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Abstract
This short review comments on current informatics resources and methodologies in
the study of functional pathways in cell biology. It highlights recent achievements in
unveiling the structural design of protein and gene networks and discusses current
approaches to model and simulate the dynamics of regulatory pathways in the cell.
Copyright  2004 John Wiley & Sons, Ltd.
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Understanding how genes interact to perform spe-
cific biological processes is a major challenge in
biology. It is felt that this is becoming possible
due to the large amount of information gener-
ated by genomic sequencing, protein interaction
and gene expression studies, and stored in pub-
lic databases (www.ncbi.nlm.nih.gov/GenBank;
www.ncbi.nlm.nih.gov/LocusLink; www.ncbi.n-
lm.nih.gov/UniGene; http://us.expasy.org/sprot;
www.ensembl.org; www.ebi.ac.uk; www.yeast-
genome.org/; www.arabidopsis.org/; www.wor-
mbase.org/; http://flybase.bio.indiana.edu/; ww-
w.informatics.jax.org; http://rgd.mcw.edu/; ht-
tp://genome-www5.stanford.edu/MicroArray/
SMD/). Achieving this objective will require data
to be organized in a more understandable struc-
ture. Data representation in the form of networks or
functional pathways, and modelling their dynamic
behaviour, is expected to give a better insight into
the complex patterns of gene–protein interactions.
At the same time, such models are expected to rev-
olutionize drug screening, and the identification of
functional pathways involved in pathogenesis will
facilitate the rational design of therapies [11].

Databases

The effort of creating biological pathway databases
and providing informatics tools for their analysis

has been undertaken by public and private initia-
tives, such as Transpath (www.biobase.de), Bio-
carta (www.biocarta.com), GenMAPP (www.gen-
mapp.org), aMaze (www.amaze.ulb.ac.be) and
the Alliance for Cellular Signaling (AfCS:www.af-
cs.org). The AfCS consortium, which is presently
focused on lymphocyte and cardiac myocyte sig-
nalling, has the overall goal to understand the
relationships between sets of inputs and outputs
that vary both temporally and spatially. This will
involve identification of all the proteins that com-
prise the various signalling systems, the assessment
of information flow in both normal and patho-
logical states, and the reduction of the data into
a set of theoretical models. The aMaze project
of an omni-comprehensive, object-orientated data
model is implemented in both MySQL and Ora-
cle languages. It aims at representing functional
and physical interactions among biochemical enti-
ties mapped onto their cellular and tissue loca-
tions. It also attempts to provide a workbench
for analysing networks of cellular processes, such
as metabolic pathways, protein–protein interac-
tions, gene regulation, transport and signal trans-
duction. Most of the pathway data presently
stored in the database relate to yeast and bac-
terial cells. A complication in pathway analysis
results from network component compartmental-
ization in space and time, both at the cellular level
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and between the cells of a multicellular organism.
This aspect is taken into account by the MGEIR
(Mouse Gene Expression Information Resource)
Project, developed collaboratively by the mouse
Gene eXpression Database at the Jackson Labo-
ratory and the Edinburgh Mouse Atlas Project [5]
(www.informatics.jax.org; http://genex.hgu.mrc.
ac.uk). Its goal is to illustrate molecular networks
in the context of the whole organism, by provid-
ing a unified resource to store, display and analyse
mouse developmental gene expression information.
Data is accessible both as text, using standardized
names for anatomical terms, and as original pub-
lished images of in situ hybridization, RT–PCR,
immuno-histochemistry, etc.

Gene and protein network architecture

Gene or protein networks are more easily under-
stood when represented as graphs, in which nodes
are genes or proteins, and arcs (edges) are relation-
ships between nodes. Depending on the case, edges
can have direction and weight. Data from high-
throughput protein interaction screens and DNA
microarray experiments, as well as tools for mining
information in the scientific literature, have sup-
ported the elucidation of the structural design of
networks, an important step towards modelling and
understanding cellular control systems. By employ-
ing controlled vocabularies (www.geneontology.
org) linked to gene symbols, it is possible to mine
qualitative information: automatic query methods
have been used to extract and structure knowl-
edge from publicly available gene/protein and
text databases. This allows the creation of a co-
citation network [17], under the assumption that
co-occurrence of the names of biological enti-
ties, such as genes and proteins, in the same
Medline abstract may reflect biologically meaning-
ful relationships, thus unveiling hidden patterns.
Databases and accompanying web tools for min-
ing relationships in the scientific literature are
provided by the PubGene and BiblioSphere sites
(www.pubgene.org; www.genomatix.de). Funct-
ional assignment of proteins can be assisted by lit-
erature data mining, and by informatics approaches
such as automatic annotation (www.pdg.cnb.uam.
es/blaschke/cgi-bin/abx) or in silico two-hybrid,
which takes into account the co-evolution of
sequence features (www.pdg.cnb.uam.es/i2h).

Due to their importance in cell physiology, con-
siderable efforts are being devoted to large-scale
mapping of protein interaction networks by yeast
two hybrid screens [29] (www.hybrigenics.com/;
http://portal.curagen.com/cgi-bin/interaction/fly
Home.pl), by purification of protein complexes fol-
lowed by mass spectrometry [10,13] (www.cell-
zome.com) and, hopefully, using protein chips
(http://bioinfo.mbb.yale.edu/proteinchip). Whe-
reas representations of the network of protein com-
plexes from large scale pull-down experiments is
thought to be more accurate than representation
of binary interactions from two-hybrid screens,
both fail to correctly reproduce all the interac-
tions described in the literature, so their utility
in pathway design is limited. As a matter of
fact, the resulting protein interaction maps were
shown to be incomplete and contradictory to a
significant extent, containing a large amount of
spurious interactions and missing a large number
of true interactions, varying from 15% to 85%
according to the dataset [9]. Similar problems
are likely to affect protein interaction databases
such as BIND, DIP and MINT, which also con-
tain hand-checked information gathered from the
scientific literature (http://dip.doe-mbi.ucla.edu/;
www.blueprint.org/bind/bind.php; http://cbm.
bio.uniroma2.it/mint/). The validity of the interac-
tion data can be improved with the use of structural
information about protein complexes, available at
MIPS (http://mips.gsf.de/). Different representa-
tions of protein networks tend to have a small
overlap, estimated to be around 20%. Although it
appears that no-one at present is able to manage
the complexity of protein interaction maps, plat-
forms are being designed to help simplify their
analysis (www.hybrigenics.com/). It will be valu-
able to have databases that take into account
the uncertainty of the current data in both litera-
ture and genome-wide experiments, by describing
the networks in some sort of probabilistic terms.
In this context, a Bayesian networks approach
was employed for predicting a protein interac-
tion network from a number of genomic fea-
tures [16] (http://bioinfo.mbb.yale.edu/genome/
intint/). Since existing datasets are so inaccurate,
the intersection of different datasets and integra-
tion of information from a variety if sources is
utilized to improve the accuracy and increase cov-
erage of interactions. To facilitate the work of com-
bining and verifying data from different sources,
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the Proteomics Standards Initiative (PSI) aims to
define community standards for data representation
(http://psidev.sourceforge.net).

The structure of gene interaction networks is
not measured directly, but must be reconstructed
by reverse engineering. The primary data source
has been microarray analysis of gene expression
profiles, a technique yielding a wealth of infor-
mation, but somehow noisy and often incomplete
(http://genome-www5.stanford.edu/MicroArray/
SMD/; www.ebi.ac.uk/arrayexpress/; www.hg-
mp.mrc.ac.uk/Research/Microarray/index.jsp).
Microarray data analysis presents the challenge
of revealing functional patterns in the chaos
that is gene expression. The starting point is a
gene expression data matrix, utilized by clus-
tering algorithms to identify co-expressed genes,
which are thought to be regulated by shared tran-
scription factors (http://genexpress.stanford.edu).
Although powerful for organizing data, such algo-
rithms, by themselves, are unfit for model build-
ing since they do not relate gene expression
values to a given functional state. Graph the-
ory, supervised learning and other statistical and
computational approaches have been adopted to
make predictions and to reconstruct gene regula-
tion networks from microarray data [14,26]. The
uncertainty inherent in these data is taken into
account by computational tools such as rough
sets (http://rosetta.lcb.uu.se), which are used in
supervised learning to build if–then rules. Such
rules are then used to model the relationship
between time course of gene expression and
involvement of a gene in a given biological pro-
cess ([15] www.lcb.uu.se/∼hvidsten/bioinf cho).
A graph theory-based approach was used to recon-
struct a gene network from microarray data of sin-
gle deletion mutants in yeast ([24] http://industry.
ebi.ac.uk/∼schlitt/draft/title.html). Precious hints
on the function of genes can be derived from
gene co-expression, when applied in an evolution-
ary context. Starting from metagenes (sets of best
orthologues identified by BLAST searches), prob-
abilistic methods were used to construct a gene
co-expression network, subnets of which may be
associated with particular biological pathways ([27]
http://cmgm.stanford.edu/∼kimlab/multiple-
species).

Although it might be possible in principle,
network reconstruction based solely on microar-
ray experiments proved very hard to achieve,

pointing to the utility of incorporating informa-
tion on transcription factor binding to gene pro-
moters ([31] www.math.uah.edu/stat). Interaction
between transcription factors and their DNA bind-
ing sites may be deduced from computational
analysis of binding sites in promoter sequences
[22], with the assistance of transcription fac-
tor databases such as Transfac (www.biobase.de)
and tools such as MathInspector and ElDorado
(www.genomatix.de). Direct mapping of these
interactions is also possible, through genome-wide
chromatin immunoprecipitation (ChIP–chip tech-
nology). This technique has revealed recurrent reg-
ulatory motifs that serve as the building blocks
of complex gene networks [19]. Analysis of the
genomic distribution of transcripts and of factor
binding sites can reach an extremely high resolu-
tion by means of genomic tiling arrays, oligonu-
cleotide arrays containing probes spaced on aver-
age every 5 bp along the genome. The applica-
tion of these techniques to mammalian genomes
has revealed many transcripts arising from tem-
plates outside of known and predicted genes, as
well as anti-sense RNA transcripts; it has also been
observed that DNA fragments that are cross-linked
to a given transcription factor frequently do not
have a recognizable binding site (TM Gingeras and
SM Weissman, personal communications).

Methods have been devised to extract regula-
tory information from binding data and to find
synergistic motif combinations in the promoters of
co-regulated genes ([19,22,23] http://web.wi.mit.
edu/young/regulator network). More advanced
methods, such as the genetic regulatory mod-
ules (GRAM [2]) and the module networks algo-
rithms ([25] http://robotics.stanford.edu/∼erans/
module nets) incorporate both DNA-binding and
gene expression data, allowing the selection of
sets of genes that share a common group of tran-
scription factors and also have similar expression
profiles.

Both protein and gene interaction networks
appear to be scale-free, the connectivity of their
nodes following a power law; therefore, they have
small world properties like many other networks
found in nature. Such global views, although fas-
cinating, do not always appear of immediate util-
ity for biologists, since they give only a general
impression of the network operation and lack cru-
cial details [3].
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Modelling of cellular pathways

Depicting sets of molecular interactions as static
graphs does not reveal the dynamics of events
within cells. The myriad of data now available has
stimulated attempts to design a computer replica
of a living cell, by including everything that is
known in one description of an entire cell biolog-
ical network. Several projects aim to develop the-
oretical supports, technologies and software plat-
forms for whole cell simulation. The Simulation
Environment of the open source E-Cell Project
(www.e-cell.org) can integrate different simulation
algorithms, including differential equation-based
models, diffusion-reaction and cellular automata.
Another framework for modelling and simula-
tion of cell biological models, the SmartCell, is
under development in the Serrano lab at EMBL
(www.embl-heidelberg.de/emblGroup/research-
Report/rr02 54.pdf). It is expected to provide
a suitable model description format. The vir-
tual cell (www.nrcam.uchc.edu/) provides a Java-
based modelling and simulation environment, in
which users can create biological models of var-
ious types and run simulations on a remote server;
another tool allows users to translate the initial
biological description into a set of concise math-
ematical problems. The silicon cell consortium
(www.siliconcell.net) has embraced the philosophy
of always starting from real molecular data and
of computing the implications for systems biology.
The idea that this can be done simply by computing
what is known appears over-optimistic, since the
number of molecular processes to be considered is
too high, and this approach suffers from the inabil-
ity to take into account interactions not yet discov-
ered. Clearly this must be integrated by top-down
model construction, which also represents a way
of integrating data in a more understandable struc-
ture [28]. An intuitive understanding of genetic
regulatory networks, which involve many com-
ponents connected through interlocking loops, is
hard to obtain. Computational methods like GRAM
[2] and module networks [25] can give a first
hint on the dynamic behaviour of gene expres-
sion regulatory networks and may represent a tool
for the development of more advanced dynamic
models. Formalisms that have been employed to
model these networks include directed graphs,
Bayesian and Boolean networks, rule-based formal-
ism and various kinds of differential equations ([8]

www.berkeleymadonna.com). Each one has its
advantages and drawbacks that reflect the difficulty
of incorporating the different features of gene regu-
latory networks, with aspects that appear to comply
to a Boolean logic (on–off switches at discrete
time steps) and others that are better described by
differential equation models. Mixed feature mod-
els, such as the finite state linear model [4], and
simplified, qualitative methods, such as the genetic
network analyser [7], are an attempt to get closer
to the reality of gene networks, whose behaviour
has been faithfully reproduced in the case of the λ-
phage lysis/lysogeny switch [4] and the initiation
of sporulation in Bacillus subtilis [7].

In engineering applications, the challenge of
understanding the behaviour of a complex network
is facilitated by analysing them within a modular
framework. The network is divided into subsets of
nodes that have strong interactions and a common
function, named ‘modules’ or ‘functional units’.
Fortunately, modularity appears to be a character-
istic of several biological networks, together with
other structural principles that may facilitate analy-
sis, such as robustness and use of recurring circuit
elements [1,12,21]. A modular strategy was applied
to model simple gene networks and EGF signalling
[18]. In this last case, the mitogen-activated pro-
tein kinase (MAPK) cascade was divided into three
modules that interact through communication inter-
mediates; the module–module connection strengths
can be obtained by measuring global responses to
specific perturbations of the cascade. Robustness
and modularity were keys to the successful mod-
elling of the segmentation polarity network, which
involves interactions among the products of five
genes [30]. To formulate a dynamic model in that
case required 136 equations with 50 free param-
eters that were in large part unknown, as is fre-
quently the case, and which might have spanned
several orders of magnitude. Describing the fis-
sion yeast cell cycle wiring diagram involved a
dozen differential equations, with about 30 kinetic
parameters [28]. A combination of experimental
and computational methods have made it possible
to unveil the operation of other biological path-
ways, such as those that regulate Saccharomyces
cerevisiae [19] and Caulobacter crescentus [20]
cell cycle, or that dictate endoderm development
in sea urchin embryo through a Byzantine control
system of over 40 genes [6].
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Going from these examples to more complex
pathways or, in the long run, to in silico whole cell
models, will depend on an increasing availability
of better structured databases and on finding out
innovative mathematics solutions to modelling and
simulation.
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