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Abstract: The correct recognition of sweet orange (Citrus sinensis L. Osbeck) variety accessions at the
nursery stage of growth is a challenge for the productive sector as they do not show any difference
in phenotype traits. Furthermore, there is no DNA marker able to distinguish orange accessions
within a variety due to their narrow genetic trace. As different combinations of canopy and rootstock
affect the uptake of elements from soil, each accession features a typical elemental concentration in
the leaves. Thus, the main aim of this work was to analyze two sets of ten different accessions of
very close genetic characters of three varieties of fresh citrus leaves at the nursery stage of growth
by measuring the differences in elemental concentration by laser-induced breakdown spectroscopy
(LIBS). The accessions were discriminated by both principal component analysis (PCA) and a classifier
based on the combination of classification via regression (CVR) and partial least square regression
(PLSR) models, which used the elemental concentrations measured by LIBS as input data. A correct
classification of 95.1% and 80.96% was achieved, respectively, for set 1 and set 2. These results showed
that LIBS is a valuable technique to discriminate among citrus accessions, which can be applied in the
productive sector as an excellent cost–benefit tool in citrus breeding programs.

Keywords: sweet orange accessions; laser-induced breakdown spectroscopy; elemental concentra-
tion; classification via regression (CVR); partial least square regression (PLSR)

1. Introduction

Accessions of sweet orange varieties result in different combinations of canopy and
rootstock and show a wide diversity of morphological/phenotype traits, such as size
and shape of the canopy, color and size of the fruit, and ripening time and quantity of
seeds per fruit. These features can be identified by visual inspection of adult plants and
are widely used to discriminate accessions in the period of fruit production, whereas in
other phenological stages the plants do not show any difference in these traits and are
not distinguishable. Although sweet orange accessions exhibit a substantial diversity of
morphological traits, the genetic differences at the molecular level are very subtle [1] as they
feature a narrow genetic basis due to somatic mutations and perpetuation by vegetative
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propagation [2,3]. Thus, none of several DNA markers available for the identification of
sweet orange is capable of distinguishing among accessions due to their low polymorphism.

Due to this, the producers face a problem in identifying correctly orange accessions
in the commercial genotypes, which may lead to erroneous cultivations with several
consequences for the sector. According to Radman and Oliveira [4], different rootstocks
may influence the biological processes occurring in orange plants, including the uptake
of nutrients and water from soil, transpiration, chemical composition of leaves, etc. Thus,
different combinations of rootstock and canopy may result in different chemical and
biological properties of the plants, including the concentration of elements in leaves.

As orange is an economically very important crop in Brazil and worldwide, the
development of tools that can help to characterize accessions in the early stages of plant
growth is very relevant and extremely desirable. To assist citrus breeding programs and
advance the research on the discrimination of orange variety accessions in Brazil, the Optic
and Photonic Laboratory of Embrapa Instrumentation and the Agronomic Institute of
Campinas (IAC) joined efforts to establish and validate a rapid and efficient method for
the identification and discrimination of orange accessions. To this purpose, laser-induced
fluorescence spectroscopy (LIFS) showed to be a promising suitable certification tool able
to discriminate orange accessions [5–7].

Differently from LIFS, which is a molecular analytical technique, laser-induced break-
down spectroscopy (LIBS), is able to perform elemental analysis by measuring the spectral
emissions of the analyte in the plasma rapidly, in real-time and with no or very limited sam-
ple preparation, avoiding the use of chemical reagents and providing high sensitivity and
reliable data [8–12]. Furthermore, the development of in situ LIBS settings allows portabil-
ity and large-scale operations and reduces the risk of sample loss or contamination [13]. In
the last decade, a few reviews [14–16] have surveyed comprehensively the applications of
LIBS combined with modern powerful chemometric methods to agricultural materials and
products, including plants, (leaves, roots, fruits, and grains). In particular, Santos et al. [14]
have reviewed the qualitative and quantitative LIBS analysis of plant materials such as
fresh and dried leaves, fruits, and roots applied to plant nutrition diagnosis and elemental
mapping. Peng et al. [15] have introduced and reviewed some signal enhancement meth-
ods to improve LIBS performance and calibration methods for quantitative analysis of
plants, agricultural products, and food. Senesi et al. [16] have reviewed the recent progress
and challenging applications of multi-elemental LIBS to the analysis of plants, agricultural
products, and food with particular attention to fruits and grains. The potential of recent
advanced LIBS approaches, including double-pulse (DP)-LIBS, femtosecond (fs)-LIBS,
micro-LIBS, nanoparticle-enhanced (NE) LIBS, and 3D elemental imaging have been also
discussed.

The objective of this work was to possibly identify and highlight very subtle varia-
tions in the elemental composition of sweet orange accessions using the spectral profile
measured by LIBS combined with chemometric methods. To this purpose, LIBS elemental
data were acquired on two sets of leaves collected from ten sweet orange accessions of
three different varieties at the nursery stage grown in greenhouses and submitted to the
same type of fertilization and irrigation. Then, LIBS data were processed by principal
component analysis (PCA) and a combined classification via regression (CVR) and partial
least square regression (PLSR) analysis, with the aim of obtaining a classifier able to yield
the corresponding confusion matrices and so discriminate the accessions on dependence
on the combinations of canopy and rootstock.

2. Results and Discussion
2.1. The LIBS Spectrum

A typical orange leaf LIBS spectrum is shown in Figure 1, where the entire spectral
range is split into two consecutive wavelength ranges and the relevant elemental lines
identified. In particular, twenty-three atomic and ionic emission lines (Table 1) were
identified and assigned to the corresponding elements using the NIST database [17]. The
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elements Ca, Mg, Na, and K are considered plant macronutrients, Zn and Fe micronutrients,
and Ti at low concentration beneficial, whereas Al is considered a toxic element and Si as
an element not relevant to plant nutrition.

Figure 1. A typical LIBS spectrum of a sweet orange leaf in the spectral ranges 188.84−618.30 nm (a)
and 618.30 nm−966.22 nm (b).
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Table 1. The twenty-three emission lines identified in the LIBS spectrum of a sweet orange leaf, which
were relevant for the discrimination among the accessions of sweet orange. The roman number I
after the element symbol indicates an atomic line and II an ionic line. LIBS emission line wavelength
corresponds to the maximum intensity of that line.

Element LIBS Emission
Wavelength (nm) Element LIBS Emission

Wavelength (nm)

Zn I 202.55 Ti II 337.27
Mg II 279.59 Ti II 338.37
Mg II 280.34 Ca II 422.65
Mg I 285.31 Ca I 585.70
Si I 288.24 Na I 588.98
Fe I 302.10 Na I 589.57
Al I 308.23 Ca I 643.83
Al I 309.24 Ca I 646.19
Ca II 315.90 K I 766.53
Ca II 317.94 K I 769.95
Ti II 334.93 Ca I 854.28
Ti II 336.13

The LIBS spectra of leaves were employed to discriminate among genetically close
orange accessions based on the amount of each element. To this purpose, LIBS spectra
were submitted to the paired Student’s t-test at 95% confidence level by comparing two by
two the accessions within each set. The p-values of the selected lines were all below 0.05,
which supported the existence of statistically significant differences among the accessions
considered.

2.2. Principal Component Analysis and Classifier Model Based on Some Selected LIBS
Elemental Lines

The elemental emission lines in Table 1 were analyzed by PCA separately for each
variety in each set using the areas under the peaks of the elements selected as input
variables. Figures 2–5 and Figure 7 show the 2-dimensional score plots, the scree plots, and
the loading plots for the two first PCs, PC1xPC2, which retain most of the variance. In
all cases the total variance retained in the first two PCs did not increase by increasing the
number of input attributes.

Figure 2 shows the scree, score, and loading plots of the four accessions of the Common
variety of set 1. The scree plot shows that the variance explained by the two first PC retains
most of the total variance, i.e., 70.89%, needed for the differentiation among the four
accessions. The 2D score plot shows that data could be grouped into three somehow
overlapping main clusters with the accessions Pera Ipigua and Pera Mahle superimposed.
The loading plot indicates that the areas of Mg and Ca peaks correlate positively with
PC1, i.e., as the elemental concentrations increase PC1 also increases, whereas an opposite
behavior is shown for PC2, i.e., as their concentrations increase PC2 decreases. The peak
areas of Zn I, Si I, Al I, Ti II, K I, and Na I appear to correlate with and contribute positively
to both PC1 and PC2, whereas the Fe I line at 302.10 nm shows a weak positive contribution
to both PC1 and PC2.

The scree, score, and loading plots of the two accessions of the Navel variety of set 1
are shown in Figure 3. Additionally, in this case most variance, i.e., 75.73%, is explained by
the first two principal components (Figure 3a). The score plot shows a partial overlap of
clusters, although the centers of the two clusters tend to separate (Figure 3b). The loading
plot (Figure 3c) of the accessions of this variety is very similar to that of the Common
variety of set 1 described above.

The scree plot (Figure 4a) of the four accessions of the Pigmented variety of set 1
show that PC1 and PC2 contribute 67.72% of the total variance and the score plot features
no apparent separation of the four clusters (Figure 4b). In this case, only the peak areas
(Figure 4c) of Ca II and Ca I show an opposite correlation with the two PCs, i.e., positive
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with PC1 and negative with PC2. Differently from the other two varieties of set 1, the Zn,
Mg, Si, Fe, Al, Ti, Na, and K peak areas show a positive correlation for both PC1 and PC2.

Figure 2. Scree plot (a), PCA 2-dimensional score plot of PC2 versus PC1 (b), and loading plot showing
how each variable correlates to each PC (c) of the four accessions of the Common variety of set 1.
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Figure 3. Scree plot (a), PCA 2-dimensional score plot of PC2 versus PC1 (b), and loading plot showing
how each variable correlates to each PC (c) for the two accessions of the Navel Variety of set 1.
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Figure 4. Scree plot (a), PCA 2-dimensional score plot of PC2 versus PC1 (b), and loading plot
showing how each variable correlates to each PC (c) for the four accessions of the Pigmented Variety
of set 1.
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Similar to the other varieties described above, the scree plot of the six accessions of the
Common variety of Set 2 shows that the first two PCs retain most of the total variance, i.e.,
64% (Figure 5a) whereas the score plot does not show any apparent separation (Figure 5b).
The loading plot (Figure 5c) shows that the peak areas of Ca, K, and Mg contribute positively
to PC1 and negatively to PC2, whereas the remaining elements, i.e., Zn, Si, Fe, Al, Ti, and
Na appear all to contribute positively especially to PC2. To achieve a more detailed analysis
distinct PCA plots were constructed for each pair of accessions of this variety (Figure 6).
The main results are summarized below: (i) the cluster mass center of Pera Bianchi accession
shows a tendency to separate from those of Seleta do Rio, Pera Abril IAC 148, and Valencia
B accessions; (ii) the Pera Roberto Gullo accession cluster tends to separate from almost all
other accessions, except the Pera Bianchi one, which suggests that this accession possesses
characteristics different from the other ones; (iii) the Valencia B accession cluster is slightly
separated only from Pera April IAC 148, thus it seems to be very similar to the others.

Figure 5. Scree plot (a), PCA 2-dimensional score plot of PC2 versus PC1 (b), and loading plot showing
how each variable correlates to each PC (c) for the six accessions of the Common variety of set 2.
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Figure 6. Cont.
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Figure 6. PCA 2-dimensional loading plots of PC2 versus PC1 compared by pair for Valencia B, Pera
Abril IAC 148, and Westin IAC 115 accessions of the Common variety of set 2.

The scree plot of the three accessions of Low Acidity variety of set 2 (Figure 7a) shows
that the first two PCs explain 57.92% of the total variance. The score plot (Figure 7b) shows
that the Piralima IAC 2 cluster is superimposed to those of the other two varieties, Lima
IAC 9 and Piralima IAC 11, which appear slightly separated from each other. The loading
plot (Figure 7c) shows that the peak areas of Mg, Ca, and K have a positive correlation with
PC1 and a negative one with PC2. The elements Si, Al, Ti, and Na contribute positively
to both PC1 and PC2, whereas Zn and Fe have almost no influence on both PCs. Finally,
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PCA could not be performed for the Pigmented variety of set 2, which consists of only one
accession.
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As PCA applied to selected peak areas allows to discriminate only among some citrus
accessions, the discrimination was attempted by constructing an induced classifier based
on a multivariate classification model obtained by combining CVR and PLSR procedures
applied to all accessions within each set of leaves examined, using as input variables the
same twenty-three peak areas used previously for PCA. Data in Table 2 show that an
appreciable accuracy is achieved by the model, i.e., between 90% and 100% and between
86.5% and 65% of correctly classified instances for set 1 and set 2, respectively. These results
suggest that LIBS combined with a machine-learning method is a very promising tool for
discrimination among citrus accessions on dependence on each combination of canopy and
rootstock which determine plant nutritional availability.

Table 2. Correctly classified instances obtained by constructing an induced classifier based on the
calculated peak areas as input variables.

Set 1 Set 2

Leaf Samples Correctly Classified
Instances Leaf Samples Correctly Classified

Instances

Common 93% Common 65%
Navel 100% Low Acidity 86.5%

Pigmented 90%

2.3. Classifier Model Based on the Entire Broadband LIBS Spectra

A combined CVR and PLSR approach was then applied to the entire broadband
LIBS spectra of all citrus accessions of set 1 and set 2 in the attempt of achieving a better
classification model. The confusion matrices generated for set 1 and set 2 samples, respec-
tively, Tables 3 and 4 indicate that a variable accuracy could be achieved by the LIBS data
based model in discriminating between sweet orange accessions. In particular, almost all
accessions of set 1 (Table 3) are correctly classified (100%). Although, some misclassifi-
cations/confusion occur for one Common and two Pigmented variety accessions, which
suggest that the genetic traits of these accessions are so close that their discrimination is not
completely efficient. No accession of set 2 is classified correctly (Table 4), with a variable
level of confusion for various accessions in the same variety and/or other varieties. The
higher misclassifications achieved among set 2 accessions with respect to those of set 1 may
be ascribed to the farther genetic traits of the former ones with respect to the latter ones.
The performance of the classification model, i.e., sensitivity and specificity, yield average
values of 98.5% and 99.83 for set 1 and 70% and 96.22% for set 2.

A better classification was attempted by applying the procedure to LIBS data of the
accessions of each variety separately. The confusion matrix achieved for the Common
variety of set 1 shows in all cases a success rate of 100% instances classified correctly
(Table 5), whereas for set 2 of this variety the instances classified correctly are between 70%
and 95% (Table 6), with the major confusion found for Pera Abril IAC 148 (A) and Seleta
do Rio (D). The model shows an average sensitivity and specificity of both 100% for this
variety in set 1 and 82.5% and 97.08% in set 2.
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Table 3. Confusion matrix achieved by the classification model applied to all accessions of set 1
evaluated together. All values are expressed in percentage (%). Samples are indicated as follows.
Navel variety: A, Baianinha Piracicaba; B, Baia Vale del Cauca. Common variety: C, Pera Ipigua; D,
Ovale; E, Pera Mahle; F, Pera Olimpia. Pigmented variety: G, Sanguinea; H, Red Pulp of Mombuca; I,
Sanguinelli; J, Doppio Red Pulp.

A B C D E F G H I J

A 100 0 0 0 0 0 0 0 0 0

B 0 100 0 0 0 0 0 0 0 0

C 0 0 100 0 0 0 0 0 0 0

D 0 0 0 100 0 0 0 0 0 0

E 0 0 0 0 100 0 0 0 0 0

F 0 0 0 0 0 82.6 13.4 0 0 4.4

G 0 0 0 0 0 16.7 66.6 12.5 0 4.2

H 0 0 0 0 0 4.3 0 91.4 0 0

I 0 0 0 0 0 0 0 0 100 0

J 0 0 0 0 0 0 0 0 0 100

Table 4. Confusion matrix achieved by the classification model applied to all accessions of set 2
evaluated together. All values are expressed in percentage (%). Samples are indicated as follows.
Low Acidity variety: A, Piralima IAC 2; B, Lima IAC 9; C, Piralima IAC 11. Common variety: D,
Pera Abril IAC 148; E, Valência B; F, Westin IAC 115; G, Seleta do Rio; H, Pera Roberto Gullo; I, Pera
Bianchi. Pigmented variety: J, Valência Puka.

A B C D E F G H I J

A 83.3 0 6.7 6.7 3.3 0 0 0 0 0

B 3.6 85.7 0 3.6 7.1 0 0 0 0 0

C 0 0 79.5 0 0 0 2.6 7.7 0 10.3

D 0 0 3.3 80 0 0 18.2 6.7 0 0

E 0 3.4 6.9 0 75.9 6.9 0 0 6.9 0

F 12.9 3.2 0 0 3.2 77.5 0 0 0 3.2

G 0 0 21.2 18.2 0 0 54.5 3 0 3

H 0 0 0 0 0 0 6.7 90 0 3.3

I 0 0 0 0 0 0 0 0 100 0

J 0 0 3.3 3.7 0 0 3.3 3.3 0 86.7

Table 5. Confusion matrix achieved for the Common variety accessions of set 1: A, Pera Ipigua, B,
Ovale, C, Pera Mahle and D, Pera Olímpia.

A B C D

A 100% 0 0 0

B 0 100% 0 0

C 0 0 100% 0

D 0 0 0 100%
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Table 6. Confusion matrix achieved for the Common variety accessions of set 2: A, Pera Abril IAC
148, B, Valencia B, C, Westin IAC 115, D, Seleta do Rio, E, Pera Roberto Gullo and F, Pera Bianchi.

A B C D E F

A 70% 5% 0 20% 5% 0

B 5% 85% 5% 0 0 5%

C 0 0 90% 0 0 5%

D 20% 0 0 70% 5% 5%

E 0 0 0 15% 85% 0

F 0 5% 0 0 0 95%

The confusion matrix obtained for the Pigmented variety accessions of set 1 (Table 7)
shows 100% correctly classified instances for three of them, with only one low confusion
found for Red Pulp of Mombuca with Sanguinea accessions. An average sensitivity and
specificity of 81.25% and 95.31% are achieved for this variety. As the Pigmented variety of
set 2 included only one accession, no classifier could be applied.

Table 7. Confusion matrix achieved for the Pigmented variety accessions of set 1: A, Sanguinea, B,
Red Pulp of Mombuca, C, Sanguinelli and D, Doppio Red Pulp.

A B C D

A 100% 0 0 0

B 8.7% 91.3% 0 0

C 0 0 100% 0

D 0 0 0 100%

The confusion matrix achieved for the two accessions of the Navel variety of set 1
(Table 8) shows 100% of instances classified correctly with 100% at both sensitivity and
specificity. These two accessions do not show any incorrect instance even in the model
generated when all other accessions are considered, thus confirming that their leaf elemental
composition are very different from each other and from those of the other leaf samples.

Table 8. Confusion matrix achieved for the Navel variety accessions of set 1: A, Baianinha Piracicaba,
B, Bahia Vale del Cauca.

A B

A 100% 0

B 0 100%

Finally, the confusion matrix generated for the accessions of the Low Acidity variety
(Table 9) shows a good success rate with an average 90% correctly classified instances. The
average sensitivity and specificity achieved for this variety are both 100%.

Table 9. Confusion matrix achieved for the Low Acidity variety accessions of set 2: A, Piralima IAC
2, B, Lima IAC 9 and C, Piralima IAC 11.

A B C

A 90% 10% 0

B 20% 80% 0

C 0 0 100%
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3. Materials and Methods
3.1. Leaf Samples

Two sets of leaf samples, each including 10 accessions of three different varieties of
sweet orange (C. sinensis L. Osbeck) (Table 10) were analyzed. The first set was collected in
winter and the second one in summer, both from nursery plants grown in a greenhouse
in the Centro de Citricultura Sylvio Moreira (CCSM) at the Citrus Germplasm Bank of
the Agronomic Institute of Campinas (IAC). All plants were grafted on C. limonia and
maintained in 60-L citrus pots containing a commercial substrate in greenhouse conditions.
All growth parameters, including soil management, irrigation, fertilization, temperature,
and watering, were adequate and favorable for a correct plant growing. All plants were
about 3 years old, i.e., between the seedling and adult phases. At this stage, the accessions
did not show any difference in phenotype traits, which did not allow any differentiation
either by visual inspection or by any molecular marker.

Table 10. Set 1 of sweet orange accessions of the Common, Pigmented, and Navel varieties and set 2
of sweet orange accessions of the Common, Pigmented, and Low Acidity varieties analyzed by LIBS.

Variety Accessions

Set 1

Common

Pera Ipigua,
Pera Mahle,

Ovale,
Pera Olímpia

Pigmented

Sanguinea,
Red Pulp of Mombuca,

Sanguinelli,
Doppio Red Pulp

Navel Baianinha Piracicaba,
Baia Vale del Cauca

Set 2

Common

Pera Abril IAC 148,
Pera Bianchi,
Valência B,

Westin IAC 115,
Pera Roberto Gullo,

Seleta do Rio

Pigmented Valência Puka

Low Acidity
Lima IAC 9,

Piralima IAC 11,
Piralima IAC 2

Ten plants were selected for each accession and three leaves were collected from each
plant for a total of 30 leaf samples per accession. Leaves were cleaned with cotton wool to
remove any soil and dirt that could interfere with LIBS analysis. All measurements were
performed on the fresh leaf with minimal preparation. The central vein of the fresh leaf
was removed to eliminate any surface roughness and make it easier leaf positioning in the
sample holder in the ablation chamber. The LIBS analysis was performed within 24 h after
collection. During this time, the leaves were maintained in bags and refrigerated at 4 ◦C to
avoid degradation and drying [7].

3.2. Laser-Induced Breakdown Spectroscopy Equipment and Spectra Acquisition

The LIBS spectra were acquired using a commercial equipment consisting of an
LIBS2500 spectrometer (Ocean Optics, Dunedin, FA, USA) provided with a Q-switched
1064 nm Nd:YAG laser (Quantel, Big Sky Laser Ultra50), operating at a single wavelength
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of 1064 nm with a pulse energy of 50 mJ, a repetition rate of 10 Hz and a laser pulse of
8 ns, and an initial delay time fixed at 2.5 µm. The laser fluence value was 1200 Jcm−2

and the distance between the focusing lens and the sample was 75 mm. All measure-
ments were performed in an ablation chamber in the air at atmospheric pressure. The
detection system consisted of a set of seven spectrometers operating in the spectral ranges,
respectively, of 188.84–292.61 nm, 292.61–384.44 nm, 384.44–507.16 nm, 507.16–618.30 nm,
618.30–716.20 nm, 716.20–800.25 nm, and 800.25–966.22 nm, with an optical resolution of
0.1 nm and equipped with a charge-coupled device (CCD) array.

The high-energy laser pulses are focused on the sample to generate the plasma and
excite thermally the analyte to higher energy levels. As the plasma cools down, the atoms
decay to lower energy levels emitting electromagnetic radiation that is collected by a
spectrometer that resolves the atomic emissions in wavelength. A typical LIBS spectrum
features several narrow spectral lines at specific wavelengths characteristic of the elements
present in the sample, the intensity of which is proportional to the element concentration.

Three shots were applied for each measurement, the first one used to clean the sample
surface and the other two ones for its ablation. For each leaf sample, ten measurements were
performed and averages were calculated to minimize uncertainties due to the biological
heterogeneity of samples. Accessions from the same variety were not measured in sequence
to avoid interference [7]. The software OOIBase32 developed by Ocean Optics was used
for data acquisition.

3.3. Treatment of Spectra and Classification Model

The qualitative elemental analysis was performed by using the characteristic elemental
peaks selected by applying the paired Student’s t-test with 5% of significance to each point
of the spectrum by comparing couples of investigated accessions. P-values lower than 0.05
allowed finding the regions of the spectrum showing statistically significant differences
between the accessions, with a smaller p-value indicating a smaller difference. Thus, the
emission peaks of the elements that mostly differ among the accession could be identified.
Then, the baseline of each emission peak was subtracted by the slope of the line defined by
two points at each limit boundary of the peak, which was then normalized by the area, A2,
calculated under the line according to Marangoni et al. [18]. Finally, the area of the peak,
A1, was calculated by fitting a Lorentzian shape over the peak profile. In order to select
the fit with the lowest mean error, the command-line Peak Fit program implemented in a
routinary Matlab software was used to perform multiple preliminary trial fits with slightly
different starting values. This procedure permitted to choose the best fit by returning a
FitResults vector with several fitting parameters among which the Mean Fit Error, i.e., the
percent RMS difference between the data and the model in the selected segment of that
data. Among the several fits evaluated, including the Gaussian and Lorentzian fits, the
best one for the transition LIBS spectral lines was the Lorentzian fit.

First, the PCA approach was used to evaluate the potential of LIBS data in discriminat-
ing among sweet orange accessions and construct a classifier able to correctly identify each
accession. The calculated areas, A1, for each selected element peak from all samples, i.e.,
23 peaks per sample, were used as input variables for PCA, which was performed using
the software Origin 9.0. PCA is a multivariate unsupervised statistical method able to
project multivariate data and describe relevant trends in the analyzed data set by reducing
the dimensionality of the original space of dataset without affecting the relations between
the samples [19,20]. The reduction of the number of variables is achieved by making a
linear combination of original variables, which yields the so-called principal components
(PC) that are decorrelated with each other, i.e., the information contained in one is not
present in the other and are defined so to describe the direction of maximum variance of the
original data. The PCs are orthogonal and oriented one by one to describe the maximum
remaining variance. Once redundancy is removed, almost all information contained in the
original data can be described by only a few major PCs. In this work, the following PCA
information was considered (i) the scree-plot, to estimate the variance of data according to
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each PC; (ii) the score plot, to visualize the projection of the sample on each PC; and (iii) the
loading plot, to evaluate the influence of each variable, i.e., elemental peak areas, on each
PC, i.e., the relationship between the original variables and the subspace dimension [21].
Thus, PCA allows emphasizing and interpreting all relevant differences among samples.

Thus, the discrimination among citrus accessions was performed using two classifiers,
the one based on 23 selected elemental peak areas, A1, evaluated previously as input
variables for PCA, the other employing the whole LIBS spectra. The broadband spectra
were previously pre-treated to highlight the relative spectral variations, reduce LIBS signal
uncertainties resulting from fluctuations of laser energy and matrix effects, and enable
spectra comparison. In particular, the data acquired on each leaf were normalized by the
area of the whole spectrum calculated individually for each spectrometer range, i.e., each
intensity point within each spectrometer was divided by the area calculated under the
curve of the same range. After normalizing the spectra of each measurement, the average of
10 shots per leaf was obtained. All calculations were performed using the routinary Matlab
software 2012. To achieve the differentiation between classes, 13,560 spectral points in the
average broadband spectrum of each sample were used as input variables in the classifier
model. The two data sets consisting of either the 23 selected elemental peak areas or the
whole LIBS emission spectra were exported to the open-source software Weka to yield the
classifiers obtained by combining CVR and the regression function via PLSR [7,22–24].

The final classifier was thus based on the different elemental concentrations in the
leaves of different accessions. In both cases, 10 executions of 10-fold stratified cross-
validation were performed to verify the classification model. This procedure allowed to
separate the data sets into 10 folders, with 9 used for training the classifier and one for
testing it. Then, the folder that was used as the test was put back into the dataset and
another folder was chosen randomly to carry out the same procedure. The iteration process
was repeated until all groups were tested. The randomization within the training and
test groups ensured that the accuracy obtained was not based on a particular partition of
training and test sets. The output of the induced classifiers provided a confusion matrix, in
which the numbers in the rows indicated the actual class, those in the columns the results
of the classifier, and the values in the diagonal the correctness of the model. All values were
expressed in percentage. To optimize the classifier success rate, the number of components
was chosen by analyzing the highest success rate and the lowest root mean squared error
(RMSE) as a function of the number of components with significant statistical differences.
For all tests, ten components were used.

The performance of the CVR associated with the PLSR classifier was calculated using
two parameters, sensitivity, and specificity, which are described in terms of True Posi-
tive (TP), True Negative (TN), False Positive (FP), and False Negative (FN) according to
Equations (1) and (2) below [7,25]:

Sensitivity =
TP

TP + FN
(1)

Speci f icity =
TN

TN + FP
(2)

4. Conclusions

The LIBS technique combined with chemometric methods shows a great potential
to discriminate between different and genetically very close accessions of various sweet
orange varieties based on the relevant elemental composition of their leaves at the nursery
stage that are specific for all combinations of canopy and rootstock. The classification
models applied to the elemental composition data extracted from LIBS spectra allow to
discriminate the various accessions at various levels of accuracy for each variety examined.

Differently from DNA markers and visual inspection, which can be applied success-
fully only to adult plants bearing fruits, LIBS has the advantage of being applied to plants at
the nursery stage, thus being able to discriminate earlier among the accessions by measur-
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ing the relevant elemental composition differences in the leaves. An additional advantage
of LIBS is that, when embedded in an appropriate vehicle, the apparatus is transportable,
so allowing large-scale and real-time on-site monitoring for early identification of orange
accessions in breeding programs.

In conclusion, LIBS represents a novel promising and economically viable spectro-
scopic tool for the early identification and discrimination at the nursery stage of sweet
orange variety accessions featuring very small genetic variability and indistinguishable
to molecular markers which is of particular importance for the productive sector, genetic
certification, and germplasm core collection selection.
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