
1.17:1.	The	number	of	participants	and	phi	coefficients	for	each	
amblyopia	risk	factor	can	be	found	in	Table 1.	The	imageability	
rate	 (percentage	 of	 respondents	where	 smartphone‑based	
screening	succeeded)	was	97.4%.	We	find	that	amblyopia	and	
strabismus	predictions	are	strongly	correlated	and	the	other	
risk	factors	are	moderately	correlated.

The	confusion	matrix	for	amblyopia	risk	calculation	can	be	
found in Table 2.	The P value	for	the	amblyopia	risk	calculation	

was	8.5	×	10−142,	which	is	much	smaller	than	0.05,	meaning	the	
results	are	strongly	statistically	significant.

The	 sensitivity	 and	 specificity	 of	 identifying	 amblyopia	
risk	 factors	by	our	algorithm	(Kanna)	are	83.6%	and	94.5%,	
respectively.	Out	of	654,	there	were	24	false	positives	that	were	
either	on	the	verge	of	being	amblyogenic	or	had	a	slight	error	
in	calculation	and	36	false	negatives	that	were	mainly	due	to	
the	inability	to	get	a	clear	red	reflex	in	these	cases.		The	F‑score	
value	was	85.9%	with	a	positive	predictive	value	of	88.4%	and	a	
negative	predictive	value	of	91.9%.	The	accuracy	metrics	with	
95%	confidence	intervals	can	be	found	in	Table 3.

Discussion
The	proposed	 vision	 screening	 system	has	 high	 accuracy	
for	 the	 identification	 of	ARF	 and	 detects	 individual	 risk	
factors	with	moderate	to	high	accuracy	using	a	smartphone	
application.

Although	the	number	of	cases	with	ptosis	and	media	opacity	
risk	was	limited,	they	still	have	a	moderate	correlation	with	
clinical	prediction.	The	medium	correlation	of	anisometropia	
and	isometropia	is	partially	due	to	cases	with	excessive	ptosis	
or	strabismus	where	red	reflex	analysis	is	skipped	and	set	to	“no	
risk”	by	default.	Media	opacity	detection	could	be	increased	
by	utilizing	specialized	models	for	detecting	different	media	
opacities.

Table 1: Data set and prediction composition with phi 
coefficients

Clinical Kanna Phi Coefficient

Amblyopia 219 207 0.79

Ptosis 11 3 0.42

Strabismus 56 56 0.79

Anisometropia 71 87 0.43

Isometropia 129 61 0.51
Media Opacities 16 17 0.47

Table 2: Confusion matrix for clinical validation

Kanna 
Positive

Kanna 
Negative

Row 
Total

Clinical Positive 183 36 219

Clinical Negative 24 411 435
Column Total 207 447 654 (N)

Table 3: Accuracy Metrics (P=8.57e‑142<0.05 Significance)

Accuracy Metrics (%) 95% CI

F‑Score* 85.9 [81.54, 90.29]

Accuracy 90.8 [88.61, 93.04]

Sensitivity 83.6 [78.65, 88.47]

Specificity 94.5 [92.34, 96.63]

PPV 88.4 [84.04, 92.77]
NPV 91.9 [89.42, 94.47]

*F‑score is the harmonic mean of positive predictive value (PPV) and 
sensitivity. It is a measure of accuracy that takes into account both how 
sensitive and specific the model is to amblyopia
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We	 compared	 the	 results	 of	 our	 deep	 learning	 based	
algorithm	with	other	ARF	vision	screeners	such	as	Plusoptix,	
SPOT,	 iScreen,	and	GoCheckKids,	and	 the	results	are	given	
in Table 4.	Both	 iScreen	and	GoCheckKids	have	automated	
grading	and	manual	grading	using	Delta	Center	Crescent.[17] 
We	find	 that	our	 automated	algorithm	 is	 superior	 to	other	
automated	solutions	and	is	comparable	with	manual	grading	
in	GoCheckKids.	Overall,	our	system	is	capable	of	detecting	
more	risk	factors	and	is	more	sensitive	and	specific	than	other	
ARF	vision	screening	systems.[17]

This study addresses the limitations of our previous analysis 
of	 the	Kanna	photoscreener.[19,26]	 The	 sample	 size	used	 for	
this	 study	 is	much	 larger.	 Furthermore,	 an	age‑appropriate	
population	 of	 children	with	 an	 average	 age	 of	 7.87	 years	
was	 recruited	 in	 this	 study	 increasing	 the	 validity	 of	 our	
findings	when	compared	with	our	initial	pilot	study.[26] While 
photoscreening	 is	 crucial	 only	up	 to	 the	 age	 of	 5,	 the	 age	
range	from	11	months	to	18	years	was	chosen	to	validate	the	
potential	of	Kanna	in	school	screening	programs	and	observing	
that many other studies have used the same age limits for 
comparing	photoscreeners.	We	 also	 expect	 that	 the	use	 of	
an	 android‑based	 tool	 could	help	 complement	 the	 current	
human	resources	and	methods	available	to	screen	children	for	
amblyopia	even	in	older	children.

However, the sample pool is small for us to make a 
statistically	relevant	age‑wise	analysis.	This	can	be	addressed	
in	the	subsequent	studies.

We	also	saw	further	advantages	than	had	been	described	
earlier;	 particularly	we	 find	 that	 our	 algorithm	 is	 highly	
accurate,	 sensitive,	 and	 specific	 and	 can	detect	 individual	
risk	factors	with	moderate	to	high	correlation.	Furthermore,	
it	is	of	comparable	or	higher	sensitivity	and	specificity	when	
compared	with	other	ARF	vision	screening	solutions	that	use	
specialized	hardware	or	smartphone	attachments.

Isometropia	ARF	prediction	showed	low	accuracy	[Table	1].	
However,	this	fallacy	is	due	to	the	order	in	which	the	risk	factors	
are	detected	 in	Kanna:	ptosis,	 strabismus,	media	opacities,	
anisometropia,	and	isometropia.	In	cases	of	high	severity	of	risk	
factors	(e.g.,	complete	occlusion	due	to	ptosis),	it	is	impossible	
to	predict	the	remaining	risk	factors	as	the	iris	and	red	reflex	
would	not	 be	visible.	 In	 such	 situations,	 the	processing	 is	
interrupted,	the	risk	factors	calculated	up	till	then	are	shown,	
and	the	participant	is	predicted	as	positive	by	Kanna.

Many	isometropia	cases	having	high	severity	of	other	risk	
factors	(especially	anisometropia	and	strabismus)	are	predicted	

as	positive	for	amblyopia	without	calculating	the	isometropia	
risk.	Comparing	 amblyopia	prediction	 in	general	with	 the	
isometropia	 risk	 factor	 gives	 a	more	 comprehensive	view.	
A	total	of	107	(82.9%)	of	the	129	participants	with	isometropia	
ARF	were	predicted	as	amblyogenic	by	Kanna.

The	 vision	 screener	metrics	 calculated	 in	 Table 4 are 
based	 on	 the	 2013	AAPOS	 guidelines,	 which	 show	 an	
improvement	in	accuracy	to	the	2003	AAPOS	guidelines	for	
GoCheckKids.[22,27]	We	 expect	 that	 using	 the	 2013	AAPOS	
guidelines	would	similarly	increase	our	system’s	predictive	
accuracy.	However,	the	current	model	of	Kanna	as	described	
in Murali et al.	is	based	on	the	2003	AAPOS	criteria	that	are	
age	agnostic.[19]	This	was	done	to	simplify	risk	identification	
when	used	in	a	field	survey	where	knowledge	of	the	date	of	
birth	among	the	target	population	may	not	be	accurate	and	
may	skew	the	results.

Due	to	the	COVID‑19	(coronavirus	disease	2019)	pandemic,	
we	 anticipate	 that	 a	 no‑contact	 tool	would	 be	 extremely	
useful	 for	vision	 screening.	As	Kanna	does	not	 require	any	
hardware	 add‑ons	 to	 the	 smartphone,	 it	 is	more	 scalable	
compared	 to	 the	 available	vision	 screeners	 that	depend	on	
customized	hardware.	This	allows	 it	 to	be	useful	also	as	an	
at‑home	amblyopia	screening	tool	encouraging	caregivers	to	
seek	timely	eye	care.

Conclusion
We	have	demonstrated	that	the	“Kanna”	photoscreener	that	
uses	deep	 learning	and	computer	vision	on	photographs	of	
the	face	is	able	to	reliably	detect	amblyopia	risk	factors	and	
could	be	a	scalable	and	effective	option	for	screening	children	
for	amblyopia	with	minimal	resources.
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Table 4: Comparison with other ARF vision screening solutions

Plusoptix SPOT iScreen GoCheckKids Kanna

Sensitivity (%) 83 80 75(A), 92(M)* 76(A), 81(M) 83

Specificity (%) 86 85 88(A), 88(M) 67(A), 91(M) 91

Inconclusive (%) 23 4 13(A), 0(M) 6(A), 3(M) 0

ARF Tested Refractive errors, 
strabismus

Refractive errors, 
strabismus

Refractive errors, 
opacities, ptosis

Refractive errors, 
gaze error

All ARF

5‑Year Cost $16,250 $25,890 $31,500 $10,140 $349**

Contact No No Yes No No
Training Yes Yes Yes Yes No

*A:‑ Automated grading, M: Remote review with Delta Center Crescent, ARF: Amblyopia risk factors. ** Cost of OnePlus 6T as of 03 July 2020 (₹ 26,048.31)
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