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Abstract
Purpose  With the hypothesis that 4D flow can be used in evaluation of cardiac shunts, we seek to evaluate the multilevel 
and interreader reproducibility of measurements of the blood flow, shunt fraction and shunt volume in patients with atrial 
septum defect (ASD) in practice at multiple clinical sites.
Materials and methods  Four-dimensional flow MRI examinations were performed at four institutions across Europe and the 
US. Twenty-nine patients (mean age, 43 years; 11 male) were included in the study. Flow measurements were performed at 
three levels (valve, main artery and periphery) in both the pulmonary and systemic circulation by two independent readers 
and compared against stroke volumes from 4D flow anatomic data. Further, the shunt ratio (Qp/Qs) was calculated. Addition-
ally, shunt volume was quantified at the atrial level by tracking the atrial septum.
Results  Measurements of the pulmonary blood flow at multiple levels correlate well whether measuring at the valve, main 
pulmonary artery or branch pulmonary arteries (r = 0.885–0.886). Measurements of the systemic blood flow show excellent 
correlation, whether measuring at the valve, ascending aorta or sum of flow from the superior vena cava (SVC) and descend-
ing aorta (r = 0.974–0.991). Intraclass agreement between the two observers for the flow measurements varies between 0.96 
and 0.99. Compared with stroke volume, pulmonic flow is underestimated with 0.26 l/min at the main pulmonary artery 
level, and systemic flow is overestimated with 0.16 l/min at the ascending aorta level. Direct measurements of ASD flow 
are feasible in 20 of 29 (69%) patients.
Conclusion  Blood flow and shunt quantification measured at multiple levels and performed by different readers are repro-
ducible and consistent with 4D flow MRI.

Keywords  4D flow MRI · Atrial septal defect · Multiple measurements

Introduction

Atrial septal defects (ASD) are one of the most common 
congenital heart defects with an estimated prevalence of 1.6 
per 1000 live births [1]. Most prevalent are ostium secun-
dum defects followed by ostium primum and sinus venosus Electronic supplementary material  The online version of this 

article (https​://doi.org/10.1007/s1033​4-018-0702-z) contains 
supplementary material, which is available to authorized users.
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defects [2]. Partial anomalous pulmonary venous connec-
tions (PAPVRs) are often associated with ASD, especially 
with sinus venosus defects. When repaired at a young age, 
patients with ASD have a life expectancy similar to the gen-
eral population [3, 4]. Left untreated, patients with large 
ASD gradually develop pulmonary hypertension, reversal 
of the left-to-right shunt and eventually right heart failure. 
In clinical practice, ASD closure is considered for patients 
with a shunt fraction greater than 1.5 [2].

Multiple imaging modalities are used to detect and delin-
eate these anatomic defects. Transthoracic echocardiography 
(TTE) is used as a primary screening modality. However, 
associated pathologies such as PAPVR are more difficult to 
identify with TTE. When TTE is inconclusive, transesopha-
geal echocardiography (TEE) may be helpful [5]. Alterna-
tively, computed tomography (CT) and magnetic resonance 
imaging (MRI) are increasingly used.

MRI has shown its incremental value in congenital heart 
disease (CHD) [6] and ASD in particular [7]. MRI is the 
gold standard for noninvasive quantification of right heart 
function and shunt fraction [8, 9]. It may detect intracardiac 
shunting and additional findings including PAPVR [10]. 
However, it is performed with numerous breath-holds and 
relatively long examination times, which may be challenging 
for cardiac patients.

A promising and rapidly evolving MRI technique is 4D 
flow imaging, a volumetric, free-breathing acquisition tech-
nique of flow velocity data with simultaneous assessment 
of anatomic structures [11]. The 4D flow MRI allows for 
flow quantification at any level within the acquired field of 
view and calculation of cardiac volumes and biventricular 
function [12–14].

A few studies have evaluated the use of 4D flow MRI for 
visualization and quantification of cardiac shunts [15–17]. 
It is not yet clear, however, whether this technique is robust 
across the range of imaging parameters that might be used 
in the clinical environment because of differences in body 
habitus or equipment. In the clinical setting, there may be 
heterogeneity in imaging techniques because of local pref-
erences or needs for imaging parameters such as the sig-
nal-to-noise ratio (SNR), spatial resolution, scanning time, 
velocity-encoding speed (Venc), available equipment, field 
strengths (1.5 T, 3 T) and patient body habitus. A previous 
paper showed that it is possible to measure venous flow even 
when using high Venc [18]. However, uncertainty remains 
about whether this technique is applicable outside of the 
research setting. As this technology has recently become 
more broadly clinically available, we seek to determine 
in this study whether 4D flow can robustly be used for 
the evaluation of cardiac shunts at different levels of the 
vascular tree using 4D flow data acquired across multiple 

centers—specifically measurements of the blood flow, shunt 
fraction and shunt volume.

Methods

Study design

Cardiac MRI examinations including 4D flow were gathered 
from four academic centers in the US and Europe in patients 
referred for evaluation of ASD between December 2014 and 
January 2017. In three centers, 4D flow was performed as 
part of the clinical protocol and retrospectively included in 
this study. Informed consent was waived by the local IRB. 
In the remaining center, patients were prospectively enrolled 
and signed informed consent for an MRI including 4D flow. 
The study protocol was compliant with Declaration of Hel-
sinki and received approval from each local medical ethics 
committee.

4D flow acquisition

At each center, 4D flow MRI acquisition protocols were 
optimized based on locally available equipment, medica-
tions, and clinical requirements. The retrospectively gated 
4D flow acquisition was performed using clinical MRI scan-
ners (69% at 1.5 T, 31% at 3 T) (GE Healthcare, Milwaukee, 
WI, USA) after administration of a gadolinium-based con-
trast agent. Scan time ranged between 7.46 and 14.75 min 
(median 10.75 min). All imaging parameters are presented 
in Table 1.

Post‑processing

Data were analyzed using dedicated post-processing soft-
ware (Arterys Inc, San Francisco, CA). Semiautomatic eddy-
current correction was applied [19]. Data were visualized, 
interpreted for the presence of ASD and classified according 
to type of septal defect. To evaluate consistency of the data 
across the vascular tree, shunt quantification was performed 
at multiple levels, as described below. Further, to evaluate 
intraobserver reproducibility, background correction and 
measurements were done by two readers independently 
(with 4 and 1 year of experience with 4D flow).

ASD visualization and classification

To detect and visualize the ASDs, volumetric data sets 
were reformatted in multiple orientations using sev-
eral rendering techniques: color-coded velocity overlay, 
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vector-velocity overlay, and streamlines (Fig. 1). ASDs 
were classified according to international guidelines [2, 
5]. To visualize primum and secundum ASDs, the atrial 
septum was examined in short and long axis (Supplemen-
tary Fig. 1). Furthermore, to evaluate the presence of sinus 

venosus ASD, the superior and inferior cavo-atrial junc-
tions were visualized. The coronary sinus was carefully 
assessed for detection of unroofed coronary sinus (Sup-
plementary Fig. 2). In addition, streamlines were created 
from regions of interest in the pulmonary veins to further 

Table 1   Scanning details

Values are ranges (minimum–maximum)
T Tesla, HR heart rate, venc velocity encoding value
a In four patients, data were not available

Center 1 (n = 4) Center 2 (n = 9) Center 3 (n = 8) Center 4 (n = 8) Total (n = 29)

Field strength (T) 1.5 T (100%) 3 T (100%) 1.5 T (100%) 1.5 T (100%) 1.5 T (69%)
3 T (31%)

Contrast agent Gadobutrol (100%) Gadofosveset triso-
dium (67%), gado-
benate dimeglumine 
(33%)

Gadoterate meglumine 
(50%), gadobenate 
dimeglumine (50%)

Gadofosveset triso-
dium (37%), gado-
benate dimeglumine 
(63%)

Gadofosveset triso-
dium (14%), gad-
oterate meglumine 
(31%), gadobutrol 
(14%), gadobenate 
dimeglumine (41%)

Resolution acquired 
(mm)

(1.8– 2.0) × (2.1–
2.4) × 2.8

(1.3–2.0) × (1.4–
2.4) × (2.4–3.2)

(1.4–1.8) × (2.3–
2.8) × 2.6

(1.0–1.8) × (1.4–2.2) ×  
3.0

(1.3–2.0) × (1.4–
2.8) × (2.4–3.2)

Resolution recon-
structed (mm)

(1.8–2.0) × (2.1–
2.4) × 1.4

(1.3–2.0) × (1.3–
2.2) × (1.2–1.6)

(1.4–1.8) × (2.3–
2.8) × 1.3

(1.0–1.4) × (1.4–
1.8) × 1.5

(1.3–2.0) × (1.3–
2.2) × (1.2–1.6)

Temporal resolution 
(ms)a

61.4–62.4 61.2–81.8+ 51.6–76.3 49.3–83.2 49.3–83.2

Heart rate 64–72 66–80 55–103 48–77 48–103
Sinus rhythm 100% 100% 100% 75% 93%
Venc (cm/s) 180–200 150–250 200–500 250 150–500
Scanning time (min) 10.42–11.58 10.75–14.75 7.46–14.75 7.46–10.95 7.46–14.75

Fig. 1   Multiple rendering techniques for ASD visualization. Color 
velocity overlay helps to identify the shunt in a frame-by-frame 
approach, but does not show flow directionality a. Flow direction is 
emphasized with vector overlay b. Streamlines help to track the flow 

that comes from pulmonary veins to the left atrium. In case of an 
atrial septum defect, the blood will cross to the right atrium and right 
ventricle. Ra right atrium, rv right ventricle, la left atrium, lv left ven-
tricle, SVC superior vena cava
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emphasize the flow across the atrial septum (Fig. 1). Inci-
dental findings including the presence of a bicuspid aortic 
valve (BAV) and PAPVR were also documented. 

Quantification of flow and of shunt

Management of ASD is mostly driven by the severity of 
cardiac shunting, defined by the pulmonary (Qp) and sys-
temic (Qs) blood flow ratio [2, 5]. Three levels were used 
to obtain Qp and Qs flow: (1) valve, (2) main artery and 
(3) periphery (Fig. 2). The valve and vessels were tracked 
and “contoured” throughout the entire cardiac cycle [19]. 

Shunt fractions (Qp/Qs) were calculated for each level in 
all patients.

Alternatively, ventricular stroke volumes may be used 
for shunt fraction calculation, provided that no significant 
(≤ 20%) valve insufficiency is present. The study population 
was screened for valvular insufficiency, which was quanti-
fied if detected. In the subset of patients with no significant 
valvular insufficiency, the shunt fraction was calculated 
additionally using the right ventricular (RVSV) and left ven-
tricular (LVSV) stroke volume ratio. For this, end-diastolic 
and end-systolic ventricular volumes were segmented from 
the 4D flow magnitude anatomic images [20]. Lastly, shunt 

Fig. 2   Levels of flow and shunt measurement. Systemic a and pulmo-
nic b blood flows were measured at three different levels. Systemic 
flow a was measured at the aortic valve level [1], ascending aorta 
level [2] and as sum (3 = 3a + 3b) of the flow of the superior vena 
cava above the azygos vein (3a) and descending aorta (3b). When 
present, left persistent superior vena cava flow was added to the sum 

of SVC and descending aorta. Pulmonic flow b was measured at the 
pulmonary valve level [1], main pulmonary artery level [2] and as the 
sum of the right (3a) and left pulmonary artery flow (3b). Ventricular 
stroke volumes were calculated using magnitude images c. Addition-
ally, shunt volumes were measured at the ASD level by septal track-
ing d 
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volumes were measured at the atrial level by tracking the 
atrial septum (Fig. 2). Indirect shunt volume quantification 
was obtained by subtracting systemic from pulmonary blood 
flow (Qp–Qs).

Statistics

Statistical analysis was performed with SPSS software ver-
sion 21 (IBM, New York, USA) and GraphPad Prism 4 
Project (San Diego, CA, USA). Categorical variables are 
presented as number and percentages and continuous vari-
ables as mean (± standard deviation) or median (minimum-
maximum). Correlation between measurements at differ-
ent levels was evaluated using Spearman’s (rho) coefficient 
for nonparametric data, and agreement was analyzed with 
Bland-Altman plots [21]. The Spearman rho coefficient 
was classified as “very weak” for values of 0.00–0.19, 
“weak” for 0.20–0.39, “moderate” for 0.40–0.59, “strong” 
for 0.60–0.79 and “very strong” for 0.80–1.0 [22]. Inter-
observer reliability was assessed by intraclass correlation 
coefficient (ICC).

Results

Study population

Four-dimensional f low MRI examinations from 30 
patients with ASD were gathered from the four academic 
centers. One nondiagnostic examination was excluded. 
(Supplementary Fig. 3). Mean age was 43 (± 17) years, 
and 11 (38%) patients were male. Six patients had two 
ASDs, and one patient had four ASDs. Of the 38 ASDs, 
26 (68%) were classified as secundum, 4 (11%) primum 
and 8 (21%) sinus venosus [6 at the SVC level, 1 at the 
inferior vena cava (IVC) level and 1 unroofed coronary 
sinus]. Additional findings included PAPVR (n = 2) and 
BAV (n = 5).

Correlation of 4D blood flow and stroke volume 
measurements

Median Qp was 8.5 l/min (4.4–20.2 l/min) at the main pul-
monary artery level; 8.6 l/min (3.2–20.3 l/min) at the pul-
monary valve level and 8.7 l/min (4.4–19.9 l/min) at the 
pulmonary branch level. Median cardiac output measured 
from RVSV was 9 l/min (4.6–20.0 l/min). The correlations 
between Qp measurements performed at different levels were 
classified as very strong (Spearman’s rho = 0.885–0.886) 
(Fig. 3). Pulmonary flow measured in the main pulmonary 

artery also correlated well with right ventricular stroke vol-
ume (Spearman’s rho = 0.972). Relative to the main pulmo-
nary artery, measurements at pulmonary valve and pulmo-
nary branches overestimated flow by 0.15 l/min and 0.27 l/
min, respectively (Fig. 3), while RVSV overestimated with 
0.26 l/min. Bland-Altman, ranges, and biases are presented 
in Table 2. 

For systemic flow, median Qs is 4.9 l/min (2.7–10.7 l/
min) at the ascending aorta level, 5.2 l/min (2.9–10.0 l/
min) at the aortic valve level and 4.7  l/min (2.9–10.5  l/
min) at the peripheral level. Median cardiac output meas-
ured from LVSV was 4.8 l/min (3.0–8.2 l/min). Similarly, 
the correlations between Qs measurements performed at 
different levels were classified as very strong (Spearman’s 
rho = 0.991–0.974) (Table 2, Fig. 4). Relative to the ascend-
ing aorta results, measurements at the aortic valve overesti-
mated Qs with 0.14 l/min, and by 0.17 l/min at the peripheral 
level, while measurements of the LVSV underestimated Qs 
with 0.16 l/min (Fig. 4). Bland-Altman, ranges, and biases 
are presented in Table 2.

Correlation of 4D flow shunt fraction measurements

Good correlation was found between Qp/Qs ratios derived 
at the main artery level and ratios derived at the valve and 
peripheral level (Spearman’s ρ = 0.95 for both compari-
sons), with smaller bias for the valve level vs. peripheral 
level (− 0.023 l/min vs. − 0.049 l/min, p = 0.922) (Sup-
plementary Fig. 4). Bland-Altman, ranges, and biases are 
presented in Table 3. A threshold of 1.5 is often used as a 
threshold for ASD closure. In our cohort, 10 patients had 
ratios measuring below 1.5 at all levels, and 16 patients 
had shunt ratios measuring above 1.5 at all levels. In only 
three patients did we observe some measurements above 
and below the 1.5 threshold, and at all locations these 
measurements tended to stay close to 1.5 (range 1.3–1.7) 
(Fig. 5). 

Interobserver consistency of 4D flow, shunt fraction 
and volume measurements

Measurements of blood flow, shunt fraction and shunt vol-
ume with 4D flow were highly reproducible between two 
independent readers. Interobserver consistency for flow 
measurements was excellent at all levels, showing ICCs 
all ≥ 0.955. Interobserver consistency for the calculated 
shunt fraction showed ICCs ≥ 0.98 and for shunt volume 
ICCs ≥ 0.979. All ICCs for measurements of blood flow, 
calculated shunt fractions (Qp/Qs) and shunt volumes are 
displayed in Table 4.
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Direct versus indirect 4D shunt volume 
measurements

In 20/29 patients (69%), it was feasible to obtain direct shunt 
volumes at the exact location of the septal defect. Corre-
lations between direct and indirect (Qp–Qs) measurements 

were classified as very strong (Spearman’s ρ = 0.96). How-
ever, shunt volume was underestimated by 0.57 l/min using 
direct measurements. Bland-Altman, ranges and standard 
deviation are presented in Table 5. Two of these patients 
had multiple ASDs, but some small ASDs did not allow for 
direct flow measurement (Supplementary Fig. 5).

Fig. 3   Pulmonary flow. Correlation and Bland-Altman plots of pul-
monic flow measured at different levels using as reference the level of 
the main pulmonary artery. For each Bland-Altman plot, the average 
of measurements from both levels is plotted on the x-axis and the dif-

ference is plotted on the y-axis. The solid gray horizontal line plots 
the mean difference, and the dotted gray lines indicate the limits of 
agreement. PV pulmonary valve, MPA main pulmonary artery, RPA 
right pulmonary artery, LPA left pulmonary artery
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Discussion

We show in this study that 4D flow MRI can be sufficient 
for evaluation of patients with ASD, including quantification 
of shunt fraction, and can be robustly performed at multi-
ple institutions; 4D flow MRI is consistent and reliable for 
measuring systemic and pulmonic blood flow and obtaining 
shunt fractions at multiple levels across the vascular tree. In 
daily practice, a shunt fraction (Qp/Qs) threshold above 1.5 
is often used as a critical parameter to determine the need 
for ASD closure. By 4D flow MRI, few patients had mixed 
results near the 1.5 threshold. In those patients, other clinical 
features may be used to decide upon individual surgical or 
medical management, such as right heart chamber enlarge-
ment or pulmonary pressure [2, 5].

In this study, direct shunt volume quantification was 
obtained at the level of ASD by tracking the atrial sep-
tum frame by frame throughout the cardiac cycle. Direct 
shunt volume quantification was feasible in 69% of the 
patients and correlated well with calculated shunt volumes 
obtained by 4D flow measurements at the level of main 
arteries (Qp–Qs) (r = 0.955). Tracking the atrial septum may 
be challenging if there is insufficient image quality, if the 
size of the ASD is small or if there are multiple ASDs. For 
example, in two patients the direct quantification value was 
lower than the indirect quantification. When these cases 
were further reviewed, we found additional shunts, which 
were missed in the initial analysis (Supplementary Fig. 5). 
Therefore, we believe that direct quantification of each ASD 
can be helpful to determine whether all of shunts have been 
appropriately accounted for. Mismatch between direct and 

indirect measurements may point to additional undetected 
shunts.

We show in the current study that it is possible to achieve 
excellent multilevel and interreader reproducibility with 4D 
flow MRI at multiple centers. This alleviates some previous 
concerns that 4D flow might only be achievable at one or two 
centers with extensive experience. This is further supported 
by recent studies showing good scan-rescan reproducibility 
and good intraobserver agreement with 4D flow [23, 24]. We 
further show here that experienced readers are not necessar-
ily required to achieve high reproducibility. In addition, we 
demonstrate here that 4D flow can enable measurement of 
shunts at multiple alternative locations. This is especially 
helpful in the case of turbulent flow, aliasing or metallic 
artifacts. The 4D flow measurements can be performed at 
an alternative location distant to such artefacts to answer the 
clinical question. In patients with BAV, for example, flow 
acceleration across the aortic valve [25] can compromise 
the accuracy of measurements in areas of turbulent flow [26, 
27], and an alternate measurement may be more accurate.

We present the current work, recognizing that 4D flow 
is an evolving imaging technique [28, 29] and new strate-
gies are being developed, including incorporation of mul-
tiple velocity encoding speeds [30, 31]. To date, 4D flow 
has shown its potential for evaluation of congenital heart 
disease [32], and is being introduced in daily clinical prac-
tice for other clinical indications [33]. Additional work 
may be required to assess the performance of 4D flow in 
specific clinical scenarios. In the current work, we did not 
explore a direct comparison to other advanced imaging tech-
niques, which can also be used to assess shunt fraction. For 

Table 2   Consistency of flow 
measurements at different 
locations

Absolute blood flow measurements are consistent across multiple locations and with stroke volumes
SVC superior vena cava
a Main pulmonary artery and ascending aorta are taken as reference
b Eight patients had more than 20% mitral or tricuspid regurgitation and were excluded from the analysis
c SVC measured above the azygos vein when visible

 Level of measurement Flow (l/min) 
median (min–max)

Spearman’s rhoa Bland-Altman

Bias ± 1.96 SD

Pulmonic flow
 Pulmonary valve 8.6 (3.2–20.3) 0.886 0.148 − 0.86 to 1.16
 Main pulmonary artery 8.5 (4.4–20.2) – – –
 Right + left pulmonary arteries 8.7 (4.4–19.9) 0.885 0.266 − 1.12 to 1.65
 Right ventricular stroke volumeb 9.0 (4.6–20.0) 0.972 − 0.257 − 2.01 to 1.49

Systemic flow
 Aortic valve 5.2 (2.9–10.0) 0.991 0.135 − 1.23 to 1.5
 Ascending aorta 4.9 (2.7–10.7) – – –
 SVCc + descending aorta 4.7 (2.9–10.5) 0.974 0.169 − 1.6 to 1.94
 Left ventricular stroke volumeb 4.8 (3.0–8.2) 0.906 0.157 − 2.45 to 2.1
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example, Yamasaki et al. propose CT as an approach for 
quantification of ASD [34], obtaining ventricular stroke vol-
umes from finely detailed anatomic data. However, without 
flow information provided by 4D flow or echocardiography, 
this approach may be confounded by concomitant valve 
regurgitation.

Limitations

We recognize a few potential limitations of the study. The 
patient population was not large, but we believe sufficient to 
demonstrate the robustness of the method. Second, although 
it is a study across multiple centers, all 4D flow acquisitions 

Fig. 4   Systemic flow. Correlation and Bland-Altman plots of sys-
temic flow measurements at different levels and taking as reference 
the level of the ascending aorta. For each Bland-Altman plot, the 
average of measurements from both levels is plotted on the x-axis and 

the difference is plotted on the y-axis. The solid gray horizontal line 
plots the mean difference, and the dotted gray lines indicate the limits 
of agreement. AV aortic valve, AoAsc ascending aorta, AoD descend-
ing aorta, SVC superior vena cava
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were performed using equipment from a single vendor. 
Additional work may be required to confirm similar quality 
4D flow measurements can be obtained on other platforms. 
Third, a gadolinium-based contrast agent was used prior 

to image acquisition at all sites. Further work is needed to 
determine whether similar results can be obtained without 
intravenous contrast. In addition, we did not perform a direct 
comparison against 2D phase-contrast MRI in this study. We 
did find that flow measurements were consistent with stroke 
volumes obtained from anatomical data, which was reassur-
ing. Multiple previous studies have compared 4D flow and 
2D phase-contrast measurements, showing that measure-
ments from each technique are generally consistent [35, 36]. 
Bollache and colleagues showed better correlation between 
4D flow and three-direction-velocity 2D phase-contrast than 
with the one-direction-velocity 2D phase-contrast technique, 
which is the most commonly used clinical technique [36].

Table 3   Comparison of shunt 
fractions measured at different 
locations

a Level of main arteries is taken as reference
b Eight patients had more than 20% mitral or tricuspid regurgitation and were excluded from the analysis

Level of measurement Shunt fraction median 
(min–max)

Spearman’s rhoa Bland-Altman

Bias ± 1.96 SD

Valve 1.6 (0.9–3.7) 0.95 − 0.023 − 0.42 to 0.37
Main arterya 1.6 (1.0–3.5)
Peripheral 1.6 (0.8–3.9) 0.95 − 0.049 − 0.47 to 0.37
Stroke volumeb 1.8 (1.0–3.3) 0.93 0.072 − 0.57 to 0.71

Fig. 5   Distribution of atrial 
septal defect shunt fractions 
(Qp/Qs) measured at multi-
ple levels. Qp/Qs at different 
locations ordered from high 
to low. A solid line is placed 
at the treatment threshold of 
1.5 Qp/Qs. Arrows highlight 
the three patients in which the 
measurements at different levels 
are crossing the threshold line

Table 4   Comparison of flow measurements by independent observers

Intraclass coefficients (ICCs) for measurements of blood flow, calcu-
lated shunt fractions (Qp/Qs) and shunt volumes displayed

Level Systemic flow Pulmonary flow Qp/Qs Shunt volume

Valve 0.968 0.987 0.983 0.989
Main artery 0.975 0.986 0.981 0.987
Peripheral 0.955 0.981 0.968 0.979

Table 5   Comparison of 
shunt volume measured at 
the atrial septal level against 
measurement at the main artery 
level

∞ Direct measurement of ASD was feasible in 20 patients
† Level of main arteries is taken as reference

Level of measurement Shunt volume (l/min) 
median (min–max)

Spearman’s rho† Bland-Altman

Bias (l/min) ± 1.96 SD

Atrial septum∞ 2.95 (0.2–8.7) 0.955 − 0.57 − 2.71 to 1.57
Main artery† 3.6 ( − 0.2 to 1.8) − – –
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Conclusions

For patients referred for evaluation of ASD, 4D flow MRI 
showed excellent multilevel and interreader reproduc-
ibility for systemic and pulmonary blood flow measure-
ments and shunt quantification obtained at different levels 
throughout the vascular tree.
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