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Glioblastoma multiforme (GBM) is a glioma in IV stage, which is one of the most common primary malignant brain tumors in
adults. GBM has the characters of high invasiveness, high recurrence rate, and low survival rate and with a poor prognosis. GBM
implicates various genetic changes and epigenetic and gene transcription disorders, which are crucial in developing GBM. With
the progression and enhancement of high-throughput sequencing technologies, the acquirement and administering approaches
of diverse biological omics data on distinctive levels are developing more advanced. However, the research of GBM with
multiomics remains largely unknown. We identified GBM-related molecular subtypes by integrated multiomics data and
exploring the connections of gene copy number variation (CNV) and methylation gene (MET) change data. The expression of
CNV and MET genes was examined through cluster integration analysis. The present study confirmed three clusters (iC1, iC2,
and iC3) with distinctive prognosis and molecule peculiarities. We also recognized three oxidative stress protecting molecules
(OSMR, IGFBP6, and MYBPH) by contrasting gene expression, MET, and CNV in the three subtypes. OSMR, IGFBP6, and
MYBPH were differentially expressed in the clusters, suggesting they might be recognized as characteristic markers for the
three clusters in GBM. Through integrative investigation of genomics, epigenomics, and transcriptomics, we offer novel visions
into the multilayered molecules of GBM and facilitate the accuracy remedy for GBM sufferers.

1. Introduction

Glioblastoma multiforme (GBM) is one of the central ner-
vous system’s most common and highly malignant primary
tumors [1]. The incidence rate of GBM in men is higher
than that in women, with a tendency for family aggregation
[2]. Previous studies suggest that the average onset of GBM
is about 60 years old; however, the patients showed a
younger trend in recent years. The common symptoms of
GBM are progressive somatosensory and motor dysfunction,
headache, dizziness, and convulsions [3, 4]. At present,
surgical resection is the standard method for treating
GBM. Postoperative temozolomide concurrent radiotherapy
and chemotherapy followed by temozolomide oral chemo-
therapy were the primary treatment for GBM. However,
even after active treatment, the prognosis of GBM is still

inferior [5]. In recent years, the development of high-
throughput technology and bioinformatics analysis has
dramatically increased the amount of biological data for
research and provided new ideas for exploring the etiology,
pathogenesis, and new drug treatment targets of GBM [6, 7].

High throughput technology is applied to various
“omics,” mainly including (1) genomics, which is used to
detect DNA mutations; (2) transcriptomics, which is used
to detect mRNA expression; (3) epigenomics which studies
the effect of DNA modification on mRNA expression with-
out changing the sequence; (4) proteomics, which is used
to detect protein components; and (5) metabonomics, used
to determine the level of metabolites [8]. Omics technology
could evaluate and integrate omics data of tissues and cells,
accurately exhibit the biological process of disease, and
facilitate the realization of personalized precision medicine
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[9]. Genomic change resulting from gene CNV and single-
nucleotide mutations (SNPs) might accelerate the progres-
sion of cancers [10]. CNV plays a crucial supervisory role
in GBM development, and transcriptional dysregulation
resulting from copy number alterations was future actions
in GBM development [11]. In addition, exploration of
DNA MET has validated the massive heterogeneousness of
epigenome obstacles in GBM and various cancers. Emerg-
ing evidence shows that DNA methylation facilitates het-
erogeneous biologic activities and is implicated in GBM

development. The multiomics profiles enable it feasible to
carry out an integrated exploration based on genomics,
epigenomics, and transcriptomics to enhance GBM prog-
nosis [12].

In this study, we evaluated gene expressions using geno-
mic and epigenetic patterns using a multi-omics combina-
tion. We also determined distinctive molecular subtypes
markedly related to GBM outcome. Three oxidative stress-
related prognostic biomarkers for patients with GBM were
identified based on CNV, MET, and gene expressions.

CNV
MET

D
en

sit
y

–1.0 –0.5 0.0 0.5
0

1

2

3

4

1.0

(a)

615 50 1266

MET

CNV

(b)

C2
1:

10
C1

3:2
3

CX:28

C18:30

C20:32

C22:32

C15:37

C8:42
C10

C14C9
46

4849

(c)

C6 7

C10 9C1
633

C21:1

C9:1
C11:2
C17:2

C3:2C5:2

C7:2

C2:4

(d)

C
ou

nt

1.00

0.75

0.50

0.25

0.00

TSS1500
TSS200

Body

5’ UTR
3’ UTR
1st Exon

Type

(e)

1.00

0.75

0.50

0.25

0.00

C
ou

nt

S_Shore
S_Shelf

N_Shore
N_Shelf
Island

Type

(f)

Figure 1: Correlation analysis for MET-Gs and CNV-Gs. (a) Correlation analysis between MET-Gs and CNV-Gs in a z-score distribution.
(b) CNV-G and MET-G overlap. (c) Distribution of CNV-Gs on chromosomes. (d) Distribution of MET-Gs on chromosomes. (e) The
proportional frequency of CpG sites in the promoter based on the existence of CpG island. (f) The proportional frequency of CpG sites
in the promoter is based on their distance from genomic regions.
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Figure 2: Continued.
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2. Methods

2.1. Data Origination. R software was employed to analyze
the clinical data, RNA-seq, methylation, and CNV from
The Cancer Genome Atlas (TCGA) GBM cohorts. At the
same time, SNV data from TCGA GBM is also obtained.
We next sought datasets about the GBM miRNA expres-
sions from the Gene Expression Omnibus (GEO) database.
The microarray dataset GSE4271, including GBM clinical
patients, was selected for our subsequent analysis.

2.2. Data Processing. About the arrangement of CNV probes,
two intervals with 50% overlap were regarded as equivalent,
whereas the number of coverages probes less than five
intervals was uninvolved. They were mapping CNV probes
to corresponding genes using GTF of GENCODE. The
GRh38’s Gencode.v22 was used for CNV intervals mapping
to the related gene. About RNA-seq statistics, the low
expression genes in each trial were uninvolved (the propor-
tion of samples with 0 per kilobase of transcript per million
mapped reads (FPKM) per million mapping reads to the
total sample was <0.5), whereas the gene set with advanced
expression was reserved. About chip statistics, directly load
the standardized expression profile (EXP) matrix and reach
the probe with the gene consistent with the note of the
platform. The median level of multiple probes matched to
a similar gene was established as the gene expression,
whereas probes matched to compound genes were detached.
For the methylation data, exceeding 70% of the trials existed
omitted spots, which were replaced with values created
through the KNN (k-Nearest Neighbor) approach. Using
GRh38’s Gencode.v22 comment preserved TSS probes of

200 bp downstream and 2 kb upstream and further recorded
their genes.

2.3. Detection of CNV-G and MET-G Gene Set. This study
used the Pearson correlation coefficient (R) to evaluate the
correlation among RNA-seq, DNA methylation, and CNV.
The correlation coefficient is transformed to a Z value con-
ferring to ln ðð1 + rÞ/ð1 − rÞÞ. The genes that scored P <
0:05 in the correlation coefficient assessment established a
gene set drastically associated with (CNV genes) CNV-Gs
and another gene set associated with MET-Gs (methylation
genes).

2.4. The Molecular Subtype Identification. The iClusterPlus
package and nonnegative matrix factorization (NMF) in R
software were used to discover the genomics-based molecu-
lar subtypes between the expressions of CNV-G/MET-G
gene sets. To observe the association between the CNV-G/
MET-G gene sets and phenotypes, the trials were clustered
by the NMF technique. The clinical characteristics of the
samples and the connection between the molecular subtypes
were studied. Cluster K was established as 2-10. According
to the correlation coefficient, the ideal clusters of molecular
subgroups were established based on CNV-Gs and molecu-
lar subgroups based on MET-Gs.

2.5. Association between Molecular Subtypes and Tumor
Microenvironment. TIMER is an approach used to systema-
tically evaluate the clinical effect of diverse immune cells on
different tumors. The CIBERSORT method was applied to
assess the distribution of immune cells in all tumor trials,
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Figure 2: CNV-Gs and MET-Gs gene set-based molecular subtype detection. (a) NMF clustering consequences for CNV-Gs. (b) NMF
clustering consequences for MET-Gs. (c) The survival analysis for CNV-G subclasses. (d) The survival analysis for MET-G subclasses.
(e) The overlapped subtypes recognized from CNV-G and MET-G clusters.
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and when the samples with P < 0:05 were elected for corre-
lation analysis between immune cells and target genes.

2.6. Exploration of Genetic Alterations in Molecular Subtypes.
Genetic differences in distinctive molecular subtypes were
assessed. DESeq2 was applied to explore variances in gene
expressions between diverse molecular subtypes, and two-
fold difference criteria plus FDR < 0:05 was chosen as the
threshold to distinguish genetic differences across molecular
subtypes.

2.7. Association between Genomic Variation and Molecular
Subtypes. To uncover the association between genomic
deviation and molecular subtypes, TCGA-GBM statistics
were examined. Fisher’s exact test was applied to examine
the differentially expressed genomic. P < 0:05 was chosen
to detect mutational variances.

2.8. Statistical Analysis. Spss20.0 statistical analysis software
was used for data analysis, and the Pearson linear correlation
test was applied to examine the correlation. Log-rank and
Kaplan–Meier (KM) tests were used for survival analysis.
P < 0:05 was considered statistically significant.

3. Results

3.1. Comparison of CNV-Gs and MET-Gs. 664 CNV-Gs and
1316 MET-Gs were identified using correlation analysis with
P < 0:05. As shown in Figure 1(a), the correlation of CNV-
Gs markedly transferred to the right, whereas the correlation

of MET-Gs transferred to the left. Furthermore, the associa-
tion between CNV and gene expressions was evaluated, and
we observed the overall correlation coefficient > 0, implying
that CNV was positively connected to gene expressions
(Figure 1(a)). A comparison of CNV-Gs and MET-Gs gene
sets observed 50 overlapping genes (Figure 1(b)). We found
a notable difference in the distribution of CNV-Gs on chro-
mosomes 1 and 2 (Figure 1(c)). Similarly, we also observed a
marked difference in the MET-G distribution on chromo-
somes 1 and 2 (Figure 1(d)). We observed marked differ-
ences in the frequency of DNA methylation in vivo and at
the transcription initiation site (Figure 1(e)). In addition,
most MET-Gs were observed in the open sea regions than
in CpG islands (P < 0:001, Figure 1(f)).

3.2. CNV-G and MET-G Gene Set-Based Molecular Subtype
Detection. To distinguish molecular subtypes that exposed
the multiomics forms of the CNV-G and MET-G gene sets,
the genomic statistics of CNV, MET, and RNA expressions
were integrated through the iCluster. Three clusters (iC1,
iC2, and iC3) were identified for CNV-Gs by the NMF
method (Figure 2(a)). Similarly, three ideal clusters (iC1,
iC2, and iC3) were obtained for MET-Gs (Figure 2(b)). As
shown in Figure 2(c), marked prognostic changes were
detected in the three CNV-G subtypes. Moreover, the three
MET-G subtypes detected marked prognostic differences
(Figure 2(d)). Most importantly, we found an apparent over-
lap among the three CNV-G subtypes and three MET-G
subtypes (Figure 2(e)).
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Figure 3: Integrated cluster sampling of CNV, EXP, and MET. (a) Heatmap of the expression of subtypes CNV-Gs and MET-Gs. (b) The
difference of OS time between the three subtypes. (c) The difference of OS time between iC1 and iC2 subtypes. (d) The difference of OS time
between iC1 and iC3 subtypes. (e) The difference of OS time between iC2 and iC3 subtypes.
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3.3. MET, CNV, and EXP Data Were Integrated into Cluster
Samples. By clustering the omics data, we obtained three
subtypes (iC1, iC2, and iC3) with noticeably altered OS
times. A heatmap was screened to exhibit the RNA gene
expression of CNV-G and MET-G clusters (Figure 3(a)).
Moreover, it is determined that the OS time of the three sub-
types (iC1, iC2, and iC3) was considerably different, and iC3
had the worst OS among the three clusters (Figure 3(b)).
Figure 3(c) shows iC2 had a markedly better OS than iC1.
Furthermore, iC1 had a markedly better OS than iC3
(Figure 3(d)). iC2 had a markedly better OS than iC3
(Figure 3(e)). These results implied that iC2 had the best
OS time in the three subtypes.

3.4. DNA CNV Abnormalities Were Accordant with MET
Abnormalities. To assess the association between CNV and
methylation aberrations, CNV > 0:3 was considered gain,
CNV < −0:3 was considered loss, the β value of MET > 0:8
was classified as MetHypo, and MET < 0:2 was classified as
MetHypo. As shown in Figure 4(a), a marked correlation

existed between CNV loss and gain. However, the correlation
between Gain and MetHype/MetHypo, loss, and MetHyper/
MetHypo was not statistically different (Figures 4(b)–4(e)).
In addition, MetHypo is negatively connected to methyper
(Figure 4(f)).

3.5. Analysis of Tumor Immune Cell Infiltration in Molecular
Subtypes. The CIBERSORT algorithm was applied to
compare tumor immune cell infiltration in subtypes and
determine the proportions of the tumor-infiltrating immune
cells in distinctive subtypes (Figure 5(a)). The percentage
of tumor immune cell infiltration in tissue samples from
patients with GBM was determined (Figure 5(b)). Most
importantly, we observed an increased percentage of neu-
trophils in the iC2 subtype compared to other subtypes
(Figure 5(c)).

3.6. Molecular Characteristics of the Three GBM Subtypes.
According to the findings of iCluster, gene expression
changes between the three subtypes with prognostic
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Figure 4: DNACNV abnormalities were accordant withMET abnormalities. (a) Frequency scattering of gain and loss in CNV. (b) Frequency
scattering of gain and MetHyper in CNV. (c) CNV gain and MetHypo distribution (d) CNV loss and MetHyper distribution and MetHypo.
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distinctions were compared, and 564 DEGs were identi-
fied, followed by the removal of low-expressed genes
(Figure 6(a)). The methylation incidence of DEGs in iC2
was markedly enhanced compared with that of iC1 and
iC3, implying that methylation exhibited specific impacts
on GBM prognosis (Figure 6(b)). When assessing the rela-

tionship between gene expression, MET, and CNV, we
observed that the gene expression of DEGs in trials with
MET was markedly enhanced (Figure 6(c)). The GO enrich-
ment evaluation showed that the DEGs were markedly
enriched in an extracellular matrix organization, angiogene-
sis cell differential, and regulation of nervous development
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Figure 5: Analysis of tumor immune cell infiltration in molecular subtypes. (a) Comparison of tumor immune cell infiltration in molecular
subtypes. (b) The proportion of infiltrating immune cells in tissue samples. (c) Immunosignature scores of immune cells in molecular
subtypes.

8 Oxidative Medicine and Cellular Longevity



(Figure 6(d)). Similarly, the enriched KEGG pathways of the
DEGs are demonstrated in Figure 6(e).

3.7. Association between Gene Expressions and CNV/MET.
To explore the association between gene expressions and
CNV-Gs/MET-Gs, the survival analysis was performed to
recognize the differentially expressed genes among three
subtypes. Three genes, OSMR, MYBPH, and IGFBP6, were
markedly connected to prognosis. The expression of
MYBPH and the IGFBP6 gene were negatively correlated
with MET (Figures 7(b) and 7(d)). However, there was no

difference between the expression of MYBPH and IGFBP6
genes and CNV (Figures 7(a) and 7(c)). MYBPH and
IGFBP6 were markedly advanced in iC2 with the wickedest
prognosis than iC1 and iC3 (Figures 7(e) and 7(f)). In
addition, we uncovered that the expression of MYBPH and
IGFBP6 expression was appreciably connected to tumor
prognosis (Figures 7(g) and 7(h)).

3.8. Mutation Spectrum of the Three GMB Subtypes. We
studied whether the mutation spectrum of the three GBM
subtypes is different. To detect the top 50 genes, the
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mutation spectrum of different subtypes was evaluated
(Figures 8(a) and 8(b)). Through evaluating the mutation
spectrum variances, we uncovered that the gain/loss of
CNV in iC2 was much more marked higher than in iC1
and iC3 subtypes (Figure 8(c)). By comparing the iC2 sub-
type with the other two subtypes, we found that TP53,
PTEN, NF1, EGFR, AHNAK TTN, MUC16, and AHNAK2
were the top eight common mutant genes (Figures 8(d)
and 8(e)).

4. Discussion

Glioblastoma multiforme (GBM) belongs to grade IV glioma
and accounts for 12% to 15% of all intracranial tumors. It
has the highest malignant degree and the worst prognosis
in gliomas, and the 5-year survival rate is only 5% [13].
Similar to other malignant tumors, glioblastoma has the
characteristics of high invasion, resistance to radiotherapy
and chemotherapy, immunosuppression in the microenvi-
ronment, and a high recurrence rate [14]. Operation com-
bined with radiotherapy and chemotherapy is the standard
treatment for GBM [15]. However, despite the increasing
understanding of glioblastoma, there is still a lack of practi-
cal progress in treating this disease. Therefore, there is an
urgent need to make new progress in studying the exact
molecular mechanisms and reliable therapeutic targets of
GBM.

Emerging evidence indicates that cancer results from
abnormal genetic and epigenetic events [16]. The epigenetic
mechanism is a stable genetic feature that changes in DNA
sequence could not explain [17]. Like histone modifica-
tion, DNA methylation does not affect the genome DNA
sequence but adds a methyl (CH3) group to CG dinucleotide
cytosine [18]. According to the abnormal changes in DNA
methylation, diagnosing and treating tumors and predicting
biomarkers are considered broad prospects [19]. In recent

years, most of the studies have focused on the kinetics of
aberrant promoter methylation in GBM, and there are also
a few studies on enhancer methylation. Aberrant methylation
enhancers can lead to various diseases, including abnormal
gene expression in various cancers [20, 21].

An in-depth understanding of genetic and epigenetic
variations might assist in elucidating the pathogenesis of
GBM. In the current study, we used multiomics data from
TCGA GBM and GSE4271 datasets to identify the molecular
subtypes and oxidative stress-related prognostic biomarkers
in glioblastoma multiforme. We evaluated the association
between epigenetics and CNV and detected that DNA CNV
deviations were constant with MET aberrations. Through
multiomics relationship investigation, CNV-C and MET-C
gene sets were recognized, and the association between
CNV and MET was created with the gene expressions.
According to multiomics clusters constructed with gene
expression, MET, and CNV, three molecular subtypes were
obtained; iC2 was related to the poorest clinical results. Addi-
tionally, we recognized three prognostic gene indicators and
validated them as well.

The immunophenotype of the tumor microenvironment
functions a critical role in tumor occurrence and progress
and is crucial for the prognosis and success of immunother-
apy [22]. GBM microenvironment contains various immune
cell categories, such as regulatory T cells (Tregs), tumor-
associated macrophages (TAM), microglia, and suppressor
cells from bone marrow [23]. Evidence has indicated that
the expression of proinflammatory cytokines (IL-12, IL-18,
and TNF-γ) was reduced, while soluble inhibitory molecules
(IL-10 and VEGF) were enhanced in GBM [24, 25]. Glioma
cells could also inhibit the antitumor immune response by
regulating the activity of immune cells [26]. This study
examined the significant variances in the immune microen-
vironment of three subtypes. We observed an increased per-
centage of neutrophils in iC2 compared to other subtypes. In
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the end, the three subtypes exhibited distinct immune micro-
environmental characteristics. This change might be associ-
ated with their heterologous clinical consequences and
therefore was prospective marks for BMG immunotherapy.

In addition, through contrasting the molecular char-
acters, three illustrative markers (OSMR, IGFBP6, and
MYBPH) were recognized and confirmed in the three sub-
types. Myosin binding protein H (MYBPH) comprises 477
amino acids, and its molecular weight is 55 kDa [27]. The
myosin-binding protein family contains two subtypes of
MYBPH and MYBPC, which have apparent homology at
the carboxyl end and have the same sequence and structural
similarity [28]. Emerging evidence indicates that elevated
MYBPH has been associated with a poor prognosis and
recurrent in GBM [29]. Moreover, the deletion of MYBPH
could inhibit the migration of glioma cells [30].

IGFBP is a group of multifunctional proteins with simi-
lar structure and function, and it has a high affinity with
IGFs. IGFBP is vital in regulating physiological and patho-
logical processes in vivo through IGF-dependent or IGF-
independent mechanisms [31]. IGFBP-6 is a critical member
of the IGF family and widely exists in human tissues, cells,
and body fluids; it can bind to IGF-2 and inhibit the physi-
ological function of promoting cell growth, proliferation,
and differentiation mediated by IGF-2 [32]. IGFBP-6 could
promote cell migration and regulate neutrophil activity,
which suggests regulating inflammatory immune response
and oxidative stress [33, 34]. Some studies have indicated
that IGFBP-6 could inhibit tumor angiogenesis in multiple
systems through the IGF-2-independent pathway [35].

The Oncostatin M receptor (OSMR) is a member of the
interleukin-6 receptor family, performing various cellular
functions, including regulating homeostasis, cell growth,
and differentiation [36]. OSMR binds with gp130 to form a
high-affinity receptor for its main ligand cytokine, antitumor
M (OSM). OSM is mainly secreted by T lymphocytes, neu-
trophils, and macrophages and was initially used as an
anticancer drug [37]. However, in some cases, OSM can
promote tumor progression. Overexpression of OSM and
OSMR has been detected in various cancers, including gas-

tric, colorectal, breast, and glioma [38, 39]. OSM-OSMR sig-
nal transduction plays a vital role in inflammation, oxidative
stress, hematopoiesis, and development and is increasingly
considered an essential factor in tumor progression [40].

We observed that MYBPH and IGFBP6 were mark-
edly connected to GBM diagnosis among the three genes.
MYBPH and IGFBP6 were increased in iC3 and nega-
tively connected to MET and prospective marks for BMG
diagnosis.

In conclusion, we investigated underlying mechanisms
of glioblastoma multiforme by multiomics exploration for
genomics, epigenomics, and transcriptomics. We revealed
that DNA CNV and MET change function critical roles in
GBM. Moreover, we recognized three molecular subtypes
of GBM and found three oxidative stress-related biomarkers.
These findings might sustain the progression of exact diag-
nostic evaluations and therapies for GBM patients.
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