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Abstract: The use of many anticancer drugs is problematic due to severe adverse effects. While
the recent clinical launch of several kinase inhibitors led to tremendous progress, these targeted
agents tend to be of non-specific nature within the kinase target class. Moreover, target mediated
adverse effects limit the exploitation of some very promising kinase targets, including mitotic kinases.
A future strategy will be the development of nanocarrier-based systems for the active delivery of
kinase inhibitors using cancer specific surface receptors. The G-protein-coupled-receptors (GPCRs)
represent the largest cell surface receptor family and some members are known to be frequently
overexpressed in various cancer types. In the presented study, we used ovarian cancer tissues as
an example to systematically identify concurrently overexpressed GPCRs and kinases. The rationale
of this approach will guide the future design of nanoparticles, which will dock to GPCRs on cancer
cells via specific ligands and deliver anticancer compounds after receptor mediated internalization.
In addition to this, the approach is expected to be most effective by matching the inhibitor profiles
of the delivered kinase inhibitors to the observed kinase gene expression profiles. We validated
the suggested strategy in a meta-analysis, revealing overexpression of selected GPCRs and kinases
in individual samples of a large ovarian cancer data set. The presented data demonstrate a large
untapped potential for personalized cancer therapy using high-end targeted nanopharmaceuticals
with kinase inhibitors.
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1. Introduction

Globally, more than 140,000 ovarian cancer-related deaths and more than 200,000 new cases
were reported in 2016, and this annual burden is expected to increase in the near future [1–3].
The five major histological ovarian cancer subtypes are high grade serous ovarian carcinoma
(HGSOC), low grade serous ovarian carcinoma (LGSOC), low grade endometrioid carcinoma, clear
cell ovarian carcinoma (CCOC) and mucinous carcinoma. Current treatment includes the application
of platinum-based chemotherapy, poly(ADP-ribose) polymerase (PARP) inhibitors, MEK inhibitors
as well as hormonal and immune therapies [4]. However, a major shortcoming of these and other
drugs is poor bio-distribution leading to toxic side effects against healthy cells, thus narrowing the
therapeutic window. This will be especially pronounced when applying a combination therapy in
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which various anti-cancer agents would have a synergistic negative effect on healthy cells. For example,
it was reported that the simultaneous inhibition of several mitotic kinases may be toxic [5,6].

Recent years have seen rapid advances in the field of kinase inhibitor drugs. Imatinib was approved
in 2001 as the first small molecule kinase inhibitor for cancer therapy. More than 30 novel kinase
targeting drugs have been introduced to the clinic since then and many more are in various development
phases [7,8]. Approximately 40 kinase targets are thought to be blocked by the kinase inhibitors
launched to date or in clinical development [9]. To circumvent drug resistance and considering the large
choice of kinase inhibitors acting on probably all known cancer pathways, future clinical research is
very likely to move towards combination therapies, using engineered nanoparticles for the delivery
of more than one kinase inhibitor at a time. Presently the majority of clinically available anti-cancer
nano-formulations use passive targeting, exploiting the Enhanced Permeability and Retention Effect
(EPR) [10]. In this case, passive diffusion through endothelial fenestrations of tumor tissue lead to a local
build-up of nanoparticle concentrations, an effect further enhanced by the lack of efficient lymphatic
drainage. However, nanoparticles also accumulate in various organs, mainly liver and spleen, by vascular
escape through endothelial fenestrations [11]. Although side effects tend to be milder with kinase
inhibitors than with cytotoxic drugs, many of these compounds associated with adverse effects such as
myelosuppression, neuropathy and gastrointestinal damage. To minimize these effects, active targeting
of functionalized drug conjugates to cancer cells via overexpressed receptors using receptor-specific
ligands or antibodies shows promise [12,13]. This can both further enhance the anti-cancer potency on
solid tumors and reduce toxic side effects on healthy cells, respectively.

Tumor cells generally show a characteristic pattern of overexpressed membrane associated proteins
such as receptors, transporters and adhesion molecules. G-protein-coupled-receptors are the largest
family of trans-membrane receptors and some are known to be overexpressed in prevalent solid tumors.
The most intensely studied targeting receptors from the GPCR family are the somatostatin [11,14–16],
cholecystokinin [17,18], gastrin-releasing peptide (GRP) [19–21], lutein releasing hormone [22,23], and
neurotensin receptors [24,25]. Considering the large number of known GPCR receptor family members,
they appear to be under-represented in current research addressing active receptor targeting. We believe
that many more GPCR ligands can be exploited to design ligand-drug conjugates or drug carriers
that trigger receptor internalization and hence anti-cancer agent delivery directly into endosomal
compartments from where they can reach the cytosol through endosomolytic procedures [26].

The aim of the presented study was to investigate the potential to actively target ovarian cancer cells
using specifically engineered nanoparticles to deliver kinase inhibitors through overexpressed GPCRs.
It is assumed that an anti-cancer strategy will be most effective through inhibition of overexpressed
targets. Therefore, we systematically analyzed ovarian cancer tissues for concurrent high expression
of GPCRs and kinases. We present meta-data from nine ovarian cancer microarray data sets with
healthy tissues as controls compared to HGSOC, LGSOC, CCOC and tumor associated endothelial
cells. Initially, 12 kinases and 5 cyclins (CCNs) were identified as strongly up-regulated. In the next
step, the same data sets were systematically analyzed for overexpressed GPCRs, which led to an initial
selection of nine receptors. The suitability of overexpressed receptors for specific cancer cell targeting
with drug nanocarriers was assessed with respect to their expression levels in healthy tissues. The final
selection contained four receptors (GPR39, LPAR3, OXTR and PTH2R) with strong expression in
ovarian cancer tissue and generally low expression in human tissues. The logic of this approach is
outlined in Figure 1. The expression levels of the selected genes obtained from an independent set
of individual cancer tissue samples revealed high co-expression of receptors and kinases in most
samples, albeit with a large heterogeneity particularly for GPCRs. These findings strongly support
future potential for personalized medicine.
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on the GPL570 platform (single channel array) which represented >94% of all kinases, >90% of CNNs 
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were considered in our analysis. Hence, experiments with in vivo cell lines and xenograft models 
were excluded. Data sets with <20 samples and studies without control samples (e.g., healthy tissue) 
were not considered for the initial analysis of 9 data sets (Table 1). The primary selection of 
overexpressed genes from the nine data sets were compared to a large data set (GSE9891) which did 
not contain healthy tissue samples. 

Search for overexpressed GPCR, kinase and cyclin genes. The CEL files of all datasets listed in 
Table 1 were retrieved from the NCBI GEO archive. The ArrayStar software (DNAStar Inc, Madison, 
WI, USA) was used to normalize the data with the robust multi-array average (RMA) [27] method to 
assure consistent handling of all data sets. Affymetrix annotation files were used to retrieve gene 
specific expression data with official gene symbols. The 7tm and GPCR Protein Family (Pfam) 
domains were used to identify all GPCRs listed in the Ensemble database (ensemble.org) and 755 
GPCR genes were compiled including orphan, taste, olfactory and vomeronasal receptors. A subset 
of 437 receptors were represented by at least 1 DNA probe on the GPL570 platform. A list of 515 
human kinase gene names was compiled from the UniProt database 
(https://www.uniprot.org/docs/pkinfam; Release 25 April 2018) and complemented with 32 cyclin 
gene names (including 2 CDK5 regulatory subunit genes) as retrieved from the HUGO Gene 
Nomenclature Committee (https://www.genenames.org/). The GPL570 platform contained 487 of the 
kinase and 29 of the cyclin genes. 

Figure 1. Algorithm to select overexpressed kinase/cyclin and GPCR genes in ovarian cancer tissue.

2. Materials and Methods

Data set search strategy. The NCBI GEO database was systematically searched to identify Entrez
GEO DataSets with micro array expression data relevant for ovarian cancer. The search was focused
on the GPL570 platform (single channel array) which represented >94% of all kinases, >90% of CNNs
and >90% of non-olfactory GPCR genes. Only studies with information from primary cancer tissue
were considered in our analysis. Hence, experiments with in vivo cell lines and xenograft models were
excluded. Data sets with <20 samples and studies without control samples (e.g., healthy tissue) were
not considered for the initial analysis of 9 data sets (Table 1). The primary selection of overexpressed
genes from the nine data sets were compared to a large data set (GSE9891) which did not contain
healthy tissue samples.

Search for overexpressed GPCR, kinase and cyclin genes. The CEL files of all datasets listed in
Table 1 were retrieved from the NCBI GEO archive. The ArrayStar software (DNAStar Inc, Madison,
WI, USA) was used to normalize the data with the robust multi-array average (RMA) [27] method
to assure consistent handling of all data sets. Affymetrix annotation files were used to retrieve gene
specific expression data with official gene symbols. The 7tm and GPCR Protein Family (Pfam) domains
were used to identify all GPCRs listed in the Ensemble database (ensemble.org) and 755 GPCR genes
were compiled including orphan, taste, olfactory and vomeronasal receptors. A subset of 437 receptors
were represented by at least 1 DNA probe on the GPL570 platform. A list of 515 human kinase gene
names was compiled from the UniProt database (https://www.uniprot.org/docs/pkinfam; Release
25 April 2018) and complemented with 32 cyclin gene names (including 2 CDK5 regulatory subunit
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genes) as retrieved from the HUGO Gene Nomenclature Committee (https://www.genenames.org/).
The GPL570 platform contained 487 of the kinase and 29 of the cyclin genes.

Table 1. Gene expression datasets.

Accession # Sample Size Primary Cancer Samples Calculations a

GSE10971 37 Non-malignant fallopian epithelium (12 BRCA wt; 12
BRCA mut b) versus high grade SOC c (13) 1

GSE14401 23 HOSE (3) d, low grade SOC (10), high grade SOC (10) 2
GSE14407 24 HOSE (12), high grade SOC (12) 1
GSE18520 63 Normal ovary (10), advanced stage high grade SOC (53) 1

GSE27651 49 HOSE (6), serous borderline ovarian tumors (8), low grade
SOC (13), high grade SOC (22) 3

GSE29450 20 HOSE (10) versus clear cell ovarian carcinoma (10) 1
GSE52037 20 Healthy (10) versus primary tumors (10) e,f 1
GSE54388 22 Healthy (6) versus high grade SOC f (16) 1
GSE105437 22 Normal tissue (5), cancer (10) g, [wound (7)] b 1

a Number of cancer replicate sets compared to healthy tissue replicates; b Not used in this study; c serous ovarian
carcinoma; d Human ovarian surface epithelium; e Serous papillary adenocarcinoma; f Laser capture microdissected;
g Tumor associated endothelial cells.

Statistical analysis. Patient samples from different studies were stratified into groups of distinct
subtypes and fold expression was calculated between cancer tissues and the corresponding normal
tissues. An unpaired, two-tailed, equal variance Student’s t-test was applied to assess the significance
of differentially expressed GPCR genes.

Homology modeling and docking. Receptor protein sequences were submitted to the Swiss-Model
Server [28–30] and suitable templates were automatically searched in the SWISS-MODEL template library
(SMTL, version 2017-10-23, last included PDB release 2017-10-13) using the Blast [31] and HHBlits [32]
methods in parallel. The templates with the highest quality according to the global quality estimation
score (GMQE) have then been selected for model building. Models were built based on the target-template
alignment using ProMod3 and the global and per-residue model qualities were assessed using the
QMEAN scoring function [33]. Finally, the CABS-dock server [34] was used for docking studies with
selected peptide ligands against receptor models. The SwissDock server [35,36] was used for docking
of lipid ligands. Various docking results were clustered according to the binding site and modality on
the receptor. Visual checks of the structures were performed to discard clusters which showed binding
in unexpected sites. Top ranked dockings from the finally prioritized clusters were rendered with
Protean 3D (DNAStar Inc.) or Chimera (UCSF), and the structures were used to assess potential chemical
conjugation for receptor targeting.

3. Results and Discussion

Collection of gene expression data. To select gene expression data sets allowing for the differential
study of neoplastic ovarian cancer versus healthy tissue, the public GEO repository was systematically
searched with a focus on a single DNA microarray platform to obtain easily compared data.
For this purpose, the GPL570 human DNA array (Affymetrix Inc., Santa Clara, CA, USA) containing
54,675 DNA probes covering most of the human transcriptome was selected. The chosen platform
represents >120,000 samples available from the GEO data base. A list of 515 kinase and 32 cyclin (CCN)
genes was compiled (see supplementary info S1) and 487 kinase genes and 29 cyclin genes were identified
on the GPL570 platform. All over, the chosen platform contained >94% of all kinases and >90% of all
CCNs, which was considered suitable for the study (for detailed information on the lacking 28 kinase
and 3 CCN genes, see supplementary info S1). An initial search for ovarian cancer data sets in the GEO
repository limited to the GPL570 platform resulted in 51 hits. The data sets were checked for suitability
according to the criteria outlined in the methods section and non-informative data sets were excluded.
The final selection of nine ovarian cancer data sets is given in Table 1.

https://www.genenames.org/
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Identification of overexpressed kinases and cyclins in primary ovarian cancer tissue. Cell data
files were retrieved from the public GEO repository and processed using a robust multi-array (RMA) [27]
normalization protocol with the ArrayStar software (DNAStar Inc, Madison, WI, USA). Annotations
and attributes were imported automatically from files provided by Affymetrix Inc. (Santa Clara, CA,
USA) and the data sets listed in Table 1 were organized into groups of replicates for expression analysis.
Overexpressed kinases and cyclins were systematically identified by comparison of samples from
cancer and healthy tissues, e.g., high grade serous ovarian carcinoma (HGSOC) versus human ovarian
surface epithelium (HOSE) tissue. A total of 12 calculations were carried out with the nine data sets as
indicated in Table 1, whereby the HG- and LGSOC, and the borderline ovarian tumor replicate groups
were calculated separately for the GSE14001 and GSE27651 data sets. Two example scatterplots are
depicted in Figure 2, where mean values of cancer versus healthy tissue replica groups are shown with
kinase and cyclin genes indicated in yellow and green, respectively. All other genes are indicated with
small red dots.
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Figure 2. Scatter plots of microarray data. (A) Mean values were calculated from replica groups (HOSE
6 samples; HGSOC 22 samples) and plotted against each other as indicated with axis names. The R2

values were 0.8877, 0.8547 and 0.7522 for total, kinases and cyclins, respectively. (B) Mean values were
calculated from 10 HOSE and 10 CCOC samples. The R2 values were 0.8577, 0.8406 and 0.7489 for total,
kinases and cyclins, respectively.
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With microarray data an induction of ≥2.0 fold is generally accepted as a good criterion for
overexpression. Evaluation of our data revealed very robust differences and therefore all genes with
an average of≥3.0 fold induction in 12 calculations and≥3.0 fold induction in four individual calculations
were considered to be overexpressed. These criteria led to the selection of 12 kinase and 5 cyclin genes,
which were overexpressed in 4 to10 calculations, about 7 on average (Tables 2 and 3, respectively). A large
proportion of these overexpressed genes play important roles mainly in mitosis (e.g., AURKA, BUB1,
BUB1B, CDK1, MELK, NEK2, TTK, PBK) and cell growth/development (e.g., CDC7, ERBB3, PRKX,
SYK) [37–43]. Inhibitors against some of these targets have been tested in clinical trials [44]. Noteworthy,
AURK and CDK1 inhibitors showed anti-cancer efficacy in clinical trials but also induced strong adverse
effects, including myelosuppression and gastrointestinal damage. This makes a very strong case for
an approach aiming at specific delivery of these kinase inhibitors with engineered nanomedicines into
cancer cells, while sparing healthy cells. Strongly expressed receptors can potentially be used for specific
docking of ligand decorated drug carriers. For this purpose, we systematically searched for overexpressed
GPCRs in ovarian cancer cells, which might offer an opportunity to develop such a strategy.

Table 2. Overexpressed kinases in ovarian cancer tissue detected by GPL570 microarray. Selected genes
showed mean fold induction of ≥3.0, and ≥3.0 fold induction in at least four independent calculations
(indicated in bold); p-values are indicated in brackets with 0.00 < 0.005.

Gene Probe ID Fold Induction (p-Value)

AURKA
204092_s_at 13.35 (0.00), 10.85 (0.00), 0.44 (0.09), 0.78 (0.64), 2.75 (0.00), 5.46 (0.00), 7.04 (0.00),

1.19 (0.51), 5.71 (0.00), 2.64 (0.00), 6.3 (0.00), 1.4 (0.55); mean: 4.83

208079_s_at 15.46 (0.00), 11.82 (0.00), 0.19 (0.02), 0.62 (0.49), 5.69 (0.00), 6.31 (0.00), 10.27 (0.00),
3.00 (0.00), 16.29 (0.00), 5.25 (0.00), 9.24 (0.00), 1.44 (0.58); mean: 7.13

BUB1 209642_at 6.24 (0.00), 5.99 (0.00), 0.33 (0.1), 0.73 (0.66), 2.71 (0.00), 6.20 (0.00), 9.43 (0.00), 1.59
(0.04), 4.41 (0.00), 3.36 (0.00), 9.36 (0.00), 1.53 (0.35); mean: 4.32

BUB1B 203755_at 10.9 (0.00), 13.95 (0.00), 0.35 (0.05), 1.05 (0.93), 5.62 (0.00), 7.00 (0.00), 10.7 (0.00),
3.02 (0.01), 7.59 (0.00), 6.08 (0.00), 12.09 (0.00), 1.95 (0.32); mean: 6.69

CDC7 204510_at 6.69 (0.00), 6.24 (0.00), 0.45 (0.03), 0.99 (0.98), 1.90 (0.01), 2.77 (0.00), 6.31 (0.00),
1.64 (0.19), 6.25 (0.00), 1.66 (0.05), 6.68 (0.00), 0.80 (0.74); mean: 3.53

CDK1
203213_at 7.03 (0.00), 6.28 (0.00), 0.34 (0.05), 0.93 (0.90), 4.25 (0.00), 8.72 (0.00), 20.02 (0.00),

2.46 (0.04), 8.86 (0.00), 4.31 (0.00), 18.85 (0.00), 2.25 (0.28); mean: 7.02

210559_s_at 7.86 (0.00), 6.17 (0.00), 0.32 (0.01), 0.77 (0.54), 2.72 (0.01), 5.69 (0.00), 7.01 (0.00),
1.01 (0.97), 2.77 (0.00), 2.21 (0.05), 7.22 (0.00), 1.44 (0.56); mean: 3.77

ERBB3 226213_at 0.86 (0.84), 0.98 (0.98), 6.28 (0.00), 7.83 (0.00), 1.11 (0.77), 2.05 (0.04), 3.22 (0.06),
4.85 (0.02), 5.19 (0.02), 1.03 (0.92), 3.20 (0.08), 1.31 (0.63); mean: 3.16

MELK 204825_at 6.19 (0.00), 5.44 (0.00), 0.18 (0.00), 0.47 (0.06), 6.84 (0.00), 5.86 (0.00), 11.01 (0.00),
2.56 (0.06), 13.18 (0.00), 5.32 (0.00), 10.77 (0.00), 3.59 (0.13); mean: 5.95

NEK2 204641_at 3.50 (0.02), 2.81 (0.02), 0.66 (0.5), 1.38 (0.62), 5.43 (0.00), 11.06 (0.00), 15.65 (0.00),
4.96 (0.00), 12.01 (0.00), 6.59 (0.00), 17.27 (0.00), 2.59 (0.03); mean: 6.99

PBK 219148_at 4.04 (0.00), 4.81 (0.00), 0.14 (0.00), 0.40 (0.16), 2.52 (0.04), 4.23 (0.00), 9.03 (0.00),
0.92 (0.69), 5.38 (0.00), 2.76 (0.03), 7.56 (0.00), 2.05 (0.29); mean: 3.65

PRKX 204061_at 0.67 (0.34), 0.69 (0.29), 5.56 (0.00), 3.28 (0.00), 1.39 (0.13), 4.50 (0.00), 5.59 (0.00),
11.54 (0.00), 5.24 (0.02), 1.62 (0.07), 6.23 (0.00), 0.66 (0.23); mean: 3.91

SYK 226068_at 1.15 (0.77), 1.25 (0.68), 6.55 (0.00), 6.17 (0.00), 2.41 (0.02), 1.6 (0.19), 4.04 (0.01), 4.52
(0.01), 0.91 (0.86), 2.43 (0.01), 3.19 (0.05), 1.97 (0.12); mean: 3.02

TTK 204822_at 7.22 (0.00), 8.01 (0.00), 0.24 (0.03), 1.06 (0.94), 4.87 (0.00), 8.68 (0.00), 11.88 (0.00),
1.74 (0.09), 3.61 (0.01), 3.46 (0.02), 12.12 (0.00), 1.68 (0.31); mean: 5.38
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Table 3. Overexpressed cyclins in ovarian cancer tissue detected by GPL570 microarray. Selected genes
showed mean fold induction of ≥3.0, and ≥3.0 fold induction in at least four independent calculations
(indicated in bold); p-values are indicated in brackets with 0.00 < 0.005.

Gene Probe ID Fold Induction (p-Value)

CCNB1
214710_s_at 5.63 (0.00), 8.42 (0.00), 0.13 (0.00), 0.35 (0.1), 2.2 (0.05), 4.18 (0.00), 7.91 (0.00), 0.94

(0.88), 4.86 (0.01), 1.82 (0.14), 7.63 (0.00), 1.83 (0.38); mean: 3.83

228729_at 4.94 (0.00), 6.22 (0.00), 0.20 (0.01), 0.51 (0.26), 3.18 (0.01), 5.16 (0.00), 10.37 (0.00),
2.06 (0.07), 14.81 (0.00), 3.15 (0.01), 12.16 (0.00), 1.28 (0.68); mean: 5.34

CCNB2 202705_at 11.87 (0.00), 10.79 (0.00), 0.43 (0.09), 0.94 (0.92), 4.85 (0.00), 5.69 (0.00), 8.34 (0.00),
1.96 (0.04), 5.65 (0.01), 3.60 (0.00), 8.33 (0.00), 1.89 (0.25); mean: 5.36

CCND1 208712_at 0.59 (0.19), 0.61 (0.25), 0.87 (0.67), 0.89 (0.80), 2.32 (0.06), 3.17 (0.00), 4.92 (0.00),
10.58 (0.00), 2.22 (0.2), 3.84 (0.00), 3.85 (0.02), 2.77 (0.13); mean: 3.05

CCNE1 213523_at 18.67 (0.00), 13.54 (0.00), 0.48 (0.00), 1.17 (0.59), 4.82 (0.00), 5.74 (0.00), 4.66 (0.00),
1.32 (0.54), 10.03 (0.00), 4.71 (0.00), 3.63 (0.03), 1.83 (0.00); mean: 5.88

CCNE2 205034_at 6.57 (0.00), 6.15 (0.00), 0.16 (0.00), 0.27 (0.01), 2.8 (0.00), 3.53 (0.00), 6.03 (0.00), 0.95
(0.84), 4.41 (0.00), 1.63 (0.14), 6.7 (0.00), 1.24 (0.62); mean: 3.37

Some GPCRs showed massif overexpression in primary ovarian cancer tissue. A systematic
search for GPCR receptors that could serve as cellular attachment points for therapeutic kinase inhibitor
formulations was performed using the same 12 calculations as outlined above. A list of 755 GPCR genes
was compiled from 21 Pfam domains (7tm and GPCR) within the protein family database as reported
previously [45] and 437 GPCR genes were identified on the GPL570 platform, which represented
>90% of all non-olfactory GPCRs. Applying equal threshold characteristics as with the kinase and
cyclin genes expression, 9 GPCR genes were identified with an average ≥3.0 fold expression in the
12 calculations and ≥3.0 fold in at least four individual calculations compared to healthy control tissues.
Again, on average there was a ≥3.0 fold overexpression in about 7 of the 12 calculations per gene.
A summary is given in Table 4.

Table 4. Overexpressed GPCRs in ovarian cancer tissue detected by GPL570 microarray. Selected genes
showed mean fold induction of ≥3.0, and ≥3.0 fold induction in at least four independent calculations
(indicated in bold); p-values are indicated in brackets with 0.00 < 0.005.

Gene Probe ID Fold Induction (p-Value); Mean Fold Induction

ADGRG1 212070_at 1.27 (0.31), 1.07 (0.84), 3.32 (0.16), 2.73 (0.26), 4.62 (0.00), 5.70 (0.00), 9.08 (0.00),
17.23 (0.00), 9.29 (0.00), 5.22 (0.00), 6.81 (0.00), 1.58 (0.43); mean: 5.66

ADGRG2 206002_at 1.16 (0.89), 1.66 (0.57), 16.73 (0.00), 7.60 (0.00), 0.57 (0.33), 1.59 (0.16), 4.64 (0.01),
16.58 (0.00), 0.25 (0.01), 1.22 (0.73), 4.05 (0.05), 1.14 (0.71); mean: 4.77

CXCR4 217028_at 0.80 (0.32), 0.73 (0.12), 18.04 (0.00), 42.93 (0.00), 4.31 (0.05), 3.26 (0.00), 9.41 (0.00),
6.32 (0.01), 7.45 (0.00), 5.28 (0.04), 8.52 (0.00), 7.53 (0.12); mean: 9.55

GABBR1,
UBD 205890_s_at 31.64 (0.00), 34.43 (0.00), 5.13 (0.00), 3.68 (0.00), 1.28 (0.63), 1.26 (0.45), 2.13 (0.19),

1.11 (0.87), 1.92 (0.4), 1.18 (0.74), 2.00 (0.32), 2.31 (0.06); mean: 7.34

GPR39 229105_at 1.00 (1.00), 1.21 (0.67), 0.26 (0.00), 0.20 (0.00), 2.44 (0.02), 3.19 (0.00), 4.06 (0.00),
13.10 (0.00), 3.36 (0.00), 3.52 (0.00), 3.88 (0.00), 1.40 (0.33); mean: 3.13

LGR6 227819_at 1.19 (0.84), 1.14 (0.88), 10.31 (0.00), 6.02 (0.00), 2.64 (0.01), 4.57 (0.00), 8.18 (0.00),
26.42 (0.00), 1.16 (0.68), 3.52 (0.00), 5.82 (0.00), 0.52 (0.27); mean: 5.96

LPAR3 231192_at 0.17 (0.00), 0.23 (0.02), 3.17 (0.00), 14.73 (0.00), 3.00 (0.11), 19.72 (0.00), 30.52 (0.00),
5.29 (0.01), 3.02 (0.04), 3.45 (0.04), 30.62 (0.00), 1.81 (0.28); mean: 9.64

OXTR 206825_at 1.76 (0.39), 1.20 (0.79), 0.10 (0.00), 0.10 (0.00), 1.44 (0.20), 5.04 (0.00), 7.78 (0.00),
9.43 (0.00), 3.10 (0.01), 1.56 (0.08), 6.56 (0.00), 1.88 (0.17); mean: 3.33

PTH2R 206772_at 7.23 (0.01), 6.84 (0.01), 1.47 (0.01), 4.74 (0.00), 4.02 (0.02), 8.28 (0.00), 9.94 (0.00),
1.36 (0.46), 1.94 (0.23), 3.76 (0.04), 13.39 (0.00), 1.43 (0.38); mean: 5.37
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p-Values were calculated to assess differential expression of all selected GPCR, kinase and cyclin
genes when cancer tissue was compared to normal tissue. The determined p-values were <0.1 in
77%, 75% and 66% for all kinase, CCN and GPCR calculations, respectively. Moreover, for sample
groups with induction ≥3 fold, the p-values were ≤0.05 with only very few exceptions, namely three
calculations (out of 97) for kinases and two calculations (out of 62) for GPCRs (Tables 2 and 4). The fact
that a significant amount of data sets did not show strong induction or in some cases showed even
reduced expression, reflected the inherent heterogeneity of cancer samples. However, for two reasons
we did not weigh the obtained inconsistencies too heavily in this study: (1) The selection of the GPCR,
kinase and cyclin genes is based on data of a population of cancer samples and serves to narrow
down possible target molecules (kinases and cyclins) and cellular entry sites (GPCRs). (2) while
some of the selected GPCRs may be overexpressed in most cancer samples, others may merely be
up-regulated in 30% or less of all cancer tissues. However, in the context of personalized cancer
treatment, the consideration of these less frequently overexpressed receptors could still be of high
practical value.

The next step was to select the most promising receptors for effective and safe cancer cell targeting.
This is most likely achieved using receptors with low expression in healthy tissue and high expression
in neoplastic tissue. The information for receptor expression in healthy tissues was collected from the
Human Protein Atlas (HPA) and is shown in Table 5 with RNAseq data (RPKM; reads per kilo base per
million mapped reads) given for each receptor in the lower row, and protein levels indicated in the
upper row for each receptor, with 0 (not detected), 1 (low), 2 (medium) and 3 (high expression).

Table 5. Protein and mRNA expression in healthy tissue. Data were collected from the Human Protein
Atlas (HPA). Protein expression level (P) is indicated with 0, 1, 2 or 3 (dark green, light green, orange
and red, respectively) representing no, low, medium or high expression, respectively. mRNA expression
(R) is shown as reads per kilo base per million mapped reads (RPKM; dark green representing 0, light
green 1–3, orange 4–9 and red >9 RPKM). White boxes: No protein or RNA expression data available
from HPA.
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R
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Pituitary Gland P
Oral Mucosa

P 2 0 1 0 0 0

R 20 6 0 0 11 0 1 0 33 R

Hypothalamus P Esophagus P 2 0 1 1 0 0

R 8 18 1 1 3 0 0 3 72 R 9 15 4 0 3 0 0 1 13

Cerebral Cortex
P 1 1 2 1 0 2

Stomach
P 2 1 1 0 0 0

R 3 21 2 2 0 0 0 1 88 R 14 14 0 0 0 2 2 0 17

Hippocampus P 0 0 1 2 0 2
Duodenum

P 3 0 3 0 0 0

R 6 16 2 1 0 0 0 1 56 R

Caudate
P 0 0 0 3 0 1

Small Intestine
P 3 0 2 0 0 0

R 5 22 1 0 0 0 0 3 91 R 151 6 0 0 1 1 1 0 19

Cerebellum
P 0 0 0 1 0 2

Colon
P 3 1 3 0 0 0

R 1 6 0 0 3 0 0 1 111 R 11 6 0 0 1 1 0 0 26

Thyroid Gland P 2 0 2 0 0 1
Rectum

P 3 0 2 0 0 0

R 19 48 0 0 4 0 1 0 28 R

Parathyroid
Gland

P 3 0 2 0 0 1 Kidney P 2 3 2 1 0 1

R R 16 53 0 2 1 1 1 0 15

Adrenal Gland
P 2 0 1 1 0 1 Urinary Bladder P 2 0 2 0 0 1

R 45 4 1 0 0 0 0 0 16 R 18 14 3 0 2 2 1 0 27

Appendix P 2 0 3 0 0 0
Testis

P 2 0 2 0 0 1

R R 3 23 7 0 7 2 1 0 11
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Table 5. Cont.
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R
1

Bone Marrow
P 3 0 1 1 0 0

Prostate
P 2 0 2 1 0 0

R R 16 14 7 0 4 0 3 1 41

Lymph Node P 2 0 0 1 0 0 Epididymis P 2 0 1 0 2 1

R R

Tonsil
P 2 0 2 1 0 0

Seminal Vesicle
P 2 0 2 0 0 1

R R

Spleen P 0 0 0 0 0 0 Fallopian Tube P 2 0 1 0 0 1

R 214 3 0 0 5 0 1 0 42 R 19 9 2 0 4 0 5 0 45

Heart Muscle
P 1 0 2 1 0 1

Breast
P 1 0 3 1 0 1

R 5 4 4 0 3 0 0 0 13 R 18 17 0 0 4 0 2 15 26

Skeletal Muscle
P 1 1 2 0 0 1 Vagina P 1 0 0 0 0 0

R 1 2 0 0 0 0 0 0 3 R 16 14 4 0 3 0 1 0 37

Smooth Muscle
P 1 0 0 0 0 1 Cervix, Uterine P 2 0 1 1 0 1

R R 11 10 2 0 3 0 1 0 45

Lung P 1 0 2 1 0 1
Endometrium

P 1 0 2 1 0 1

R 57 13 1 0 2 1 1 0 23 R 8 7 0 0 1 0 0 3 47

Nasopharynx P 2 0 2 0 1 Ovary P 1 0 1 0 0 0

R R 5 2 1 0 1 0 0 1 49

Bronchus
P 3 0 2 0 0 1

Placenta
P 2 0 2 1 0 1

R R

Liver
P 2 0 2 0 0 0

Soft Tissue
P 1 0 0 1 0 1

R 6 1 0 0 1 1 0 0 3 R

Gall Bladder
P 2 0 3 0 0 0 Adipose Tissue P

R R 21 13 0 0 1 0 2 0 20

Pancreas
P 2 3 2 0 0 0

Skin
P 2 0 2 1 0 1

R 3 11 3 0 0 1 0 0 6 R 5 27 3 0 3 0 0 0 17

Salivary Gland P 2 0 2 0 0 0 Sum RNA 748 442 51 7 72 12 26 30 1057

R 14 23 3 1 1 0 2 0 17 Sum Protein n/a 78 n/a 10 70 23 2 n/a 31

“Sum RNA” indicates the total sum of all RPKM values for individual receptors and similarly,
“Sum Protein” is the total of all protein expression values. For safe cancer cell targeting, only receptors
with low expression in healthy tissue were considered. An arbitrary cut-off at “Sum RNA” <100
and “Sum Protein” <50 revealed PTH2R, GPR39 (orphan receptor with known synthetic agonists),
ADGRG2 (orphan receptor), OXTR and LPAR3 as the most promising candidates. From the orphan
receptors ADGRG2 and GPR39, the former was discarded from the final selection due to lack of known
agonists, while the latter was retained due to the recent discovery of synthetic agonists [46]. The next
step was to analyze the co-expression of these receptors with candidate kinase targets in individual
cancer samples. This was carried out first with samples from the GEO data sets listed in Table 1, and
some results are presented in Figure 3 (for complete data see Supplementary Figure S2). The heat
maps represent log2 expression levels and most data sets showed a clear differential expression of the
selected genes between healthy and tumor tissue. All HGSOC (apart from GSE14401) and the CCOC
tissue data sets showed overexpression for a majority of selected kinase/CCN and GPCR genes in
tumor tissue. In the case of data set GSE27651 the overexpression was clearly stronger for HGSOC
than for LGSOC (Figure 3A). All over, this analysis may indicate that the suggested strategy will be
most suitable for HGSOC and CCOC. The samples for data set GSE54388 have been prepared by
laser capture microdissection (Figure 3B) and differential expression of the selected genes seemed
particularly pronounced. The deviating outcome with one data set (GSE14401) might be due to
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incomplete separation of tumor and healthy tissue during preparation procedures (Supplementary
Figure S2). Future studies might deliver high quality data by applying laser capture microdissection to
avoid non-cancer cells from confounding the experiments. An additional data set (GSE105437) was
prepared with tumor associated endothelial cells and differential expression of the selected genes
was not confirmed (Supplementary Figure S2). These results clearly demonstrate that our suggested
strategy will be suitable to specifically select receptors to target ovarian cancer cells, but not the
tumor vasculature. Finally, we conclude that (1) the expression between individual samples was
heterogeneous to some degree and (2) most importantly, for most tissue samples, it will be possible to
pick at least two strongly overexpressed GPCRs for specific targeting that can be matched with several
overexpressed kinases and CCNs.

To this point, we have analyzed mixed cancer tissue types including HGSOC, LGSOC, CCOC
and cancer associated endothelial cells. We generated a series of heat maps and box plots for visual
check and observed the strongest effects with HGSOC and CCOC samples. Subsequently we selected
an independent large HGSOC data set (GSE9899) without negative controls to further consolidate our
strategy. The obtained findings are visualized as a heat map in Figure 4A. The mean log2 expression
levels were 7.9 for kinases and 7.5 for CCNs. The arbitrary cut-off for overexpression was set close to
the mean at 8.0. Similarly for the GPCRs, which showed an average expression of 6.4, we chose the
cut-off at 6.0. Strikingly, ERBB3 was strongly overexpressed in 92% of all cancer samples. Unfortunately
this receptor has impaired kinase activity and therefore is not well suited for a small molecule kinase
inhibitor strategy [47]. However it may be suitable for RNAi mediated down-regulation. Further
analysis of the data revealed 7 kinases, 3 CCNs (including CCNB1 and B2), and 3 GPCRs, namely
LPAR3, PTHR2 and OXTR to be overexpressed in at least 50% of all samples. Only nine samples did
not show any overexpressed GPCRs and only one sample did not show any overexpressed kinase
indicating that our strategy would be applicable for about 97% of HGSOC patients.
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Figure 3. Heat maps of log 2 expression values from representative data sets. The same data are also
shown as box plots on the left hand side of each panel. (A) GSE27651 Healthy Tissue (HT) vs. Low
Grade (LG) and High Grade Tumor Tissue, (B) GSE54388 microdissection, Healthy Tissue (HT) vs.
High Grade Tumor Tissue, (C) GSE29450 Healthy Tissue vs. CCOC. Whisker plots are shown on all
panels: control healthy tissue left, tumor tissue right; heat map: control samples columns on left healthy
tissue (HT), tumor tissue columns on right). Some of the kinase and CCN gene names are repeated
due to more than one specific DNA probe included on the DNA microarray. Probe ID information can
be obtained from Tables 2–4, with the duplicated gene names in the same top down order.
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Figure 4. (A) Heat map of GSE9891 data. “Mean” values indicate Log2 intensities. “Count” values
indicate the number of samples (out of 285 samples) with a Log2 intensity of >6 or >8, respectively.
Genes AURKA, CDK1 and CCNB1 appear twice to show the data from 2 different DNA probes available.
(B) Tumor tissue samples ordered according to the number of GPCRs with Log2 > 6 (blue line) followed
by ordering them by the number of kinases with Log2 > 8 (orange line). CDK1 and CCNB1/2 are shown
separately (grey and yellow line, respectively, see text for explanation). Genes with data from 2 DNA
probes were looked at and counted individually.

Figure 4B depicts the number of GPCRs (maximally 4) and kinases (maximally 14) per individual
sample that were overexpressed. CDK1 was the most frequently overexpressed kinase and is known
to only be active as a dimer with CCNB1, 2, CCNE1 or 2 [48]. Therefore, we analyzed these genes
separately and only 23 samples (8.1%) showed CDK1 overexpression without CCN overexpression
(Figure 4B, grey and yellow line).

GSE9891 was the largest HGSOC dataset from the initially identified 51 ovarian cancer data sets
and was excluded from the initial analysis due to the lack of healthy control tissue samples.

In summary, the analysis with a large dataset further confirmed the potential to target most
HGSOC cells with engineered nanocarriers, which display selected GPCR ligands on their surface
for specific docking, followed by cellular internalization. Our results also strongly indicated the
combination of the suggested future anticancer drug delivery strategies with the use of pan-kinase
inhibitors, which match the gene expression profiles of cancer samples in a personalized manner.

Co-expression of kinases/cyclins and GPCRs in human ovarian cancer cell lines. To further
support our findings, we looked at expression levels of the selected kinase/cyclin and GPCR genes in 44
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ovarian cancer cell lines from the Cancer Cell Line Encyclopedia (CCLE) [49]. It became very apparent
that based on the log2 absolute values most of the selected kinases and CCNs showed very strong
expression in almost all cell lines (Figure 5A). In addition, the data confirmed that many receptors
showed very high expression in cancer cells (Figure 5B).
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Since cancer cell lines are well accepted as clinically relevant research subjects, our results not
only corroborate the results from the statistical expression analyses using primary tumor tissues but
could also be the basis to generate in vitro models for the identification and characterization of new
kinase inhibitors that can be specifically delivered through GPCR internalization. Finally, in vivo proof
of concept could also be gained using these cell lines in xenograft models.

4. Ligand Docking

The knowledge of the relative orientation of ligand and receptor to each other is important for
the choice of drug carrier–ligand conjugation sites. Additionally, the putative conjugation site on
the ligand has to be exposed in a way that a drug carrier–ligand conjugation would not prevent
binding to the receptor. Two of the four selected GPCRs and their respective ligands were chosen for
docking experiments to gain structural insights in receptor–ligand complexes in order to reckon their
amenability to function in targeted therapeutics. The PTH2 receptor primary amino acid sequence
was taken as input to build homology-based models using the Swiss-Model Server [28,30]. In a next
step, the highest scoring models based on the QMEAN scoring function was forwarded to the public
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CABS-dock server with which docking studies with the “tuberoinfundibular peptide of 39 residues”
(TIP39) peptide ligand were performed. The LPAR3 amino acid sequence was treated similarly but
there the docking studies were performed using the publicly available SwissDock server with the
lysophosphatidic acid ligand.

TIP39 is known to be a very potent and specific PTH2R agonist, while it only exerts weak
antagonistic effects on the widely expressed PTH1R [50]. For this purpose it will be an optimal
ligand to target PTH2R overexpressing ovarian cancer cells while sparing PTH1R expressing healthy
cells. Figure 6 shows that the relatively large TIP39 ligand exposes its C-terminus (arrow) such that
a drug carrier might be conjugated to it. Figure 6B shows lysophosphatidic acid (LPA) bound to
LPAR3, and it seems most promising to chemically conjugate a drug carrier to the cis-double bond
or at the omega end. LPA is a non-specific agonist of all six LPA receptors. Some of them are
widely expressed in various tissues and therefore we suggest using the LPAR3-specific LPA derivative
1-oleoyl-2-methyl-sn-glycero-3-phosphothionate (OMPT) as ovarian cancer targeting ligand. OMPT
only shows minor structural changes and is assumed to dock similarly to the target receptor.
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TIP39 (A) and the cis-double bond of the aliphatic chain of LPA (B).

5. Conclusions

Cancer is a highly heterogeneous disease and GPCR overexpression (as well as other protein levels)
may vary significantly among the different cancer forms. In addition, cancer patients exhibit a diverse
phenotype even when suffering from the same type of cancer. Consequently, there is probably no greater
niche to apply personalized therapeutics as in cancer treatments. However, such novel treatment
paradigms will involve increasingly complex combinations of various drug substances. The delivery
of such therapeutics via engineered nanoparticles will undoubtedly occur in the near future leading to
highly efficacious and personalized cancer eradication. Experimental determination of both the cancer
cell specific entry site (e.g., GPCRs) and the therapeutic target (e.g., kinases) would perfectly well fit into
such an approach. The size of the sectional area of the overexpressed GPCRs and overexpressed kinases
originating from our statistical analyses support this idea. Confirmation came from an analysis of
an independent data set showing that 275 of 285 investigated individual cancer samples overexpressed
at least one GPCR/kinase pair. It is now possible to conceive a toolbox for personalized medicine
that consists of ligands to all 4 selected GPCRs each coupled to a nanomedicine inhibiting one or
several of the 12 kinases (Figure 7). After testing a cancer patient’s personal GPCR/kinase/cyclin
expression profile, one or several of the GPCR-ligand/nanomedicine conjugates can be considered to
be therapeutics.
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