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Marine-derived metabolites continue to be a prolific source 
of bioactive natural products with a high tendency to become 
drug candidates.1 Research interests in secondary metabo-
lites (SMs) from marine-derived fungi have increased in 
recent years, as many of them are structurally unique and 
possess interesting biological and pharmacological proper-
ties.2 Various microbes, including fungi, are found in the 
gut of marine isopods3–6 and may serve as food or defense 
for marine isopods by producing SMs.7 While studies have 
shown that gut microbes exist in the worldwide distributed 
genus Ligia,8 knowledge of their SMs is scanty. Gut-derived 
fungi from Ligia may be a prolific source of bioactive marine 
natural products. In this study, a fungus was obtained from 
the gut of the marine isopod Ligia oceanica and was iden-
tified as Aspergillus sp. based on the analysis of the ribo-
somal internal transcribed spacers and the 5.8S rRNA gene 
sequence. This strain of Aspergillus sp. Z5 has been depos-
ited in the China Center for Type Culture Collection with 
accession number CCTCC M 2015238.

The genus Aspergillus is the major contributor to new bio-
active SMs of marine fungal origin.2 Therefore, they are rec-
ognized as a prolific source of pharmacologically valuable new 
compounds.9 We also obtained many compounds with new 
structure and bioactivity from Aspergillus sp. Z5 (unpublished 

data). The genome sequencing of Aspergillus sp. Z5 from the 
gut of marine isopod L. oceanica may provide fundamental 
molecular information on elucidating the metabolic pathway 
of SMs in this species.

For genome sequencing, Aspergillus sp. Z5 was cultured in 
glucose minimal media with 30 g/L sea salt and incubated at 
30 °C, 200 rpm, for 24 hours. Isolation of genomic DNA iso-
lation was performed as described by Green and Sambrook.10 
The genome of Aspergillus sp. Z5 was sequenced using the 
Illumina HiSeq 2000 technology at the Shanghai Majorbio 
Bio-pharm Technology Co., Ltd. A library with a fragment 
length of 300 bp was constructed, and a total of 24,591,619 
paired-end reads were generated. Approximately 23,727,930 
high-quality reads, which provided a 137.5-fold depth of 
coverage, were assembled with SOAPdenovo version 1.05.11 
Based on the assembly, the genome size was estimated to be 
33.8 Mbp with a GC content of 50.5% (Table 1). The assembly 
was organized in 1,089 contigs, which are linked by paired-
end reads into 246 scaffolds (.1,000 bp). The average base is 
found in a scaffold of N50 size 1,256,305 bp and a contig of 
N50 size 195,844 bp (Table 1). This whole-genome shotgun 
project has been deposited at DDBJ/EMBL/GenBank under 
the accession no. LDZW00000000. The version described in 
this paper is LDZW01000000.
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Protein-coding sequences were predicted by Augustus 
2.5.5 and annotated using BLAST searches of nonredundant 
protein from the NCBI database. The genome of Aspergillus 
sp. Z5 encodes 11,791 predicted proteins, and the total length 
of genes was 18.7 Mbp, which makes up 55.3% of the genome 
(Table 1). The ratio of gene/genome in Aspergillus sp. Z5 is 
higher than that in three known Aspergillus species (Table 1). 
The rest of the noncoding genomic sequences are made up of 
intergenic sequences (including introns, promoters, and ter-
minators), noncoding RNAs (rRNAs and tRNAs), origins of 
DNA replication, centromeres, and telomeres. Of the total 
predicted genes, 11,178 genes (94.8%) encode known func-
tion proteins, 210 genes (1.8%) are considered to encode 
hypothetical proteins, and 403 (3.4%) genes have no match in 
the database.

Recently, molecular analyses of the genus Aspergillus have 
offered a better insight into their taxonomic and phylogenetic 
relations.12,13 Phylogenetic relationships between filamentous 
fungi have often been based on ribosomal DNA sequences or 
single-gene families,14,15 such as the genes encoding β-tubulin 
(benA), small rRNA subunit (rns), cytochrome oxidase subunit 
I (cox1), and RNA polymerase II second largest subunit gene 
(rpb2). Besides the ribosomal sequence analysis, we further 
performed multilocus sequence analysis of the four house-
keeping genes (benA, rns, cox1, and rpb2)13 from Aspergillus sp. 
Z5 and 23 Aspergillus species. The DNA sequences of these 
genes in each Aspergillus species were obtained from GenBank 
database and aligned with ClustalW for further analysis. The 
maximum-likelihood and neighbor-joining trees were gener-
ated using the MEGA 6 software with default settings. The 
phylogenetic analysis supported that Aspergillus sp. Z5 falls 
within the A. versicolor clade (Fig. 1A). Compared with the 
genome sequences available in the AspGD (http://www.aspgd.
org/), the longest scaffold in the genome of Aspergillus sp.  
Z5 was 3.7 Mb in length and shared a high degree of colinea-
rity with the reference chromosome of A. sydowii (Fig. 1B),  
a closely related species to A. versicolor.16,17

In order to predict the clusters involved in SM biosyn-
thesis, the reported genome was analyzed using antiSMASH 
pipeline.18 As shown in Figure 2, 89 SM biosynthetic gene 
clusters and partial clusters were predicted in Aspergillus sp. 
Z5, including 10 nonribosomal peptide synthetase (NRPS) 
clusters, 10 polyketide synthetase (PKS) clusters, 8 terpene 
clusters, 2 PKS/NRPS hybrid clusters, 1 terpene/PKS cluster, 
and 58 clusters designated putative or other (Fig. 2). In total, 
there are 2,018 genes related to SM production (Supplemen-
tary Table 1, Fig. 2). Although the types of SM clusters could 
be accurately predicted according to the core SM biosynthetic 
genes encoding backbone enzymes, it is still not possible to 
predict with accuracy the boundaries of SM gene clusters or 
the functions of some clusters without backbone enzymes.19 
This is due to the fact that many of the genes surrounding the 
core SM biosynthetic genes often have unknown functions, 
making predictions of their involvement in the biosynthetic 
process of the SM almost impossible.19 Based on the number 
of similar cluster genes and the identity of cluster genes (cutoff 
criteria: identity of 40% and query coverage of 50%) with other 
SM biosynthetic gene clusters, the types of most putative clus-
ters without backbone enzymes were predicted in this study  
(Supplementary Table 1). However, the elucidation of these 
SM biosynthetic gene clusters is mainly dependent on experi-
mental verification, followed by identification and characteri-
zation of SMs produced by the deletion strains.

The increasing availability of Aspergillus genomes has 
led to a rapid identification of secondary metabolism bio-
synthetic pathways (SMBPs) in recent years. However, only 
a small part of SMBPs are conserved between even closely 
related species.20 In this work, comparative analysis of SM 
cluster genes encoding backbone enzymes was performed 
between Aspergillus sp. Z5 and the other three well-annotated 
Aspergillus species (Aspergillus nidulans, Aspergillus oryzae, and 
Aspergillus fumigatus), revealing that some backbone enzymes 
are highly conserved among all these four Aspergillus species, 
including cluster 11 and 28 (siderophore), cluster 30, 32, 42, 64, 

Table 1. comparison of genome characteristics.

ATTRIBUTE AspergiLLus 
SP. Z5

A. niduLAns
FGSC A4*

A. oryzAe
RIB40*

A. fumigAtus
AF293*

assembly size (bp) 33.8 m 30.5 m 37.9 m 29.4 m

Predicted orfs 11791 10687 12090 9840

Gc content (%) 50.5% 50.0% 46.3% 50.0%

Gene/genome (%) 55% 50% 45% 49%

contigs 1089

contig n50 (bp) 195,844

contig n90 (bp) 37,806

scaffolds (.1000 bp) 246

scaffold n50 (bp) 1,256,305

scaffold n90 (bp) 381,266

Note: *Data are from the calculation based on the database of aspGD (http://www.aspgd.org/).
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and 86 (unknown product), and cluster 35 (neosartoricin and 
fumicycline A). Besides these conserved backbone enzymes 
among the four species, Aspergillus sp. Z5 shared the greatest 
number of backbone enzymes with A. nidulans, including clus-
ter 2 (emericellin), cluster 15 (orsellinic acid/F9975/violaceols), 

cluster 17 (asperthecin), cluster 63 (asperfuranone), cluster 79 
(terrequinone), and other clusters with unknown products 
(Supplementary Table 1). Much less backbone enzymes are 
conserved in A. oryzae or A. fumigatus (Supplementary Table 1). 
Although the products of some clusters in Aspergillus sp. Z5 
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Figure 1. the evolutionary analysis of the genome of Aspergillus sp. Z5. (A) the phylogenetic position of Aspergillus sp. Z5 based on multilocus 
sequence analysis of the four housekeeping genes (benA, rns, cox1, and rpb2). the maximum-likelihood tree was generated using the mEGa6 software, 
and bootstrap values are shown as percentages (values below 60% are omitted). (B) the alignment of the largest scaffold in the Aspergillus sp. Z5 
assembly was aligned against the genome of A. sydowii using Blastn and visualized using the artemis comparison tool.  
Notes: red lines between genomes indicate orthologous genes in the same orientation. Blue lines indicate orthologous genes in reverse orientation.
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Figure 2. Graphical map of the putative sm gene clusters and the related gene numbers in the genome of Aspergillus sp. Z5.
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were predicted based on the conserved sequences of SMBP 
backbone enzymes in genus Aspergillus, the functions of the 
rest of these 89 clusters remain unknown. In addition, some 
backbone enzymes with unknown functions were found in 
distantly related fungi such as Penicillium, Metarhizium, and 
Tolypocladium, but not in other Aspergillus species (cutoff cri-
teria: identity of 40% and query coverage of 50%), ie, clusters 
8, 14, 31, and 48, which are highly possible to be new com-
pounds in Aspergillus species (Supplementary Table 1).

To the best of our knowledge, this is the first genome 
sequence of Aspergillus species isolated from the gut of marine 
isopod L. oceanica. Due to the limited knowledge and data 
about the marine isopod, it is currently impossible to explore 
the relationship between SMs from the Aspergillus species 
and its host. However, availability of this genome sequence 
presents a basis for exploring new bioactive compounds and 
elucidating the evolution of the metabolic pathway of SMs in 
marine-derived Aspergillus species.
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