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lic change of cancer cells induced
by natural killer cells at the single-cell level studied
by label-free mass cytometry†
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Sichun Zhang, *a Guojun Han*bcd and Xinrong Zhang a

Natural killer cells (NK cells) are important immune cells which have attracted increasing attention in cancer

immunotherapy. Due to the heterogeneity of cells, individual cancer cells show different resistance to NK

cytotoxicity, which has been revealed by flow cytometry. Here we used label-free mass cytometry (CyESI-

MS) as a new tool to analyze the metabolites in Human Hepatocellular Carcinoma (HepG2) cells at the

single-cell level after the interaction with different numbers of NK92 MI cells. A large amount of

chemical information from individual HepG2 cells was obtained showing the process of cell apoptosis

induced by NK cells. Nineteen metabolites which consecutively change during cell apoptosis were

revealed by calculating their average relative intensity. Four metabolic pathways were impacted during

cell apoptosis which hit 4 metabolites including glutathione (GSH), creatine, glutamic acid and taurine.

We found that the HepG2 cells could be divided into two phenotypes after co-culturing with NK cells

according to the bimodal distribution of concentration of these 4 metabolites. The correlation between

metabolites and different apoptotic pathways in the early apoptosis cell group was established by the 4

metabolites at the single-cell level. This is a new idea of using single-cell specific metabolites to reveal

the metabolic heterogeneity in cell apoptosis which would be a powerful means for evaluating the

cytotoxicity of NK cells.
Introduction

Natural killer cells (NK cells) are one of the most important
immune cells in the human body, and are the initial immune
component in the immune system to recognize and kill cancer
cells.1–4 Different from B lymphocytes and T lymphocytes, the
immune reaction mediated by NK cells can directly cause
cytotoxicity without the introduction of antigens, so NK cells
have more comprehensive ability in cancer cell killing.5,6 Up to
now, the therapy of amplication and reinfusion of the
heterogeneous NK cells has been successfully used to treat liver
cancer,7 rectal cancer,8 breast cancer9–11 and acute myeloid
leukemia12–14 in clinics. With the great improvement of NK cell
therapy in recent years, the application of NK cells will be
a more powerful weapon to ght against cancer cells.15
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Although NK cells only account for 10–15% among the
peripheral blood lymphocytes, they play an indispensable role
in the immune process.16,17 Patients who lack NK cells or have
decreased NK cells will show low efficiency when coping with
cancer cells causing poor prognosis.18 Therefore, judging the
cytotoxicity of NK cells has great signicance in clinical
immunotherapy and can be used to forecast the effectiveness of
anti-cancer treatments. In the past few decades, the method for
judging the cytotoxicity of NK cells by measuring released
protein such as lactate dehydrogenase (LDH) was suggested.
The principle of the LDH release method is detecting the
amount of LDH released from the cancer cells killed by NK cells,
and then calculating the proportion of dead cancer cells
through a comparison with the control group.19 Because of the
low cost-efficiency and reliable repeatability, the LDH release
method has become the golden method in judging the cyto-
toxicity of NK cells.20 Limited by detection sensitivity, the LDH
release method can only be used among population cells and
provide the proportion of dead cells.20 Recently, ow cytometry
(FCM)21,22 and mass cytometry (CyTOF)23,24 have been reported
to distinguish the apoptotic state of cancer cells into early
apoptosis, late apoptosis and dead cells at the single-cell level by
measuring the apoptosis-associated cell membrane
proteins.25,26 However FCM and CyTOF are inherently limited by
the need for antibodies used to label the proteins.27–29
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Fig. 1 Acquisition of HepG2 single-cell metabolite profiles by CyESI-
MS. (a) The procedure of single-cell sample preparation and CyESI-MS
detection. (b) EIC of the cell-event marker ion at m/z 760.58 was
extracted from the MS data in the positive-iron mode. The peak m/z
760.58 is a kind of abundant lipid PC 34 : 1 only existing in cells. (c) The
heat map of 224 individual HepG2 cell MS profiles. (d) The normalized
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Compared with the detection of the released proteins or
membrane proteins, the study of intracellular metabolites is of
great value because metabolites are the end products of the life
activities, which can reect the changes of cell validity in a short
time.30–32 The process of NK cells interacting with cancer cells
also causes changes of intracellular metabolites.1 NK cells
release pore-forming proteins (PFPs)33–35 and granzyme36–38 to
form perforations on the cancer cell membrane and induce
intracellular lysosome rupture, which eventually cause
apoptosis. Intracellular metabolites can reect and magnify the
small changes in genes,39 mRNAs40 and proteins41 during the
process of apoptosis induced by NK cells. Another inherent
advantage is being label-free42–44 which can avoid the limitation
of antibodies. Furthermore, intracellular metabolites contain
a massive amount of data and can be used to detect and reveal
potential biomarkers.45–47

In recent years, the analysis of intracellular metabolites
based on population cells has been developed rapidly. High
performance liquid chromatography (HPLC)48 is validly used to
separate and identify metabolites from cancer cells. This
method has been applied to study the principle of cell apoptosis
and other life activities.49,50 HPLC needs a lot of time to separate
the samples which is not conducive to rapid detection of cell
metabolites.48 More importantly, the population cell metabolite
data can only provide the average amount of metabolites which
covers up the differences between individual cells during the
cell apoptosis process induced by NK cells.51,52

Label-free mass cytometry (CyESI-MS)53 is a new tool devel-
oped by our group to satisfy the need for rapid analysis of
metabolites at the single-cell level. In brief, the single-cell
intracellular metabolites are extracted by the surrounding
solvent in a capillary and ionized under a high-voltage electric
eld. CyESI-MS has been proved to provide a multitude of
metabolite proles at the single-cell level rapidly and conve-
niently, which make it possible to analyze the changes of
intracellular metabolites during the cell apoptosis process. The
single-cell metabolite proles can also be applied to judge the
activities of apoptotic pathways through further statistical
analysis.

Herein we studied the dynamic metabolite changes of cancer
cells induced by NK cells using CyESI-MS at the single-cell level.
With the increasing ratio of NK cells (effector cells) and cancer
cells (target cells), the metabolite ngerprint of cancer cells
changed consecutively and 19 metabolites related to cell
apoptosis such as glutathione (GSH), creatine, glutamic acid
and taurine also changed. Even at the same ratio of effector cells
and target cells (E : T), the distribution of the concentration of
metabolites in individual cells presented a bimodal distribu-
tion. The correlation between metabolites and different
apoptotic pathways in the early apoptosis cell group was
established by the 4 metabolites at the single-cell level. Our
results have revealed that the apoptosis of cancer cells induced
by NK cells is a process with continuously changing metabo-
lites. Even in the same cell line, the individual cancer cells still
show different sensitivity to NK cells. Our work will provide new
ideas for using metabolites to evaluate the toxicity of NK cells
1642 | Chem. Sci., 2022, 13, 1641–1647
and reveal the process of apoptosis induced by NK cells in
heterogeneous individual cancer cells.
Results and discussion
Acquisition of HepG2 single-cell metabolite proles by CyESI-
MS

The experimental procedure is shown in Fig. 1a. HepG2 cells
were used to estimate the metabolic proling efficiency of
CyESI-MS at rst. The pulsed signals related to cell events were
captured by MS (Fig. 1b). As shown in Fig. 1c, each column of
the heat map represented a cell and each row represented a cell-
related peak. We acquired 333 metabolic-related ions in each
HepG2 cell. The normalized mass spectra of single HepG2 cells
detected by CyESI-MS are shown in Fig. 1d. Because CyESI is
considered as a so ion source, the cell-related MS prole
contains a variety of cellular small molecular metabolite infor-
mation, such as protonated metabolite ions, which may be
useful to reveal the process of apoptosis in cancer cells induced
by NK cells.
The dynamic changes of single-cell metabolic proles aer
interaction with NK cells

Previous studies have already elucidated the toxicity of NK cells
to cancer cells, but few studies have reported the metabolite
changes at the single-cell level. Therefore, we investigate the
dynamic changes of metabolites in the process of cancer cell
apoptosis induced by NK cells. The metabolic proles of indi-
vidual HepG2 cells co-cultured with different amounts of NK
cells are shown in Fig. 2a. As shown in Fig. 2a, single-cell
metabolic proles are different even aer co-culturing with the
same amount of NK cells, which reveal the metabolic hetero-
geneity of HepG2 cells during apoptosis. The normalized MS
proles of HepG2 cells provide an overview of the distribution
of metabolites aer co-culturing with different amounts of NK
mass spectra of single HepG2 cells.

© 2022 The Author(s). Published by the Royal Society of Chemistry



Fig. 2 The dynamic changes of single-cell metabolic profiles after
interaction with NK cells. (a) The heat map of two groups of single
HepG2 cells with different ratios of E : T. In one group, 162, 102, 201,
195, and 200 cells were detected with the ratio of E : T from 0 : 1, 1 : 1,
3 : 1, and 5 : 1 to 10 : 1. In the other group 186, 160, 143, 115, and 179
cells were detected. (b) The normalized MS profiles of HepG2 cells
with the ratio of E : T from 0 : 1 to 10 : 1. (c) The metabolic differences
with and without co-culture with NK cells. (d) The consecutive
distribution of HepG2 cells with different ratios of E : T from 0 : 1 to
10 : 1, from the single-cell metabolic profile analysis.

Fig. 3 The changes of specific metabolites in HepG2 cells induced by
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cells (Fig. 2b). A cluster of peaks at m/z 700–1000 with high
intensity including m/z 760.59, m/z 762.59, m/z 782.57, and m/z
808.58 are found with all ratios of E : T. The intensity of some
small molecules at m/z 100–700 such as m/z 132.13, m/z 184.07,
and m/z 308.08 reduces with the increasing ratio of E : T.

To visualize the differences of metabolic proles, an unsu-
pervised nonlinear learning algorithm named t-SNE was
applied to cluster individual HepG2 cells by their metabolic
ngerprints. Aer co-culturing with NK cells, HepG2 cells are
clearly distinguished from those without co-culturing with NK
cells (Fig. 2c). The results show that metabolic ngerprints can
be used for distinguishing the normal cells and the apoptotic
cells induced by NK cells. As shown in Fig. 2d, we found that
HepG2 cells are located at the right side with a low ratio of E : T.
With the increasing amount of NK cells, the distribution of
HepG2 cells gradually moves from the right to the le. The
distribution of HepG2 cells illustrates the consecutive dynamic
changes of metabolites during apoptosis induced by NK cells.
NK cells. (a) Logarithmic radar charts of average relative intensities of
19 characteristic metabolites with different ratios of E : T. (b) Several
metabolic pathways are impacted during cell apoptosis induced by NK
cells: (1) glycerophospholipid metabolism, (2) D-glutamine and D-
glutamate metabolism, (3) taurine and hypotaurine metabolism, (4)
glutathione metabolism, and (5) glycine, serine and threonine
metabolism. The changes of relative intensities of (c) glutathione, (d)
glutamic acid, (e) creatine, and (f) taurine in individual cells during
apoptosis and the p-value indicates a significant difference (using
Bonferroni to adjust the p-value: *p < 0.1/4, **p < 0.05/4, and ***p <
0.005/4).
The changes of specic metabolites in HepG2 cells induced by
NK cells

The ngerprints could only reveal the dynamic changes of
metabolites by fuzzy recognition, but the accurate m/z could
help to annotate the metabolites. We annotate the metabolites
by accurate m/z and calculate the average relative intensity of
single-cell metabolites. We nd the relative intensities of 19
© 2022 The Author(s). Published by the Royal Society of Chemistry
metabolites, including 7 small molecules atm/z 100–700 and 12
lipids atm/z 700–1000, continuously change with the increase of
the number of NK cells (Fig. 3a, S1 and Table S1†). The 19
metabolites are involved in several metabolic pathways
(Fig. 3b). The most signicant impact occurs in the glycer-
ophospholipid metabolic pathway which hits 3 kinds of
metabolites including LysoPC, PC and PE. The impact of glyc-
erophospholipid metabolism might be caused by membrane
perforation on HepG2 cells which was induced by the PFP and
granzyme released by NK cells. Multiple types of lipids are
involved in the glycerophospholipid metabolic pathway, so it is
difficult to establish a correlation with a specic lipid.

D-Glutamine and D-glutamate metabolism, taurine and
hypotaurine metabolism, glutathione metabolism, and glycine,
serine and threonine metabolism each hits one metabolite,
including D-glutamic acid, taurine, glutathione and creatine.
The changes in the above four pathways might be caused by
intracellular lysosome rupture during cell apoptosis.

The metabolite changes may relate to cell apoptosis. It has
been illustrated that the decrease of glutathione is a potential
early activation signal to apoptosis, and the subsequent
Chem. Sci., 2022, 13, 1641–1647 | 1643



Fig. 4 The heterogeneity of the response of HepG2 cells induced by
NK cells. (a)–(e) The distribution of glutathione with different ratios of
E : T. (f)–(j) The distribution of glutamic acid with different ratios of
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generation of reactive oxygen species (ROS) promotes cell
apoptosis.54,55 With the increasing amount of NK cells, the
relative intensity of glutathione decreases (Fig. 3c). The statis-
tically signicant difference not only exists between the groups
with and without co-culturing with NK cells, but also exists
between the groups co-cultured with different amounts of NK
cells. Similar results could be obtained in glutamic acid and
creatine (Fig. 3d and e). NK cells lead to perforation on cancer
cells membrane, which will further result in the leakage of some
metabolites during the cell apoptosis, including glutamic
acid56–58 and creatine.59,60 The results demonstrated that the
changes of specic metabolites could be used to reveal the
process of cell apoptosis.

As reported in a previous study, the increasing concentration
of taurine in cancer cells can help to ght against cell
apoptosis.61–63 Similar results can be found in the cell apoptosis
of HepG2 cells induced by NK cells. With the increasing amount
of NK cells, the relative intensity of taurine increases (Fig. 3f).
E : T. (k)–(o) The distribution of creatine with different ratios of E : T.
(p)–(t) The distribution of taurine with different ratios of E : T. The red
curves in (a), (f), and (k) show the metabolic heterogeneity in HepG2
cells without co-culturing with NK cells. In (b)–(e), (g)–(j), and (i)–(o),
the cells are divided into two phenotypes according to the relative
intensity of specific metabolites. The blue curves represent the cells of
low relative intensity and may be in the stage of late apoptosis, and the
red curves represent the cells of high relative intensity and may be in
the stage of early apoptosis. In (p)–(t) the blue curves represent the
cells in low relative intensity of taurine, while red curves represent the
cells in high relative intensity.
The metabolic heterogeneity of the response of HepG2 cells
induced by NK cells

The average cell metabolic data reveal the continuous changes
of specic metabolites during cell apoptosis, but they cover up
the metabolic heterogeneity of the cells. The single-cell
metabolite information is important especially for studying cell
apoptosis, because each cell has a specic metabolite abun-
dance in different apoptotic states. The distributions of single-
cell specic metabolites could help to reveal the metabolic
heterogeneity.

Taking glutathione as an example, the relative intensity of
glutathione in normal HepG2 cells disperses in a wide range
without co-culturing with NK cells (Fig. 4a). The distribution
of glutathione can be t in a one peak Gaussian function
which indicates the existences of metabolic heterogeneity in
single cells. Aer co-culturing with NK cells, the distribution
of glutathione changes from one peak to two peaks (Fig. 4b–e),
which indicates that the HepG2 cells might be divided into
two phenotypes according to the relative intensity of gluta-
thione. A mixture Gaussian function is used to describe the
distribution of glutathione (Fig. S2†). One group of cells with
low relative intensity of glutathione may be late apoptotic
cells, and the other group of cells with high relative intensity
of glutathione may be early apoptosis cells. With the
increasing amount of NK cells, the proportion of cells in late
apoptosis increases (Fig. S3a†). The proportion of cells in early
apoptosis and the mid-value of the concentration of gluta-
thione decrease when more NK cells are added (Fig. S3e†).
Similar results are obtained in glutamic acid and creatine
(Fig. 4f–o, S3b, c, f and g†).

Taurine could be absorbed by cells to ght against adverse
conditions. Without co-culturing with NK cells, only a small
proportion of HepG2 cells have high relative intensity of taurine
(Fig. 4p). With the increasing amount of NK cells, the propor-
tion of HepG2 cells with high relative intensity of taurine and
the mid-value of the concentration of taurine increase (Fig. 4q–
t, S3d and h†). The results show that the metabolic
1644 | Chem. Sci., 2022, 13, 1641–1647
heterogeneity can be used to distinguish the cell phenotypes
and reveal the different apoptotic stages of each single cell.

The correlation between metabolites and the apoptotic
pathway and different apoptotic pathways in the early
apoptosis group of HepG2 cells induced by NK cells

The activity of the apoptotic pathway can be inferred by
measuring the quantity and activity of specic proteins.
However, measuring the proteins at the single-cell level, espe-
cially at the same time in individual cells, is still a problem.
Metabolites, as substrates for protein catalytic reactions, can
also be used to infer the activity of the apoptotic pathway. The
concentration of different metabolites in individual cells will
represent the activity of the apoptotic pathway.62,64,65

The correlation between the concentration of metabolites
and the activity of the apoptotic pathway is rst proved in
individual cells. Taking glutamic acid and creatine as an
example, the relative intensity of glutamic acid and creatine is
closely related to the membrane perforation during cell
apoptosis and their changes should be consistent. The relative
intensity of glutamic acid and creatine in individual normal
HepG2 cells is shown in Fig. 5a. The concentration of glutamic
acid is positively correlated with the concentration of creatine in
normal HepG2 cells. Similar results can be found in early
apoptosis cells induced by NK cells. The slopes of the early
apoptosis HepG2 group and normal HepG2 group are similar,
which illustrates that the concentration of metabolites can
represent the activity of the apoptotic pathway. The
© 2022 The Author(s). Published by the Royal Society of Chemistry



Fig. 5 The correlation between four metabolites in the normal HepG2
group and early apoptosis HepG2 group. The normal HepG2 group is
on the left represented by red dots and the early apoptosis HepG2
group is on the right represented by purple dots. (a) and (b) The glu-
tamic acid is positively correlated with creatine in both groups with
similar slopes, as well as glutamic acid and glutathione (c) and (d). (e)
and (f) The glutamic acid is positively correlated with taurine in both
groups but with different slopes, as well as glutamic acid and gluta-
thione (g) and (h). 207, 124, 179, 154, 78, 135, 77, and 154 cells are
obtained in each figure from (a) to (h).
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concentration of both metabolites is lower in the early
apoptosis HepG2 group (Fig. 5b), which indicates the high
activity of the membrane perforation apoptotic pathway.

The correlation between different apoptotic pathways can be
established by specic metabolites. The concentration of glu-
tamic acid represents the activity of membrane perforation and
the concentration of glutathione represents the activity of the
ROS apoptotic pathway. In the normal HepG2 group, the
concentration of glutamic acid is positively correlated with the
concentration of glutathione (Fig. 5c), and in the early apoptosis
HepG2 group (Fig. 5d). The slopes in both groups are similar,
showing that the process of membrane perforation and ROS
apoptotic pathway are consistent. With the lower concentration
of glutamic acid and glutathione, the individual cells in the
© 2022 The Author(s). Published by the Royal Society of Chemistry
early apoptosis HepG2 group show high activity of membrane
perforation and ROS apoptotic pathway.

Specic metabolites can also affect the activity of the
apoptotic pathway. The concentration of taurine is positively
correlated with the concentration of glutamic acid in the early
apoptosis HepG2 group (Fig. 5f), but the concentration of glu-
tamic acid of most individual cells is still lower than that in the
normal HepG2 group (Fig. 5e), which indicates that the intake
of taurine can help cells to resist apoptosis, but can't completely
counteract the effects of membrane perforation apoptosis
induced by NK cells. Similar results can be found in the ROS
apoptotic pathway (Fig. 5g and h).

Conclusions

In this work, we used the dynamic metabolite changes of indi-
vidual HepG2 cells to reveal the process of apoptosis induced by
NK92MI cells through label-free CyESI-MS. A large amount of
chemical information from single HepG2 cells was obtained
which were unreachable by conventional FCM or CyTOF
without using antibodies. Metabolic ngerprints were used to
cluster the HepG2 cells and illustrate the consecutive dynamic
changes of metabolites at the single-cell level. The specic
metabolite changes could help to reveal the process of
apoptosis. The concentration of specic metabolites can be
used to not only distinguish cell phenotypes during the
apoptosis, but also establish the correlation between different
apoptotic pathways in the early apoptosis group. This work
provided a new thought for using single-cell specic metabo-
lites to reveal the metabolic heterogeneity in cell apoptosis
which would be a powerful means for evaluating the cytotoxicity
of NK cells and studying the apoptotic pathway at the single-cell
level.
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