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Abstract
Soil fumigation remains the standard practice to manage soilborne 
pathogens such as plant-parasitic nematodes, bacteria, and fungi, 
especially in high-value crops. However, increasing regulatory 
pressure due to the inherent and broad-spectrum toxicity and negative 
environmental impact of chemical soil fumigants, its negative effect 
on overall soil health, and increasing demand for organic produce, 
has created a growing interest in biological fumigants. Many plants 
and microorganisms emit volatile compounds, which can potentially 
be used as bio-fumigants. In this mini-review, we summarize the 
current status of nematology studies focused on the development 
of volatile compounds emitted from plants and microorganisms 
as fumigants to control plant-parasitic nematodes. The gap of 
knowledge and challenges of studying volatile compounds are also 
addressed.
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Plant-parasitic nematodes (PPNs) are one of the major 
constraints to crop production, and especially in 
high-value vegetable and fruit crops, they can cause 
significant economic yield loss, estimated to be more 
than US$100 billion annually (Bernard et al., 2017). 
Chemical soil fumigants have been in use for more 
than a century now, and remain the standard practice 
in many crops, especially fruits and vegetables. 
Although many of the early fumigants have been 
banned, the ones that have managed to stay, such as 
1,3-dichloropropene, metam, and chloropicrin, are still 
considered to be the most effective products for the 
control of PPNs (De Cal et al., 2005; Desaeger et al., 
2017; Rosskopf et al., 2005). However, environmental 
and safety concerns are putting more and more 
pressure on these products. Also, the evidence is 
growing of their adverse effect on beneficial soil 
organisms and the rapid resurgence of soilborne 
pathogens, including PPNs, following fumigation 
(Dangi et al., 2017; Martin 2003; Mazzola et al., 2015; 
Raupach and Kloepper, 2000; Sánchez-Moreno et al., 

2010; Watson et al., 2017). As limitations of chemical 
soil fumigants are becoming more apparent, there is a 
need to find new soil fumigation compounds that are 
safer for the soil ecosystem and the environment. In 
recent years, volatile compounds (VCs) emitted from 
plants and microorganisms have been increasingly 
studied as bio-fumigant candidates for the control of 
various soilborne pathogens, including PPNs. Effects 
of VCs on plants, and soilborne pathogens such as 
bacteria and fungi have been reviewed elsewhere (Kai 
et al., 2009, 2016; Schulz-Bohm et al., 2017). Here, 
we summarize the recent studies of VCs that focused 
on PPNs as well as the challenges and knowledge 
gaps that remain in the future application of VCs as 
potential bio-fumigants for nematode management in  
the field.

What are volatile compounds?

Volatile compounds (VCs) are typically small, lipophilic, 
odorous, and low molecular mass compounds that 
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can be evaporated and diffused aboveground and 
belowground through gas- and water-filled pores 
in soil and rhizosphere environments (Effmert et al., 
2012; Insam and Seewald, 2010; Vespermann et al., 
2007). These VCs are considered as the products of 
secondary metabolisms in plants and microorganisms 
such as bacteria and fungi (Dudareva et al., 2013; 
Schulz-Bohm et al., 2017; Vivaldo et al., 2017). The 
emission of VCs from plants and microorganisms 
depends on various factors such as the growth stage, 
nutrient availability, temperature, oxygen availability, pH, 
and soil moisture content (Insam and Seewald, 2010). 
VCs are classified into different chemical classes such 
as alkenes, alcohols, ketones, benzenoids, pyrazines, 
sulfides, and terpenes which have either beneficial or 
harmful effects on other organisms (Schmidt et al., 
2015; Vivaldo et al., 2017).

Plant volatile compounds against 
plant-parasitic nematodes

Plant VCs that are well-known as bio-fumigants for 
the control of PPNs are glucosinolates which emit 
isothiocyanates (ITCs) as VCs under the process of 
biodegradation. ITCs are also the active ingredient  
of chemical fumigants such as metam. Plants 
belonging to the families Brassicaceae, Capparaceae, 
and Caricaceae all produce glucosinolates, and 
many genera within these plant families have been 
studied for their nematicidal effects on PPNs (Kruger 
et al., 2013; Monfort et al., 2007) (Table 1). Following 
maceration and incorporation, glucosinolates will be 
hydrolyzed to release ITCs which have broad-spectrum 
biological activities, against many soilborne pathogens 
and PPNs (Matthiessen et al., 2004; Schroeder and 
MacGuidwin, 2010). Several studies have shown 
the potential of these plants to control PPNs such 
as Meloidogyne incognita, M. javanica, Heterodera 
schachtii, Pratylenchus neglectus, Paratrichodorus 
allius, and Globoderra pallida (Lord et al., 2011; Potter 
et al., 1998; Thierfelder and Friedt, 1995). More than 
200 glucosinolates were identified from 3,500 Brassica 
species and each Brassica species can contain 
various types and amounts of glucosinolates (Clarke, 
2010). Additionally, more than 120 glucosinolates 
were identified from at least 500 non-Brassica plants 
(Kruger et al., 2013). The use of Brassica and non-
Brassica plants as biofumigation crops can be through 
maceration and incorporation of plant parts into the 
soil as green manure, through the use of seed meal, or 
as poor-host winter or summer cover crops (Hafez and 
Sundararaj, 2009; Rahman and Somers, 2005; Smith 
et al., 2004). Biofumigation is usually not as effective as 
chemical fumigation and biofumigant crops can also 

be good hosts to some of the target PPNs (Daryanto 
et al., 2018; Grabau et al., 2017; Monfort et al., 2007). 
The cost of biofumigation is still high and often not 
economically practical for farmers to apply (Clay et al., 
2020; Dutta et al., 2019). There are excellent review 
articles of using Brassica plants as bio fumigation to 
control PPNs that readers can find in the literature 
(Brennan et al., 2020; Dutta et al., 2019).

Recently, many other plant VCs have been shown 
to have potential for controlling PPNs. Dimethyl 
disulfide and 3-pentanol, selected from the broccoli 
volatilome, were able to reduce the mobility of 
M. incognita in vitro and gall incidence and egg 
production on tomato in planta (da Silva et al., 2019; 
Silva et al., 2018). Interestingly, the dry macerates 
of citronella, black pepper, and broccoli worked 
more effectively than the aqueous filtered macerates 
(da Silva et al., 2019). Phenol, 4-methylphenol, 
γ-decalactone, and skatole emitted by castor 
bean cake inhibited egg hatching and mobility and 
caused mortality to second-stage juveniles (J2s) of  
M. incognita. Also, M. incognita J2s exposed to these 
VCs showed reduced infectivity and reproduction on 
tomato (Pedroso et al., 2019). 2-methyl-1-butanol, 
3-methyl-1-butanol, phenyl-ethylalcohol, benzene-
1-ethyl-4-methoxy (p-ethylanisole), and 4-ethyl-1,2 
dimethoxybenzene are the main VCs emitted from 
cottonseed meal and immobilized 95 to 100% of  
M. incognita J2s after 20 days of exposure and 
reduced gall formation and eggs on tomato in a 
greenhouse trial (Estupiñan-López et al., 2017). 
(Z)-3-hexenyl acetate, (Z)-3-hexen-1-ol and erucin 
selected from rucola (Eruca sativa) volatilome killed  
M. incognita J2s in an in vitro test (Aissani et al., 2015).

The VCs ascaridole and citronella, emitted from two 
medicinal plants citronella grass (Cymbopogon nardus) 
and Mexican tea (Dysphania ambrosioides), immobilized 
46 to 79% of M. incognita J2s in vitro and reduced 19 
to 37% of gall formation and 80% of eggs on tomato 
under greenhouse conditions (de Freitas Silva et al., 
2020; Silva et al., 2020). Seeds of papaya fruit (Carica 
papaya) emitted VCs that killed 80% of M. incognita 
J2s in vitro and reduced root galls and nematode 
eggs by 70%. VCs from papaya seed were identified 
as vinyl acetate and phenylacetaldehyde (Gomes et al., 
2020). Certainly, these results indicate that many plants 
can produce VCs that have nematicidal activity, and 
probably many more remain to be identified.

Fungal volatile compounds against 
plant-parasitic nematodes

Several fungal VCs have been evaluated against PPNs,  
mostly Meloidogyne spp. (Table 2). Non-pathogenic 
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Table 1. Overview of studies investigating the effect of plant volatile compounds on 
different plant-parasitic nematodes.

Volatile compound 
producers

Identified volatile 
compounds

Experiment 
conditions

Target plant- 
parasitic nematodes

References

Brassica Glucosinolates and 
isothiocyanates

Field 
biofumigation

Meloidogyne 
incognita, M. javanica, 
Heterodera schachtii, 
Pratylenchus neglectus, 
Paratrichodorus allius

Thierfelder and 
Friedt (1995), 
Potter et al. 
(1998), Lord  
et al. (2011)

White mustard (Sinapis alba) Methyl sulfide, dimethyl 
disulfide

Field 
biofumigation

Tylenchulus 
semipenetrans

Wang et al. 
(2009)

Brassica leaf 2-propenyl 
glucosinolate

Field 
biofumigation

Globodera pallida Lord et al. 
(2011)

Brassica juncea, Azadirachta 
indica, Canavalia ensiformis, 
Mucuna pruriens, and 
Cajanus cajan

Alcohols and esters 
and sulfur containing 
compounds (mainly 
isothiocyanates)

In vitro and 
greenhouse

M. incognita Barros et al. 
(2014)

Camellia seed cake 18 compounds were 
identified

In vitro M. javanica Yang et al. 
(2015)

Eruca sativa (Z)-3-hexenyl acetate, 
(Z)-3-hexen-1-ol and 
erucin

In vitro M. incognita Aissani et al. 
(2015)

Cottonseed meal 2-methyl-1-butanol, 
3-methyl-1-butanol, 
phenyl-ethylalcohol, 
benzene-1-
ethyl-4methoxy 
(p-ethylanisole), 
and 4-ethyl-1,2-
dimethoxybenzene

In vitro and 
greenhouse

M. incognita Estupiñan-
López et al. 
(2017)

Castor bean cake Phenol, 
4-methylphenol, 
γ-decalactone, and 
skatole

In vitro and 
greenhouse

M. incognita Pedroso et al. 
(2019)

Citronella (Cymbopogon 
nardus L.) or black pepper 
(Piper nigrum L.) leaves, 
broccoli shoots (Brassica 
oleracea L.) and Brazil nuts 
(Bertholletia excelsa Bonpl.)

Dimethyl disulfide and 
3-pentanol

In vitro and 
greenhouse

M. incognita Silva et al. 
(2018),  
da Silva et al. 
(2019)

Watercress (Nasturtium 
officinale) leaves and 
passion fruit (Passiflora 
edulis) seeds

26 and 12 compounds 
were identified. 
1-octanol had strong 
nematicidal activity

In vitro and 
greenhouse

M. incognita Silva et al. 
(2020)

Seeds of papaya fruit 
(Carica papaya)

Vinyl acetate, 
phenylacetaldehyde 
and benzylacetonitrile

In vitro and 
greenhouse

M. incognita Gomes et al. 
(2020)

Cymbopogon nardus and 
Dysphania ambrosioides

Ascaridole and 
citronellal

In vitro and 
greenhouse

M. incognita de Freitas Silva 
et al. (2020)
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Table 2. Overview of studies investigating the effect of fungal volatile compounds on 
different plant-parasitic nematodes.

Volatile compound 
producers

Identified volatile 
compounds

Experiment 
conditions

Target plant-parasitic 
nematodes

References

Muscodor albus Unidentified In vitro Meloidogyne chitwoodi,  
M. hapla, Paratrichodorus 
allius, and P. penetrans

Riga et al. 
(2008)

Trichoderma sp. YMF 
1.00416

1β -vinylcyclopentane-
1α ,3α -diol, 6-pentyl-
2H-pyran-2-one and 
4-(2-hydroxyethyl) phenol

In vitro Bursaphelenchus 
xylophilus

Yang et al. 
(2012)

Fusarium oxysporum 
and Fusarium solani

Dioctyl disulfide 
(2-propyldecan-1-ol or 
1-(2-hydroxyethoxy) 
tridecane); caryophyllene; 
4-methyl-2,6-di-tert-
butylphenol; and 
acoradiene

In vitro and 
greenhouse

M. incognita Freire et al. 
(2012)

Fusarium oxysporum Unidentified In vitro M. exigua Costa et al. 
(2015)

Endophytic fungus 
Daldinia cf. concentrica

3-methyl-1-butanol, 
(±)-2-methyl-1-butanol, 
4-heptanone, and isoamyl 
acetate,

In vitro and 
greenhouse

M. javanica Liarzi et al. 
(2016)

Epicoccum nigrum 
and Schizophyllum 
commune

Alcohols, esters, 
terpenes, and ketones

In vitro and 
greenhouse

M. incognita Pimenta et al. 
(2017)

Fusarium oxysporum 
strain 21

More than 28 volatile 
organic compounds were 
identified.

In vitro and 
greenhouse

M. incognita Terra et al. 
(2017)

Fusarium oxysporum 
strain 21

2-methylbutyl acetate, 
3-methylbutyl acetate, 
ethyl acetate, and 
2-methylpropyl acetate

In vitro and 
greenhouse

M. incognita Terra et al. 
(2018)

Fusarium oxysporum 
and Fusarium solani

23 compounds belong to 
esters, alcohols, phenols, 
aldehydes, carboxylic 
acids and sesquiterpenes

In vitro and 
greenhouse

M. incognita Estupiñan-
López et al. 
(2018)

Fusarium oxysporum not causing disease to plants 
have been used as biocontrol agents due to their 
suppression of plant pathogens such as Fusarium wilt 
(Fusarium oxysporum) and Verticillium wilt (Verticillium 
dahliae) on a wide host range including various 
vegetables, fruit, and ornamental trees (Mulero-
Aparicio et al., 2019; Sajeena et al., 2020). Until now, 
VCs emitted from Fusarium spp. have been the 
most extensively studied. Among 35 fungi isolated 

from the coffee plant rhizosphere, including from 
Meloidogyne exigua eggs and egg masses on coffee 
roots, Fusarium oxysporum isolates 20a and 21 and 
an F. solani isolate caused 88 to 96% M. incognita J2 
mortality. Also, M. incognita J2s lost their infectivity 
when exposed to F. oxysporum isolate 21 VCs which 
were identified as dioctyl disulfide; caryophyllene; 
4-methyl-2,6-di-tert-butylphenol; and acoradiene 
(Freire et al., 2012). Another F. oxysporum isolate 26 
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isolated from M. exigua egg masses caused 94% 
immobility and 27% mortality to M. exigua J2s in vitro. 
However, the VCs were not identified in this study 
(Costa et al., 2015). In the studies of Terra et al. (2017, 
2018), Fusarium oxysporum strain 21 was used to 
test the VCs effectiveness against M. incognita. The 
results indicated that VCs from Fusarium oxysporum 
strain 21 immobilized 100% of M. incognita J2s 
and reduced the infectivity of M. incognita J2s and 
reproduction by 70 and 65%, respectively. More 
than 28 VCs were identified in which 2-methylbutyl 
acetate, 3-methylbutyl acetate, ethyl acetate, 
and 2-methylpropyl acetate killed 80 to 100% of  
M. incognita J2s. Also, 3-methylbutyl acetate and  
ethyl acetate inhibited 90% of M. incognita 
egg hatching (Terra et al., 2017). However, only 
2-methylbutyl acetate reduced gall formation by 22% 
compared to the control. Estupiñan-López et al. 
(2018) showed that VCs emitted from F. oxysporum 
isolate F63 and F. solani isolate F12 isolated from  
M. paranaensis egg masses caused 100% and 40 to 
70% of immobility to M. incognita J2s in vitro at 25°C 
in the dark for six days, respectively. More than 50% 
of gall and egg reduction has been observed when 
M. incognita J2s were exposed to water containing 
fungal VCs prior to inoculation to tomato plants.

Trichoderma spp. are well-known as biocontrol 
agents of many soilborne pathogens and have 
been studied as biocontrol agents of PPNs as well 
(Reino et al., 2008; Sharon et al., 2011). However, 
little is known about VCs from Trichoderma spp. VCs 
from the unidentified Trichoderma sp. YMF 1.00416 
isolated from soil in Yunnan, China were tested 
against Bursaphelenchus xylophilus in vitro, where 
41.53% of B. xylophilus were killed (Yang et al., 2012). 
1β -vinylcyclopentane-1α ,3α -diol, 6-pentyl-2H-pyran-
2-one and 4-(2-hydroxyethyl) phenol were identified 
as the main VCs from Trichoderma sp. YMF 1.00416. 
Among that, 6-pentyl-2H-pyran-2-one was toxic to  
B. xylophilus in 48 hr at 200 mg/L.

The VCs emitted from the endophytic fungus, 
Muscodor albus, isolated from cinnamon tree 
(Cinnamomum zeylanicum) caused more than 80% 
mortality to J2s of M. chitwoodi, Paratrichodorus 
allius, and Pratylenchus penetrans after 72 hr of 
exposure in vitro (Riga et al., 2008). VCs emitted 
from the endophytic fungus Daldinia concentrica 
(Xylariaceae) have shown the ability to antagonize 
various fungal pathogens (Liarzi et al., 2016). Volatile 
compounds from Daldinia cf. concentrica isolated 
from an olive tree (Olea europaea L.) in Israel also 
reduced viability of M. javanica J2s by 67%. A 
mixture of 3-methyl-1-butanol, (±)-2-methyl-1-butanol, 
4-heptanone, and isoamyl acetate (1:1:2:1 ratio) based 

on the VCs emitted from Daldinia cf. concentrica 
demonstrated a 99% reduction of M. javanica J2s 
viability and 87% inhibition of egg hatching. Soil 
application of this mixture showed a reduction in 
root galls and egg reproduction on tomato in a 
greenhouse trial (Liarzi et al., 2016). Another study 
showed that 28 fungal isolates from decaying wood 
released toxic VCs that immobilized from 77 to 100% 
of M. incognita J2s (Pimenta et al., 2017). Isolated 
fungi included Epicoccum nigrum, Schizophyllum 
commune, Pestalotiopsis sp., Phanaerochaete chry
sosporium, Nigrospora sp., and Lasiodiplodia sp. and 
20 VCs were identified, including alcohols, esters, 
terpenes, and ketones.

Bacterial volatile compounds against 
plant-parasitic nematodes

A wide diversity of bacterial VCs have been 
investigated for the suppression of plant pathogens 
(Audrain et al., 2015; Bennett et al., 2012). However, 
few studies focused on managing PPNs (Table 3).  
Gu et al. (2007) investigated VCs of 200 bacterial 
isolates affecting B. xylophilus. Of these, seven 
isolates had a negative effect on B. xylophilus mobility 
within 24 hr. Among the 20 identified VCs, phenol, 
2-octanol, benzaldehyde, benzeneacetaldehyde, 
decanal, 2-nonanone, 2-undecanone, cyclohexene, 
and dimethyl disulfide had nematicidal activity on  
B. xylophilus. Similarly, Huang et al. (2010) showed 
that VCs from Bacillus megaterium YFM3.25 inhibited 
egg hatching and killed M. incognita J2s after 24 hr 
of exposure. Also, these VCs reduced gall formation 
and egg mass production in a dose-dependent 
manner. Five bacterial isolates Pseudochrobac
trum saccharolyticum, Wautersiella falsenii, Proteus 
hauseri, Arthrobacter nicotianae, and Achromobacter 
xylosoxidans emitted VCs that were toxic to  
M. incognita in vitro within 24 hr. Of the VC identified 
in these bacterial isolates, S-methyl thiobutyrate, 
butyl isovalerate, ethyl 3,3-dimethylacrylate, and 
1-methoxy-4-methylbenzene showed more than 
90% nematicidal activity against M. incognita  
(Xu et al., 2015). VCs from Pseudomonas putida 
BP25 were tested against Radopholus similis and 
showed more than 92% mortality (Agisha et al. 2019; 
Sheoran et al., 2015). Many VCs were identified 
such as 1-undecene; disulfide dimethyl; pyrazine, 
methyl-pyrazine, 2,5-dimethyl-; isoamyl alcohol; 
pyrazine, and methyl-; dimethyl trisulfide. but the 
effect of the individual VCs on Radopholus similis 
was not tested. Cheng et al. (2017) also tested the 
adverse effect of VCs from Paenibacillus polymyxa 
KM 2501 on M. incognita. This study showed that 
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Table 3. Overview of studies investigating the effect of bacterial volatile compounds 
on different plant-parasitic nematodes.

Volatile compound 
producers

Identified volatile 
compounds

Experiment 
conditions

Target plant-parasitic 
nematodes

References

Bacillus simplex, 
B. subtilis, B. 
weihenstephanensis, 
Stenotrophomonas 
maltophilia and Serratia 
marcescens

Terpineol, 
benzeneethanol, 
propanone, phenyl 
ethanone and nonane

In vitro B. xylophilus Gu et al. 
(2007)

Bacillus megaterium 
YFM3.25

Benzeneacetaldehyde, 
2-nonanone, decanal, 
2-undecanone and 
dimethyl disulphide,phenyl 
ethanone, nonane, phenol, 
3,5-dimethoxytoluene, 
2,3-dimethyl- 
butanedinitrile and 
1-thenyl-4-methoxy- 
benzene

In vitro and 
greenhouse

M. incognita Huang et al. 
(2010)

Pseudomonas putida, 
Microbacterium 
sp., Bacillus 
methylotrophicus, 
Bacillus pumilus and 
Bacillus pumilus

Unidentified In vitro M. exigua Costa et al. 
(2015)

Pseudomonas putida 
BP25

As 1-Undecene; Disulfide 
dimethyl; Pyrazine, 
methyl-Pyrazine, 
2,5-dimethyl-; Isoamyl 
alcohol; Pyrazine,methyl-; 
Dimethyl trisulfide

In vitro Radopholus similis Sheoran et 
al. (2015), 
Agisha et al. 
(2019)

Pseudochrobactrum 
saccharolyticum, 
Wautersiella falsenii, 
Proteus hauseri, 
Arthrobacter nicotianae, 
and Achromobacter 
xylosoxidans

Acetophenone, 
S-methyl thiobutyrate, 
dimethyl disulfide, ethyl 
3,3-dimethylacrylate, 
nonan-2 one, 1-methoxy-
4-methylbenzene, and 
butyl isovalerate

In vitro M. incognita Xu et al. 
(2015)

Paenibacillus polymyxa 
KM 2501

Acetone, 2-heptanone, 
benzaldehyde, 
2-nonanone, 2-nonanol, 
cyclopentasiloxane, 
decamethyl-, 
11-dodecen-2-one, 
2-decanone, 2-decanol, 
4-acetylbenzoic acid, 
furfural acetone, 
2-undecanone, Acetic 
acid, [bis[(trimethylsilyl)oxy]
phosphinyl]-, trimethylsilyl 
ester, 2-undecanol

In vitro M. incognita Cheng et al. 
(2017)
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the most active VCs to control M. incognita J2s were 
furfural acetone, 2-undecanol, 4-acetylbenzoic, and 
2-decanol acid. Zhai et al. (2018) showed that VCs 
from Pseudomonas putida 1A00316 killed almost 
100% of M. incognita J2s after 72 hr of exposure. 
From the VC profiles, dimethyl disulfide, 1-undecene, 
2-nonanone, 2-octanone, (Z)-hexen-1-ol acetate, 
2-undecanone, and 1-(ethenyloxy)-octadecane all 
inhibited egg hatching of M. incognita, and dimethyl 
disulfide, 2-nonanone, 2-octanone, (Z)-hexen-1-ol 
acetate, and 2-undecanone also showed nematicidal 
activity against M. incognita J2s. In another report, 
VCs emitted from Bacillus sp., Paenibacillus sp. and 
Xanthomonas sp. isolated from soil in a rice field 
caused more than 99% mortality of M. graminicola 
J2s in vitro and reduced gall incidence and egg 
production on rice in a greenhouse trial (Bui et al., 
2020). However, VC identification from these bacterial 
isolates was not conducted in this study.

The gap of knowledge and  
challenges

There is no standard procedure for testing the effects 
of VCs on PPNs in vitro. Each study has developed its 
own device where VCs were kept in closed conditions 
together with PPNs (two- or three-compartment petri 
dish, microtube in a vial, or microtube in a closed 
box). Each design has contributed a valuable test 
system to the ‘proof of concept’ of the potential 
use of VCs as bio-fumigants. However, the results 
might be different when VCs from one source are 
tested in different designs. Up to now, most of the 
studies used a two- or three-compartment petri 
dish for testing the microbial VCs in vitro (Kai et al., 
2016). The advantages of this experimental design 
are simple, inexpensive, and separating the VC 

emitters and receivers. However, this design also 
created non-natural conditions that alternated the 
metabolisms of the tested microorganisms (Kai  
et al., 2016). For example, the high concentration of 
CO2 accumulation, 10 times higher than the ambient 
concentration (20°C, 84 μ mol m−2s−1 light, 16 h/8 h 
light/darkness), was the most obvious observation 
in this design (Kai and Piechulla, 2009). Therefore, 
standardizing in vitro testing conditions to evaluate 
the efficacy of VCs is needed. Also, many of the 
studies did not look at the recovery of nematodes, 
where following the exposure of VCs, the PPNs are 
removed from the exposure of VCs and their recovery 
in the absence of VCs is observed. Also, whether the 
efficacy is due to an individual VC or a blend of VCs, 
is often not known.

It is also very important to establish whether VCs 
are phytotoxic or not. Many researchers have shown 
that VCs from different microorganisms can actually 
promote plant growth (Hung et al., 2013; Lee et al., 
2014; Nieto-Jacobo et al., 2017; Park et al., 2015; Ryu 
et al., 2003; Tahir et al., 2017), whereas other studies 
have shown that VCs from various microorganisms 
can cause phytotoxicity (Blom et al., 2011; Hung 
et al., 2013; Lee et al., 2014; Vespermann et al., 
2007; Wenke et al., 2012). Recently, Bui et al. (2019) 
indicated that bacterial VCs inhibited rice germination 
in vitro but not in planta, probably because the 
concentration of VCs was higher in in vitro conditions 
than in in planta conditions. This obviously applies 
to nematicidal efficacy as well, as in vitro studies 
typically employ much higher concentrations than in 
planta studies. Therefore, it is important to keep in 
mind that in vitro studies, no matter how promising, 
only indicate potential, and by no means will 
guarantee that a certain compound will be efficacious 
in a greenhouse or field. Also, VCs that are phytotoxic 
are not necessarily bad and may have potential as 

Pseudomonas putida 
1A00316

Dimethyl disulfide, 
1-undecene, 2- nonanone, 
2-octanone, (Z)-hexen-1-
ol acetate, 2-undecanone, 
and 1-(ethenyloxy)- 
octadecane. Of these, 
dimethyl disulfide, 
2-nonanone, 2-octanone, 
(Z)-hexen-1-ol acetate, 
and 2-undecanone

In vitro M. incognita Zhai et al. 
(2018)

Bacillus sp., 
Paenibacillus sp. and 
Xanthomonas sp.

Unidentified In vitro and 
greenhouse

M. graminicola Bui et al. 
(2020)
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herbicidal soil fumigants, as long as they are applied 
sufficiently long before the crop is planted.

Although VCs from plants and microorganisms 
may constitute a more sustainable approach and 
reduce the use of synthetic chemical pesticides, 
potential adverse effects of VCs on human health, 
the environment and the soil ecosystem also need 
to be addressed, as biological products are not by 
definition safer than chemical products. For instance, 
Bahlai et al. (2010) showed that organic approved 
insecticides in Canada (Superior 70 oil® (UAP) and 
Botanigard® (Laverlam)) had more adverse effects on 
natural enemies (Asian ladybeetle Harmonia axyridis 
and insidious flower bug Orius insidiosus) in the 
laboratory and field conditions than novel synthetic 
insecticides. However, as plants and microorganisms 
have been co-existing with humans and emitting VCs 
for millions of years, it is more likely that VCs emitted 
from plants and microorganisms are safe for human 
health, the environment, and the soil ecosystem. 
For instance, the effects of VCs emitted from the 
fungus Muscodor albus on human health and the 
environment were studied and no harmful potential 
was detected (Tilocca et al., 2020).

The mechanisms of VC emission from micro-
organisms are not clearly understood yet, but some 
have suggested that VCs are waste products in the 
microbial lifecycle (Schulz-Bohm et al., 2017). Cheng 
et al. (2016) and Ossowicki et al. (2017) demonstrated 
that the production of VCs was triggered by the 
GaC-A/GaC-S two-component regulatory system 
in bacteria. New biotechnology techniques such 
as gene editing may help to better understand 
the mechanisms of VC emission, and potentially 
to manipulate microbes to more efficiently release 
beneficial VCs.

Microbial VCs have also been reported to induce 
plant resistance to pathogens (He et al., 2006; 
Huang et al., 2012; Kottb et al., 2015; Lee et al., 2012; 
Naznin et al., 2014; Park et al., 2013; Raza et al., 
2016). In these studies, the mechanism of induced 
resistance by microbial VCs involves salicylic acid 
or jasmonic acid/ethylene signaling pathways, si-
milar to the mechanisms of induced resistance 
by plant growth-promoting microbes in dicot and 
monocot plants (Balmer et al., 2013; Pieterse et al., 
2014). Nonetheless, the exact mechanisms of VCs 
inducing plant resistance, or their nematicidal mode 
of action, against PPNs are still unknown. Cheng 
et al. (2017) suggested that VCs could kill PPNs by 
affecting the nervous system, surface coat, intestine, 
pharynx, or other tissues of PPNs. Likely, different 
VCs have different modes of action as well, and 
while certain VCs may be nematode-specific, other 

VCs like isothiocyanates (ITCs), which are produced 
by glucosinolate-containing plants, are identical to 
chemical fumigants like metam, and have a broad-
spectrum biocidal activity, with a multi-site mode of 
action.

Currently, several VCs have been shown to be 
able to control PPNs in the laboratory and sometimes 
greenhouse conditions. However, field application of 
VCs is still in its infancy (Farag et al., 2013), and only 
a few studies have demonstrated success in applying 
VCs to induce plant resistance against bacterial 
pathogens and insects on cucumber and pepper 
under field conditions (Choi et al., 2014; Song and 
Ryu, 2013). Even if efficacy can be demonstrated in 
the field, many hurdles remain, not in the least the 
need to produce or synthesize commercial and cost-
effective quantities of VCs. In addition, there will also 
be a need for technology and equipment to apply 
VCs, similar to the equipment that is currently used to 
apply chemical fumigants.

Conclusions

Evidence is growing that plant and microbial volatile 
compounds have potential as a more environmentally 
friendly and ecosystem sustainable alternative to 
chemical soil fumigants. An increasing number of VCs 
emitted from plants and microorganisms are studied 
and have shown nematicidal activity in in vitro and in 
greenhouse conditions. Field studies are still few and 
far between, and also the mechanisms of VC emission 
as well as their effects on host plants, plant-parasitic 
nematodes, the ecosystem, the environment, and 
human health are still not well-understood. While we 
do not claim to have covered all current knowledge, 
we hope that this review of VCs with regard to PPNs 
will help to stimulate more research into their use as a 
potential alternative source of soil fumigants.
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