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Abstract

Gynostemma pentaphyllum (GP) is widely used for the treatment of diseases such as hyperlipidemia, fatty liver and
obesity in China, and atorvastatin is broadly used as an anti-hyperlipidemia drug. This research focuses on the
plasma and liver metabolites in the following four groups of rats: control, a hyperlipidemia model, a hyperlipidemia
model treated with GP and a hyperlipidemia model treated with atorvastatin. Using 1H-NMR-based metabonomics,
we elucidated the therapeutic mechanisms of GP and atorvastatin. Orthogonal Partial Least Squares-Discriminant
analysis (OPLS-DA) plotting of the metabolic state and analysis of potential biomarkers in the plasma and liver
correlated well with the results of biochemical assays. GP can effectively affect lipid metabolism, and it exerts its anti-
hyperlipidemia effect by elevating the level of phosphatidylcholine and decreasing the level of trimethylamine N-oxide
(TMAO). In contrast, atorvastatin affects hyperlipidemia mainly during lipid metabolism and protein metabolism in
vivo.
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Introduction

Hyperlipidemia is a systemic disease that impairs the body in
a generally unnoticeable, gradual, progressive and systemic
way. The direct damage of hyperlipidemia can accelerate
systemic arteriosclerosis, and it is an important risk factor for
many diseases, such as stroke, coronary artery disease,
myocardial infarction and cardiac sudden death [1]. Therefore,
treating hyperlipidemia at its early stages is critical. In the clinic,
combinations of statins and lipid traditional Chinese medicines
are commonly used to treat hyperlipidemia in China.

Gynostemma pentaphyllum (GP) is easily accessible in
China. It is a trailing plant that belongs to the cucurbitaceae
family, and it mainly contains polysaccharides, flavones,
saponins and trace elements [2-5]. Research has
demonstrated the protective effects of gypenosides against
fatty liver disease induced by a high fat and cholesterol diet
and alcohol in rats [6,7]. GP promotes weight loss by regulating
fat metabolism without causing side effects, such as diarrhea
or altered appetite [8]. However, the mechanism by which GP
combats hyperlipidemia is unknown. Atorvastatin belongs to
the statin drug family, although it is an HMG-CoA reductase

inhibitor [9], and its effect on other substances in the upstream
and downstream metabolic pathways is unclear.

Metabonomics is regarded as another major research focus
in addition the fields of genomics and the proteomics. It can
provide complete biological system information at individual
and group levels [10,11]. In the clinic, metabonomics can be
used to prevent and diagnose diseases [12,13]. The discovery
of specific biomarkers plays an important role in predicting
disease progression, monitoring disease status after drug
treatment and especially in clarifying of the mechanisms of
action for traditional Chinese medicines [14]. Metabonomics is
widely used to diagnose hyperlipidemia [15,16], monitor drug
treatment of hyperlipidemia [17-20] and develop drugs to treat
hyperlipidemia [21]. Compared with other methodologies,
Nuclear Magnetic Resonance (NMR) spectrum is widely used
as an unbiased metabonomics approach due to its high
specificity, high resolution, sample preservation and its ability
to analyze intact biological organization [22-24].

The focus of this research was on the plasma and liver
metabolites of four groups of rats: a control group, a
hyperlipidemia model group, a hyperlipidemia model group
treated with GP and a hyperlipidemia group treated with
atorvastatin. Here, the applicability of NMR-based
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metabonomics in assessing the effects of GP and atorvastain
on hyperlipidemia in rats was evaluated to identify potential
biomarkers and reveal the mechanisms of action for both
drugs. By comparing the GP and atorvastatin treated groups,
we determined the material basis, mechanism and action target
of GP and atorvastain, revealing the mechanisms by which
both drugs affect hyperlipidemia.

Materials and Methods

Chemicals
Deuteroxide and sodium 3-trimethylsilyl-propionate

[2,2,3,3,d4] (TSP) were purchased from Merck Drugs &
Biotechnology (Germany). Dipotassium phosphate was
obtained from Xilong Chemical Co., LTD. (Guangdong, China).
Sodium hydroxide was purchased from Bodi Chemical co.,
LTD. (Tianjin, China). Distilled water was produced with a Milli-
Q Reagent Water System.

Ethics statement
All of the protocols using in this study were approved by the

Medical Ethic Committee of Shenyang Pharmaceutical
University, and all of the procedures were performed in
accordance with the Regulations for the Administration of
Affairs Concerning Experimental Animals and were approved
by the State Council of People’s Republic of China.

Care and maintenance of animals
Male rats (Sprague Dawley, 6–8weeks, weighing 180–220 g,

qualified number: SCXK (LIAO) 2010-0001) were obtained
from Experimental Animal Center of Shenyang Pharmaceutical
University (China). The rats were maintained under standard
laboratory conditions (temperature, 23 ±2°C; relative humidity,

45–65%; and a natural day/night cycle) with food and water
freely available.

Construction of the hyperlipidemia model
After one week of adaptive breeding, the rats were randomly

divided into four groups: a normal control group, a
hyperlipidemia model group, a GP treatment group and an
atorvastatin treatment group (n = 8 rats/group). With the
exception of the control group, all of the groups were fed a
high-fat diet that consisting of normal diet containing 15% lard,
5% yolk powder, 2% cholesterol, 1% sodium cholate and 0.2%
propylthiouracil (Beijing Huafukang co., LTD.). The rats were
bred continuously for eleven weeks. At 8:00 am weekly, 1.5 mL
of blood was via retro-orbital bleeding from each rat under
fasting conditions (water freely for 12 h). The blood samples
were centrifuged at 4,000 × g for 10 min at 4 °C, and the
supernatant was sent to Shenyang Red Cross Hospital to test
levels of total cholesterol (TC), triglycerides (TG), high-density
lipoprotein (HDL-C) and low density lipoprotein (LDL-C) to
validate the model.

Drug treatment
After the model was established, the four groups were fed a

normal diet for four weeks. The rats in the GP treatment group
were administered GP at a dose of 120 mg•Kg-1•d-1

(Guangzhou Baiyunshan Heji Huangpu Traditional Chinese
Medicine Co., Ltd., batch number D1D001). The rats in the
atorvastatin treatment group were administered atorvastatin
calcium tablets at a dose of 1.8 mg•Kg-1•d-1 (Pfizer
Pharmaceuticals Limited, batch number 018312k). The animals
in the control and model groups received the same volume of
normal saline as the drug-treated groups, and all of the
administrations were performed by oral gavage.

Figure 1.  Typical 600 MHz 1H-NMR spectra of rat plasma samples.  1.Lipids (VLDL/LDL) 3. Isoleucine 4. Valine 5.3-
Hydroxybutyrate 6. Lactate 7. Alanine 8. Lysine 9. Arginine 12. N-Acetyl glycoproteins 14. Glutamate 16. Acetoacetate 17. Acetone
18. Succinate 19. Pyruvate 20. Glutamine 21. Citrate 22. Glutathione 23. Aspartate 24. Creatine 26. Choline 27.
Phosphocholine/GPC 28. TMAO 30. Glucose/aminoacids resonances 34.α-Glucose 35. Glycogen 37. Fumarate 38. Tyrosine.
doi: 10.1371/journal.pone.0078731.g001

Therapeutic Mechanism for Hyperlipidemia Rats
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Sample collection for NMR analysis
Plasma collection.  Two and a half milliliters of blood was

collected from rats in each of the four groups at weeks 0, 11,
and 15. The blood samples were collected in heparinized
tubes, centrifuged at 4,000 x g for 15 min, and the supernatant
was collected. The supernatants were stored at -80 °C until
analysis.

Liver collection.  After administration, rats in each of the
four groups were sacrificed with ether, and the livers were
collected. Liver homogenization was performed up by mixing 5
g of liver with 6 ml of saline, and the homogenates were stored
at -80 °C until analysis.

1H-NMR spectroscopy of plasma
Three hundred and fifty microliters of plasma was transferred

to EP tubes, and 300 μl of NaH2PO4-Na2HPO4 (0.2 M, pH7.4)
buffer solution was added. The mixture was vortexed for 30
seconds and, centrifuged for 10 minutes at 13,000 x g; 550 μl
of supernatant was obtained. Then, 150 μl TSP D2O solution
(1.8 mg·ml-1) was added. The solution was vortexed for 30
seconds and transferred into a 5 mm NMR tube. The Carr-
Purcell-Meiboom-Gill (CPMG) spectra were recorded.

1H-NMR spectroscopy of liver
Eight hundred microliters of liver homogenate were

centrifuged for 10 minutes at 13,000 g, and 300 μl of the
resulting supernatant was transferred into an EP tube. Three
hundred microliters of buffer solution was added and the
solution was then vortexed for 30 seconds and centrifuged for
10 minutes at 13,000 g. Five hundred microliters of the
supernatant was transferred into an EP tube, and 150 μl TSP
D2O solution (1.0 mg·ml-1) was added. Then, the solution was
vortexed for 30 seconds and transferred to a 5 mm NMR tube.
The CPMG spectra were recorded.

1H-NMR spectroscopy state
A superconducting Fourier transform nuclear magnetic

resonance spectrometer of Brucker AV 600 MHz was used for
the analyses. At a temperature of 298.2 K, CPMG was
adopted, and the water peak was inhibited using the pre-
saturation method. Sixty-four transients were collected, with 64
thousand data points for each spectrum and a spectral width of
12019 Hz and a pre-saturation delay of 2.0 s. The one
dimensional NMR spectrum was obtained using the free
induction decay signal by Fourier transform.

Figure 2.  Typical 600 MHz 1H-NMR spectra of rat liver samples.  1. Lipids (VLDL/LDL) 2. Leucine 3. Isoleucine 4. Valine 5.3-
Hydroxybutyrate 6. Lactate 7. Alanine 8. Lysine 9. Arginine 10. Acetate 11. Proline 12. N-Acetyl glycoproteins 13. O-Acetyl
glycoproteins 14. Glutamate 15. Methionine 16. Acetoacetate 17. Acetone 18. Succinate 19. Pyruvate 20. Glutamine 21. Citrate 22.
Glutathione 23. Aspartate 24. Creatine 25. Phosphatidylcholine 26. Choline 27. Phosphocholine/GPC 28. TMAO 29. Taurine 30.
Glucose/aminoacids resonances 31.myo–Inositol 32. Threonine 33. β-Glucose 34.α-Glucose 35. Glycogen 36. Adenosine/Inosine
37. Fumarate 38. Tyrosine 39. Phenylalanine 40. Histidine.
doi: 10.1371/journal.pone.0078731.g002

Therapeutic Mechanism for Hyperlipidemia Rats

PLOS ONE | www.plosone.org 3 November 2013 | Volume 8 | Issue 11 | e78731



Data reduction of NMR spectra and pattern recognition
All the collected samples were analyzed with the validated

method, and all the results obtained by biochemical analyses
were expressed as the means ± standard deviation in each
group. Each sample was represented by an NMR graph. The
acquired NMR spectra were referenced to the chemical shift of
TSP (chemical shift δ0.0 ppm). Following phase and baseline
correction, the 1H-NMR spectra were automatically reduced to
TXT files using MestReNova 5.3.1 (Mestrelab Research, USA).
This applications manager incorporates a peak deconvolution
package that allows for the detection of the chemical shift and
area of the peaks eluted from each spectrogram. The data from
each spectrum (over the range of 0–10 ppm) was reduced and
normalized to the total of all the resonance integral regions.
The regions containing the resonance from residual water
(4.60–5.16 ppm) were excluded [25]. Each reduced bucket had
an equal width of 0.04 ppm, and each integral region was
effectively standardized to a ratio of the total metabolites
detected in the sample. The TXT files were imported into
Microsoft Excel for labeling, and then imported into SIMCA-P
12.0 (Umetrics, Umea, Sweden) for principal component
analysis. Prior to the analyses, the values of all of the variables
were centered and scaled. For the identification of potential
markers, we used the HMDB database (http://www.hmdb.ca/).

PCA (Principal Component Analysis) was applied to identify
outliers and detect data grouping or separation trends, and it
also produced an overview of the data set. From the score and
loading plots, we classified the samples and the potential
biomarkers responsible for the classification are shown. The
supervised pattern recognition, OPLS-DA, focused on the
actual class discriminating variation of data compared to the
unsupervised approach, PCA [26]. The OPLS-DA model was
validated by describing R2Y and Q2 values. Q2 was used to
provide an estimation of the predictive capability of the models,
whereas R2 describes how well the data could be
mathematically reproduced by the training model. The fact that
both Q2Y and R2Y were close to 1 indicates that it is an
excellent model, whereas the poor ratio of these values

suggests model overfitting [27,28]. Some of the intensities from
the spectral data of key metabolites selected according to
variable importance plot (VIP) analysis of OPLS were
expressed as the means ± sd. The significance of variation
between groups in the data regarding biological parameters
was determined using the paired-sample t-test, using
SPSS19.0 (IBM, USA). P-values of less than 0.05 were
considered to be statistically significant.

Results

TC, TG, LDL-C, and HDL-C test results
The plasma lipid levels of the rats from the four different

groups are shown in Table 1. The variations of TC, TG LDL-C
and HDL-C in rats from the control group were not significant,
and neither were the variations observed in the other 3 groups
in the first 6 weeks. However, from the 7th week on, the levels
of TC and LDL-C gradually increased, and remarkable
differences appeared by week 11 (P<0.01), indicating that our
model successfully resembled hyperlipidemia in rats.

After one week of gavage with GP and atorvastatin, the
levels of TC and LDL-C began to decrease gradually, and after
3 weeks, the reduction in TC and LDL-C levels was highly
significant (P<0.01), suggesting that both drugs could lower
lipid levels.

Qualitative 1H-NMR analysis and identification
By applying 1H-NMR, which was previously used to study

bio-fluid, we obtained a spectrogram of the
metabolite components from one dimension high resolution H
spectrum [29,30]. The 1H- NMR spectrums of the plasma and
liver of rats in the four different groups are shown in Figure 1
and Figure 2. The chemical shift and splitting of the main
metabolites in the spectra were identified by referencing
published literature [15,31-33]. The identification of metabolites
in the plasma and liver of rats is shown in Table S1.

Table 1. Plasma lipid levels of rats from the four groups. (x±s, n=8, mmol/L).

Group Week TG TC HDL-C LDL-C
Control 0 0.87±0.08 1.42±0.17 0.69±0.06 0.17±0.03
 11 0.50±0.09 1.28±0.17 0.89±0.10 0.18±0.06
 15 0.94±0.16 1.17±0.07 0.91±0.13 0.17±0.02
Hyperlipidemia 0 0.89±0.13 1.65±0.09 0.70±0.06 0.17±0.04
 11 0.87±0.12 6.12±1.86a** 0.68±0.18 1.12±0.74 a**
 15 1.15±0.11 3.78±0.22 0.98±0.09 0.72±0.15
GP treated 0 1.02±0.26 1.48±0.22 0.69±0.06 0.18±0.03
 11 0.90±0.13 6.34±1.19 a** 0.68±0.12 1.21±0.14 a**
 15 0.87±0.18 1.83±0.12 b** 0.94±0.06 0.55±0.25 b**
Atorvastatin treated 0 1.23±0.28 1.42±0.15 0.71±0.08 0.16±0.03
 11 1.24±0.39 6.22±1.03 a** 0.63±0.57 1.18±0.23 a**
 15 0.92±0.16 2.00±0.31 b** 0.94±0.20 0.59±0.16 b**

a: compared with normal, b: compared with model within group;* P<0.05, ** P<0.01
doi: 10.1371/journal.pone.0078731.t001
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Multivariate analysis of potential biomarkers
Metabolic changes in the plasma.  After centralization and

normalization of integral data using SIMCA-P12.0, pattern
recognition analysis was conducted by employing PCA and
OPLS-DA. In Figure 3, each point represents one sample, and
different sample assembly revealed different metabolic
patterns.

PCA analysis of the 1H-NMR spectra of plasma from rats in
the control group and hyperlipidemia model group are shown in
Figure 3A. Although the samples from two groups could be
separated from each other, the classification was not
remarkable. We therefore employed a supervised learning
method to remove non-essential factors to improve the

accuracy of classification. In this study, the OPLS-DA algorithm
was employed to discriminate between the normal and
hyperlipidemia model groups (Figure 3B). The OPLS-DA model
had a high R2Y value (0.92) and Q2 value (0.63), indicating the
overall goodness of fit and good predictive capabilities of the
proposed model. The results of the control, hyperlipidemia
model and GP/atorvastatin treatment groups are shown in
Figure 3C and 3D. The control and hyperlipidemia model
groups were clearly discriminated due to remarkable
differences between their metabolic profiles. The GP and
atorvastatin treatment groups were distributed between the
control and hyperlipidemia model groups, suggesting that the
metabolic profiles of the hyperlipidemia rats recovered and the

Figure 3.  PR analysis of the 1H-NMR spectra of rat plasma.  (A): PCA analysis of the spectra of plasma from normal and
hyperlipidemia rats (R2X=0.988, Q2=0.885). (B): Scores plot of the OPLS-DA analysis of the spectra from the plasma of normal and
hyperlipidemia rats (R2X=0.925, R2Y=0.874, Q2=0.642). (C): Scores plot of the OPLS-DA analysis of the spectra from the plasma of
normal, hyperlipidemia and GP-treated rats (R2X=0.968, R2Y=0.878, Q2=0.538). (D): Scores plot of the OPLS-DA analysis of the
spectra from the plasma of normal, hyperlipidemia and Atorvastatin-treated rats (R2X=0.909, R2Y=0.522, Q2=0.328). (E): Loading
plot of the OPLS-DA analysis of the spectra from the plasma of normal and hyperlipidemia rats.
doi: 10.1371/journal.pone.0078731.g003

Therapeutic Mechanism for Hyperlipidemia Rats
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plasma metabolites were restored to normal levels after drug
treatment.

Potential biomarkers were selected according to the VIP
values from the pattern recognition model. In the OPLS model,
80 variables displayed VIP values greater than 1.2. In the
loading plot (as shown in Figure 3E), these 80 points were
relatively far away from the dense cluster, suggesting that
these samples provided a greater contribution to the
classification. Points whose VIP values were greater than 1.2
and with P values less than 0.05 were regarded as final
biomarkers. Following structural identification, 10 potential
biomarkers were identified, as listed in Table 2.

Compared with the normal control group, the levels of
acetoacetic (δ2.22 ppm), acetone (δ2.27 ppm) and TMAO
(δ3.26 ppm) increased in the hyperlipidemia model group,
while the levels of valine (δ1.06 ppm), isoleucine (δ0.98 ppm),
alanine (δ1.48 ppm), 3- hydroxybutyrate (δ1.2 ppm), lactate
(δ1.34 ppm), lysine (δ1.5 ppm) and fumarate (δ6.52 ppm)
levels decreased. The variation between biomarkers in the
hyperlipidemia model group and the GP and atorvastatin
treatment groups is shown in Table 2, and the results of other
metabolites in the plasma are listed in Table S2.

Metabolic changes in the liver.  The PCA and OPLS-DA of
the 1H-NMR spectra from rat livers in the control and
hyperlipidemia model control groups are shown in Figure 4A

Figure 4.  PR analysis of 1H-NMR spectra of rat liver tissues.  (A): PCA analysis of the spectra of liver tissues from normal and
hyperlipidemia rats (R2X=0.955, Q2=0.782). (B): Scores plot of the OPLS-DA analysis of the spectra from the liver tissues of normal
and hyperlipidemia rats (R2X=0.953, R2Y=0.999, Q2=0.827). (C): Scores plot of the OPLS-DA analysis of the spectra from the liver
tissues of normal, hyperlipidemia and GP-treated rats (R2X=0.955, R2Y=0.984, Q2=0.608). (D): Scores plot of the OPLS-DA analysis
of the spectra from the liver tissues of normal, hyperlipidemia and Atorvastatin-treated rats (R2X=0.931, R2Y=0.945, Q2=0.544). (E):
Loading plot of the OPLS-DA analysis of the spectra from the liver tissues of normal and hyperlipidemia rats.
doi: 10.1371/journal.pone.0078731.g004
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and Figure 4B, respectively. The OPLS-DA model had a high
R2Y value (0.991) and Q2 value (0.685), indicating the overall
goodness of fit and good predictive capabilities of the model.

The OPLS-DA results from the normal, hyperlipidemia model
and the GP treatment groups are shown in Figure 4C. The
results of the normal, hyperlipidemia model and atorvastatin
treatment groups are shown in Figure 4D. The control and

hyperlipidemia model groups were clearly segregated due to
the remarkable difference between their metabolic profiles. The
GP and atorvastatin treatment groups were distributed between
the control and hyperlipidemia model groups, indicating that the
metabolic profile of hyperlipidemia rats was repaired and the
liver metabolites were restored to normal levels after drug
treatment. The loading plot is shown in Figure 4E.

Table 2. Relative integrals from selected metabolites that contributed to the classification of the rats in the four groups.

Biological
matrices Metabolites Control HyperlipidemiaGP Atorvastatin

Changes
   (H-C)

P-value
  (H-C)

Changes
  (G-H)

P-value
  (G-H)

Changes
  (A-H)

P-value
  (A-H)

Plasma Acetoacetate 233.1±53.8 283.1±68.0 233.0±43.0 256.9±31.9 ↑ 0.03 — 0.683 — 0.812
 Acetone 13.4±3.5 18.8±4.1 12.6±2.9 14.9±3.6 ↑ 0.001 ↓ 0.017 — 0. 374
 Valine 23.5±6.9 17.7±4.8 17.8±4.1 24.4±3.1 ↓ 0.005 — 0.862 ↑ 0.004
 Isoleucine 105.8±26.4 90.8±16.0 91.5±22.1 115.5±11.3 ↓ 0.011 — 0.395 ↑ 0.001
 Alanine 64.0±18.8 49.5±8.7 51.4±13.7 65.5±9.3 ↓ 0.010 — 0.776 ↑ 0.008
 3-HB 38.4±17.6 27.3±9.2 23.5±11.4 34.9±9.4 ↓ 0.009 — 0.564 ↑ 0.023
 Lactate 229.2±66.5 179.1±29.1 166.4±39.9 172.3±35.3 ↓ 0.011 — 0.290 — 0.644
 Lysine 64.0±18.8 49.4±10.4 51.4±13.7 63.9±17.4 ↓ 0.011 — 0.938 — 0.155
 TMAO 254.5±54.7 295.7±39.6 235.0±51.2 302.7±45.2 ↑ 0.012 ↓ 0.002 — 0.725
 Fumarate 12.9±5.5 9.19±3.8 8.63±2.8 14.7±2.6 ↓ 0.005 — 0.221 ↑ 0.035

Liver Acetoacetate 131.6±8.7 174.6±37.1 139.2±27.8 127.8±14.6 ↑ 0.013 ↓ 0.047 ↓ 0.008
 Acetone 19.3±1.4 24.1±4.5 19.6±2.4 18.2±2.8 ↑ 0.025 ↓ 0.015 ↓ 0.010
 Glutamine 131.6±8.72 63.0±11.1 13.4±8.4 45.0±9.2 ↑ 0.013 ↓ 0.047 ↓ 0.008
 Fumarate 8.11±2.3 5.31±3.3 6.41± 3.4 8.28±5.7 ↓ 0.045 — 0.519 — 0.287
 Phosphatidylcholine 34.3±4.0 24.7±5.1 31.7±2.4 28.3±9.9 ↓ 0.004 ↑ 0.020 — 0.429
 Glycogen 12.0±0.9 7.86±4.2 6.83±5.4 8.23±3.5 ↓ 0.042 — 0.726 — 0.843
 Citrate 43.9±2.2 35.8±5.3 37.5±6.9 33.6±2.9 ↓ 0.004 — 0.692 — 0.289

The data were normalized to the total of all the resonance integral regions over the range of 0.04–10.0 ppm, excluding the resonance from residual water (4.60–5.16 ppm).
“↑” and “↓ ” indicated that the compound was up- and down-regulated, “— ”indicated that the compound did not significantly change;
P-values determined using paired-sample t-test, and P-values of less than 0.05 were considered to be statistically significant. H-C, G-H and A-H represented hyperlipidemia
vs. control, GP vs. hyperlipidemia and atorvastatin vs. hyperlipidemia respectively.
doi: 10.1371/journal.pone.0078731.t002

Figure 5.  Summary of the metabolic pathways related to the metabolites that changed significantly in the hyperlipidemia
model.  “↑” and “↓” indicate that the compound is up- and down-regulated compared with the control group.
doi: 10.1371/journal.pone.0078731.g005
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Potential biomarkers were selected according to the VIP
values from the pattern recognition model. In the OPLS model,
40 variables displayed VIP values were greater than 1.2. In the
loading plot (Figure 4E), these 40 points are relatively far away
from the dense cluster, suggesting that these samples provided
a greater contribution to the classification. Points whose VIP
values were greater than 1.2 with P values less than 0.05 were
regarded as final biomarkers. Following structural identification,
7 potential biomarkers were identified, as listed in Table 2.

Compared with the control group, the levels of acetoacetic
(δ2.22 ppm), acetone (δ2.27 ppm) and glutamine (δ2.46 ppm)
increased in the hyperlipidemia model group, while fumarate
(δ6.52 ppm), glycogen (δ5.4 ppm), phosphatidylcholine (δ3.22
ppm) and citrate (δ2.5 ppm) levels decreased. The variation
between biomarkers in the hyperlipidemia model group and the
GP and atorvastatin treatment groups is shown in Table 2, and
the results of other liver metabolites are listed in Table S3.

Discussion

This study demonstrated that the levels of glutamine,
acetone, TMAO and acetoacetate increased dramatically, while
the levels of valine, isoleucine, alanine, 3-hydroxybutyrate,
lactate, lysine, fumarate, glycogen, phosphatidylcholine and
citrate decreased remarkably in the plasma and liver of
hyperlipidemia model rats compared to the control group.
These data suggest that hyperlipidemia is closely related to
carbohydrate metabolism, lipid metabolism and amino acid
metabolism in vivo [34].

Lactate, fumarate, citrate and glycogen are involved in
carbohydrate metabolism. The decrease in lactate indicates a
change in glucose metabolic pathways, resulting in enhanced
aerobic metabolism or lipid synthesis. The decrease in
fumarate and citrate levels, which are the intermediate
products of tricarboxylic acid cycle, indicates the deregulation
of energy metabolism. Meanwhile, these data indirectly show
that the decrease in lactate will shift the glucose metabolic
pathway to lipid synthesis. The decrease in glycogen indicates
that glycogenesis is inhibited or glycogenolysis is enhanced.

3-hydroxybutyrate, acetoacetate, acetone, TMAO and
phosphatidylcholine are related to lipid metabolism. 3-
hydroxybutyrate, acetone and acetoacetate are generally
considered to be ketone bodies. Our data indicate that the
levels of acetoacetate and acetone increase, while the level of
3-hydroxybutyrate decreases in the plasma and liver of
hyperlipidemia model rats. Thus, hyperlipidemia can lead to the
accumulation of ketone bodies. Acetoacetate is produced by
acetyl-CoA, and it then generates 3-hydroxybutyrate or
acetone. The decrease in 3-hydroxybutyrate demonstrates that
the conversion of acetoacetate transfers towards the
production of acetone. It was previously reported that TMAO in
plasma is produced by the following pathway: dietary
phosphatidylcholine/choline → gut flora-formed TMA → hepatic
FMO-formed TMAO; TMAO is positively related to
hyperlipidemia and atherosclerosis [35]. In this research, high-
fat diet enriched phosphatidylcholine was used to induce
hyperlipidemia, demonstrating that a high-fat diet can increase
TMAO levels in the plasma. Phosphatidylcholine can affect the

deposition of lipids and cholesterol by removing excessive
triglycerides and improving the solubility of cholesterol and
lipids in the plasma. Furthermore, it has antioxidant properties.
 Hyperlipidemia can decrease phosphatidylcholine levels.

Alanine, isoleucine, valine, lysine and glutamine are related
to protein metabolism. Alanine, isoleucine and valine are
glucogenic amino acids. The decrease in these amino acids
indicates that they generated α-keto acid through deamination,
and α-keto acid subsequently generates glucose via
gluconeogenesis. The decrease in the ketogenic amino acid
lysine indicates it is transformed to generate ketone bodies or
fatty acids, which could indirectly explain the accumulation of
ketone bodies. Glutamine can transport ammonia, as it is the
mechanism of ammonia transportation and storage. The
decrease in glucogenic amino acids implies that with oxidative
decomposition of amino acids, the resulting ammonia
combines with glutamate and can be transported as glutamine,
increasing glutamine levels.

The discovery of biomarkers and the biological explanations
mentioned above can be used to analyze the pathogenesis of
hyperlipidemia through metabolic pathways, and these results
can likewise play an important role in assisting the clinical
diagnose of hyperlipidemia (Figure 5).

The levels of acetoacetate, acetone and glutamine in the
GP and atorvastatin treatment groups decreased remarkably
prior to drug administration, and they returned to normal levels
after administration. The variations of lactate, lysine, glycogen
and citrate were not significant. The level of
phosphatidylcholine increased remarkably, while TMAO levels
decreased significantly after GP treatment; no changes were
observed in these markers in response to atorvastatin
treatment. In contrast, the levels of valine, isoleucine, alanine,
fumarate and 3-hydroxybutyrate increased significantly after
atorvastatin treatment, while there were no significant changes
in these markers after GP treatment.

In summary, GP acts by affecting lipid metabolism. After
hyperlipidemia model rats were treated with GP, cholesterol
and low density lipoprotein levels in the plasma decreased and
ketone body metabolites returned to normal, but only a weak
effect was observed on protein and glucose metabolism. In
contrast to the mechanism of atorvastatin, GP was able to
return phosphatidylcholine and TMAO levels to normal.
Phosphatidylcholine consists of hydrophobic nonpolar groups
and hydrophilic polar groups that have strong surface activity
and emulsification. Phosphatidylcholine can improve the
absorption and utilization of lipids, decrease the retention of
lipids in vessels, remove cholesterol deposits in blood vessel
walls, promote diffusion of atherosclerotic spots and reduce
high cholesterol. The unsaturated fatty acid of molecules can
prevent the absorption of cholesterol in the intestinum tenue
and promote cholesterol excretion [36]. Meanwhile, TMAO is
closely related to phosphatidylcholine metabolism. The ability
of GP to decrease in TMAO suggests that GP has an inhibitory
effect on the pathway of phosphatidylcholine to TMAO.

Atorvastatin acts mainly via the pathways of lipid metabolism
and protein metabolism. After hyperlipidemia model rats were
bred with atorvastatin, HMG-CoA reductase was competitively
inhibited in the liver, decreasing cholesterol synthesis and
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increasing low-density lipoprotein receptor synthesis. As a
result, levels of low-density lipoprotein cholesterol decreased.
This effect can have preventive and therapeutic effects on
arteriosclerosis and coronary heart disease. Metabolic
analyses of the plasma and liver indicate that atorvastatin
restored the level of ketone bodies, acetoacetate, acetone and
3-hydroxybutyrate to normal. Moreover, it affected protein
metabolism, which returned glucogenic amino acid and
glutamine levels to normal but had a weak effect on glucose
metabolism.

In this study, 1H-NMR metabonomics combined with PCA
and OPLS-DA were used to analyze metabolite profiles.
Through the comparative study of atorvastatin, the
mechanisms of two drugs were revealed according to the
variations of endogenous metabolites, providing scientific
evidence for the application of metabonomics for the
mechanism study of traditional Chinese medicine.
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