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Aedes aegypti is one of the world’s most dangerous mosquitoes, and a vector of diseases
such as dengue fever, chikungunya virus, yellow fever, and Zika virus disease. Currently, a
major global challenge is the scarcity of antiviral medicine and vaccine for arboviruses.
Bacillus thuringiensis var israelensis (Bti) toxins are used as biological mosquito control
agents. Endotoxins, including Cry4Aa, Cry4Ba, Cry10Aa, Cry11Aa, and Cyt1Aa, are toxic
to mosquitoes. Insect eradication by Cry toxin relies primarily on the interaction of cry
toxins with key toxin receptors, such as aminopeptidase (APN), alkaline phosphatase
(ALP), cadherin (CAD), and ATP-binding cassette transporters. The carbohydrate
recognition domains (CRDs) of lectins and domains II and III of Cry toxins share similar
structural folds, suggesting that midgut proteins, such as C-type lectins (CTLs), may
interfere with interactions among Cry toxins and receptors by binding to both and alter Cry
toxicity. In the present review, we summarize the functional role of C-type lectins in Ae.
aegypti mosquitoes and the mechanism underlying the alteration of Cry toxin activity by
CTLs. Furthermore, we outline future research directions on elucidating the Bti resistance
mechanism. This study provides a basis for understanding Bti resistance, which can be
used to develop novel insecticides.
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INTRODUCTION

The mosquito Aedes aegypti is one of the most important species responsible for transmitting
viruses that cause life-threatening and epidemic human diseases worldwide, such as dengue virus
(DENV), yellow fever virus (YFV), chikungunya virus (CHIKV) and, Zika virus (ZIKV), which
drastically affect human populations (1). Dengue fever is a rapidly spreading arbovirus that has
become a global health concern (2). The rapid expansion of CHIKV and ZIKV demands the
identification of circulating lineages to design effective surveillance programs. The main vectors for
the spread of these viruses in urban areas are Ae. aegypti (L.) and Ae. albopictus (Skuse), although
other mosquito species have also been reported (3–5). To date, no efficient antiviral drugs or
org May 2022 | Volume 13 | Article 8981981
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vaccines have been developed to control these viral diseases, with
the exception of yellow fever. As a necessary consequence, efforts
to control mosquito populations remain a critical strategy for
reducing infection rates.

Chemical insecticides with active components, such as
organophosphates, pyrethroids, organochlorines, and
carbamates, have been used to control these disease vectors (6,
7). However, these chemicals are damaging to both the natural
environment and human health. They cause depletion of natural
enemies in the ecosystem and the development of insect
resistance when used continuously (8–10). In recent years,
chemical insecticides have been successfully replaced by eco-
friendly biological control agents with high specificity, minimal
influence on non-target organisms, and reduced insect resistance
(11–13). Entomopathogenic bacteria, such as Bacillus
thuringiensis (Bt), which produce different toxin spores,
represent a promising substitute for mosquito control. These
bacterial spores have a high potential to control insect pests (14–
16) (17). Bt produces a number of crystal proteins that have
insecticidal activity against over 3000 insect species, including
Coleoptera, Lepidoptera, and Dipterans (18–20). These toxin
proteins, including Cry4Aa, Cry4Ba, Cry10Aa, Cry11Aa, and
Cyt1Aa, are toxic to mosquitoes (21–23). Cry toxin’s
effectiveness against insect pests is dependent on their
interactions with other receptors such as alkaline phosphatase
(ALP), aminopeptidase-N (APN), cadherin (CAD), and ATP-
binding cassette (ABC) transporters (24–31). For that reason, it
is crucial to comprehend the interactions between Cry toxins and
other midgut proteins. In addition to Cry toxins, Cyt toxins are
important for inducing toxicity in some insect orders (23, 32, 33).
For example, the Bt strain LLP29 produces the Cyt1Aa6 toxin,
which is toxic to Ae. albopictus and Culex quinquefasciatus (34).

Lectins are a diverse group of ubiquitous carbohydrate-
binding proteins found in all organisms that play an important
role in self/non-self-immune recognition in insects (35–40).
Lectins have a wide range of functional responses in symbiosis,
host colonization by microbial pathogens, and host immune
responses (41, 42). Genome-wide analyses have shown that C-
type lectin (CTL) proteins are more abundant and distinct in
invertebrates (43–47). Moreover, lectin proteins bind
carbohydrates in the existence of Ca2+ ions via their C-type
lectin-like domains (CTLD), containing the highly conserved
motifs QPD (Gln-Pro-Asp) and, EPN (Glu-Pro-Asn) which are
specific to mannose- and galactose-type carbohydrates (43). The
Cry toxin domains II and III and carbohydrate-recognition
domains (CRD) of lectins have similar structures (48–50), and
because of these structural similarities, it is very important to
further functionally investigate and comprehend the role and
functional mechanism of lectins in Cry toxicity. Protein-protein
interactions among lectin, Cry toxin, and related toxin receptors
have been investigated to explore the function of lectin in Bt
serovar israelensis (Bti) tolerance (51–54). Lectin binding
research also showed the existence of numerous APN isoforms
with O-linked carbohydrate structures known to bind with
Cry1Ac toxin in Douglas fir tussock moth larvae (55). The
lectin-like domain III of Cry toxins also known to involved in
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the interaction with the peritrophic membrane (PM) by
attaching to PM chitin and GalNAc related numerous PM
proteins (56–58), which may also contribute to the failure of
some toxins to pass through the PM (59, 60). However,
understanding the role of lectins in Cry toxicity is important,
as it will not only broaden our understanding of the Bt
mechanism but also aid in the implementation of new
biocontrol strategies.
AE. AEGYPTI INVASION

Ae. aegypti is an important arthropod vector and model
organism in invasion biology. Competition for the same
available resources in the ecosystem disrupts and destabilizes
the native population (61). nvasion results in the introduction of
new diseases or the active spread of local diseases. Mosquitoes
are important invaders due to a close relationship with human
pathogens (62, 63). Human habitats are the most likely places for
mosquitoes to live in and most mosquitoes change territories
accordingly (64). Ae. aegypti survive worldwide in tropical and
subtropical areas; however, populations vary in their capability
(vector capacity) to transmit disease (65–70). Africa is
considered the ancestral location of Ae. aegypti, which spread
to other parts of the world probably by traveling on ships along
trading routes (67, 69). Outside Africa, Ae. aegypti has a robust
genetic inclination to enter homes and feed on humans’ blood, as
well as the ability to survive and lay eggs in man-made water
reservoirs in the human environment (66, 70). However, there is
extensive variation in the appearance, ecology, and behavior
among sub-Saharan African mosquito populations (6, 10, 71–
73). Some populations are less contact with humans, live in
forests, feed on other animals, and oviposit in tree holes (66, 67,
69, 70).

Origin of Ae. aegypti
There are two subspecies of Ae. aegypti (69), namely, Ae. aegypti
formosus (Aaf) and Ae. aegypti aegypti (Aaa). Almost all
populations of the African subspecies Ae. aegypti aegypti are
strongly anthropophilic and light in color. However, in Africa,
subspecies belonging to the Ae. aegypti formosus live in forests
and are darker in color. Previously, the two subspecies were
separated by coloration, with Aedes aegypti aegypti having pale
scales on the first abdominal tergite (69). However, the
populations of West Africa contain pale scales, on the other
hand, appeared to be closer genetically to Aedes aegypti formosus
populations than to Aedes aegypti aegypti populations from other
parts of the tropics (10, 72, 73). Both species coexist in West
Africa (Senegal) and East Africa (Kenya). Although they do not
coexist in rural areas, they mate freely in urban environments.
The combination of different factors, such as low migration,
founder effects, and irregular habitats, makes populations more
genetically structured (74). In earlier 16th to 18th centuries, trans-
Atlantic shipping introduced Ae. aegypti to the recent world and
in the late 19th century Ae. aegypti reached Asia (75–77). The
mosquito exomes from five different populations of the globe
May 2022 | Volume 13 | Article 898198
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were sequenced and compared them with those of the African
populations of Ae. aegypti in West Africa (Senegal) and other
regions (Mexico and Sri Lanka) (78).

Ae. aegypti Biology
Generally, plant nectar acts as a basic source of food for
mosquitoes, but female mosquitoes require blood prior to
laying eggs. Warm-blooded vertebrate host blood is a preferred
nutrient source for adult female mosquitoes (79). Humans are
the most stable hosts for sucking blood. Nutrients in the larval
stages are stored and consumed during egg production (80).
During its lifespan, an adult female can lay five batches of eggs,
with a single batch containing up to 100-200 eggs. Eggs can resist
drought conditions for a few months (81, 82). Most parts of the
mosquito life cycle are in the aquatic phase, including the four
larval stages and pupal stage. Larvae are fast growing, feeding
completely on the water surface. The larval stages last for at least
four days. At the end of the fourth instar, the larvae go through a
non-feeding stage called the pupal phase, which lasts
approximately two days. The lifespan of an adult mosquito
changes according to environmental circumstances but
generally ranges from two to four weeks (Figure 1) (81, 83, 84).
GLOBAL BURDEN OF MOSQUITO-BORNE
DISEASES

Vector-borne diseases affect two-thirds of the world’s population
and cause the death of millions of people annually (66, 85, 86).
Ae. aegypti is the main arboviruses vector (87–89). It is mainly
linked with the spread of a many viral diseases in humans,
including dengue fever, yellow fever, chikungunya and Zika virus
disease. However, the world is less affected by yellow fever as a
potent vaccine has been developed to control it, although it still
Frontiers in Immunology | www.frontiersin.org 3
exists (90, 91). Dengue viruses (DENVs) are the causal agents of
dengue fever, a viral infectious mosquito-borne disease that
spreads across the world’s tropics and subtropics (92). There
are four DENV serotypes, namely, DENV-1, DENV-2, DENV-3,
and DENV-4 (93, 94). Each year, approximately 390 million
people worldwide become infected with the dengue virus (95). In
2014, the highest spread of dengue fever occurred in Taiwan with
15,732 reported cases, of which 136 were dengue hemorrhagic
fever (96). From 1990 to 2019, the burden of dengue increased as
most parts of the world experienced three decades of
urbanization, global warming, and an increased population.
Southeast Asia and South Asia remain areas of concern,
especially as the burden of dengue fever in the Americas is
rapidly increasing (97).

In 2007, the Zika virus (ZIKV) was detected in 55 countries in
America, Oceania, Asia, and Africa. However, the first epidemic
cases were recorded in Brazil in 2015 and approximately 1.5
million people were infected (98). Zika virus disease, which
results in microcephaly in newborns, affects brain growth, and
leads to the formation of cranial calcifications, is becoming
increasingly prevalent in Brazil (99). An outbreak of Zika virus
disease in South America, Central America, and the Caribbean
was linked to prenatal brain dysfunction (100). The chikungunya
virus (CHIKV) belongs to the Alphavirus genus, which is
transmitted by both Ae. aegypti and Ae. albopictus, causing
chikungunya fever with serious joint pain in infected patients
for several years (101). In 1952-1953 the first CHIKV epidemic
was reported in Tanzania (East Africa) (101) and considered as a
leading reason of concern, causing epidemics in several Indian
Ocean islands, Asia, as well as in America and Southern Europe.
In 2005-2006, a CHIKV epidemic outbreak occurred in the
Indian Ocean and 1.5 million people were infected. In 2010, an
epidemic outbreak was reported in India, affecting more than
one million people (102). However in 2013, CHIKV spread in the
FIGURE 1 | Life cycle of mosquito Aedes aegypti.
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Western world and further spread in the Americas (46 countries)
and 1.7 million suspected cases were reported (103). Existing
data show that between 2010 and 2019, CHIKV and ZIKV
caused average annual losses of more than 106,000 and 44,000
disability-adjusted life years (DALYs), respectively. The burden
of these two viruses in the Americas far exceeds that of any other
region of the World Health Organization (WHO) (104).
BIOCONTROL OF MOSQUITOES USING
B. THURINGIENSIS

The discovery of bacteria such as Bti are extremely toxic to
Dipteran larvae, has opened the way to their usage as a possible
bio-larvicide in mosquito eradication campaigns across the
world (22, 105, 106). Bti toxin was initially found to be an
excellent biological control agent for mosquito larvae and black
flies (107). It can produce different toxins, such as Cry4Aa,
Cry4Ba, Cry11Aa, Cyt1Aa, and Cyt2Ba crystal proteins (108,
109). Cry proteins are known to be very toxic against different
insect orders, such as Coleopteran, Diptera, Lepidoptera, and
Hymenoptera. In contrast, Cyt toxins are usually found in Bt
strains that are active against Dipterans, with a few outliers of Cyt
proteins that, are active against Coleopteran larvae have been
documented (32, 110). However, Cry11Aa exhibited a high
toxicity against Ae. aegypti (111). At present, Bti is largely used
for mosquito control; therefore, improving the effectiveness of
Bti products is a key issue that needs to be solved in the current
development of Bti products. Biocontrol product limitations can
be improved by enhancing the genetic and physiological
mechanisms of biocontrol using a mixture of organisms as
biocontrol agents (112, 113).

According to all the known Cry structures, activated Cry
toxins have three individual functional domains consisting of a-
helical bundles in domain-I, b-prism folds in domain-II, and a
sandwich of ab-sheets in domain-III. Domains I and II function
in receptor recognition and membrane pore formation,
respectively (114). Cry toxins interact with midgut receptors
found in lipid rafts and this phase is necessary for
oligomerization and toxin insertion into the membrane (115).
Oligomerization is a complicated mechanism that involves toxin
contact with receptors and subsequent proteolysis of the a-1
helix (116). Activated toxins bind to a wide range of receptors on
midgut epithelial cells. The interaction of Cry toxin with its
receptor results in toxin oligomerization and pore formation,
eventually leading to cell death (117). Sequential binding of
Cry1A toxins has been observed in lepidopteran insects. The
binding mechanism may begin with alkaline phosphatase (ALP)
and aminopeptidase-N (APN) receptors, followed by cadherin
binding. Interaction with the cadherin receptor causes a-1 helix
to be cleaved, resulting in the formation of oligomeric toxins
(116). In case of Cry11Aa, it was reported that Cyt1Aa induce
oligomerization of Cry11Aa resulting in membrane pore
formation in Ae. aegypti (118). Cadherin receptor is important
for the oligomerization of Cry11Aa but not for Cry4Ba (119).Cry
toxins are very toxic to mosquito larvae. By binding to protein
Frontiers in Immunology | www.frontiersin.org 4
receptors on the gut epithelial cell membrane Cry toxins lead to
pore formation and cell lysis (27, 120). Midgut proteins present
in the brush border of larvae midgut bind to Cry toxins and
facilitate events resulting in larval death (121–123). Many
receptors have been reported in mosquitoes, including
aminopeptidase (APN), alkaline phosphatase (ALP), cadherin
(CAD) and ABC transporters, which are midgut receptors of Bti
Cry4Ba, Cry11Aa, and Cry11Ba toxin in Ae. aegypti, respectively
(30, 124–126).

Three conserved signaling pathways, including the Toll-like
receptor pathway, immunodeficiency (IMD) pathway, and other
Janus kinase-signal transducer and activator of transcription
(JKT) pathways, participate in the mosquito defense
mechanism (127, 128). The Toll pathway plays main role in
the regulation of natural immunity. It is primarily responsible for
the identification and protection of viruses and fungi. The IMD
pathway can recognize and immunize gram-positive and
-negative bacteria and can control antimicrobial peptides, such
as Diptera and Drosophila peptides. Expression of AMP (129,
130) and the JKT pathway play important roles in the process of
damage repair and tissue regeneration in the body.
ROLE OF LECTINS

Lectins are a class of multivalent proteins that specifically bind
glycoproteins and are widely distributed in plants, animals, and
microorganisms (35, 37). Lectins play important roles in cell
signaling and photosynthesis, and many diverse lectin roles have
been studied in the model plant Arabidopsis thaliana (131).
Recently, plant lectins have been used in agricultural
improvement, biomedical research, and glycobiology (132). In
animals, they function as weapons to kill pathogens through
aggregation and opsonization, and are present in all vertebrates
and invertebrates (133, 134). C-type mannose-binding lectin
(MBL) plays a key role in the immune system of vertebrates,
and its deficit increases the chances of more infectious diseases to
attack (41). The MBL in chickens can be activated when they are
exposed to chicken diseases (135). Lectins are effective for
invertebrate and vertebrate cancerous cells, prompting
biochemists to use them in histochemical and cytochemical
research (136, 137) as well as in human medicine (138)

Role of Lectins in Insects
Insects are a very abundant and miscellaneous phylum in the
kingdom Animalia. They rely entirely on their innate immune
system to prevent themselves from external environmental
pathogens (42, 139, 140). When a harmful germ invades an
insect body, it is recognized by a group of proteins recognized as
pattern recognition receptors (PRRs). These PRRs can detect
pathogens via the pathogen-associated molecular patterns
(PAMPs) present on the pathogen surface (46). Invertebrates
have seven groups of PRRs, namely, galactose-binding lectins
(galectins), multi-domain scavenger receptors (SCRs),
peptidoglycan recognition proteins (PGRPs), fibrinogen-related
proteins (FREPs), gram-negative binding proteins (GNBPs),
May 2022 | Volume 13 | Article 898198
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thioester-containing proteins (TEPs), and CTLs. More recently,
Toll-like receptors and the mammalian Toll receptor family have
been found to be more conserved and to function in innate
immunity . Bombyx mori Tol l9 acts as a PRR for
lipopolysaccharide binding and Toll9 is more similar to the
mammalian TLR4–MD-2–LPS pathway (141).

CTLs are a large family of proteins that are recognized by
CTLDs and further classified into 17 different subgroups on the
basis of structural domain and phylogeny (44). They bind
carbohydrates in the presence of Ca2+ ions via their CTLD,
containing the highly conserved motifs EPN (Glu-Pro-Asn) and
QPD (Gln-Pro-Asp), which are specific to mannose-and
galactose-type carbohydrates (43, 142). CTLs exhibit a wide
range of functional responses in symbiosis, host colonization
by infectious pathogens, and host immune responses (36, 41).
Invertebrate CTLs have been shown to mediate immune
responses and development (143, 144). Innate immunity is
based on the secretion of different lectins that possess different
functions, including nodule formation, Escherichia coli clearance,
hemagglutination, encapsulat ion, melanization, the
prophenoloxidase cascade, and phagocytosis (145, 146).

The novel CTLs TcCTL5 and TcCTL6 in the Coleopteran
beetle (Tribolium castaneum) functioned against bacterial
infection, whereas their silencing showed a significant decrease
in four antimicrobial peptides (147, 148). A CTL in Plutella
xylostella, PxIML, play a key role in the recognition of pathogen
and the subsequent humoral and cellular immunity of the species
(39). Similarly, the Mud Crab (Scylla paramamosain) CTL
SpCTL6 plays an immune-protective role, and its expression
level is significantly increased during the larval stages and after
molting (149). A genome-wide comparative analysis of CTLs in
seven insect species (Spodoptera litura, Helicoverpa armigera,
Manduca sexta, B. mori, Drosophila melanogaster, Tribolium
castaneum, and Ae. mellifera), showed interesting results. They
observed that CTL-S1–S8 and CTL-X1–X4 ortholog groups were
well conserved in seven species, whereas the CTL-X5 double
CRD domain group, the three-CRD CTL-S11 group, the C-
terminal long CTL-S9 group, and the CTL-Lepidopteran-specific
S10 group were found to be not conserved (150). Furthermore,
the CTL BrCTL10 induces multiple immune responses in
silkworms (B. mori) (40). In addition, BmLBP in B. mori
facilitates the clearance of E. coli (151). Most importantly,
these insect CTLs can recognize dead cells as well as cancerous
cells in invertebrates (152, 153). A total of 35 CTL genes were
identified in the Oriental Armyworm (Mythimna separate) with
a single and double CRD domain that roles in innate immune
responses (154). M. sexta immulectins enable melanization and
cellular encapsulation (155, 156). Furthermore, HaCTL3, a CTL
gene in the cotton bollworm (H. armigera) plays a key role in
development and larval growth (157).

Role of Lectins in Mosquitoes
The mosquito’s gut is responsible for pathogen entry and
replication. The gut contains microbiome that interact with
midgut cells and are essential for vector physiology (158, 159).
Previous studies reported that the gut microbiome plays a vital role
in vector competence (158, 160–162). CTLs in gut ecology play a
Frontiers in Immunology | www.frontiersin.org 5
vital role in immune activation and may serve as intervention
targets for the control of vector-borne diseases in nature (36, 163).
Ae. aegypti mosGCTL-3 regulates germline development and
affects fertility, whereas knockout of mosGCTL-3 revealed a
decrease in the number of gut microbiota, and GCTL-3 mutants
showed a decrease in the dengue virus-2 infection rate (164).
Modification of the mosquito’s immune system through
expression of the human CTL CLEC18A gene can drastically
reduce dengue virus infection. Transgenic mosquitoes showed
significant differences in the midgut microbiota (165). Mosquito
galectin, mosGCTL-1, interacts with the West Nile virus (WNV)
and promotes mosquito infection (166) while mosGCTL-7
interacts with the Japanese encephalitis virus (JEV) in Ae.
aegypti and facilitates virus entry (167).

The mosquito genomes of Ae. aegypti and Anopheles gambiae,
and those of D. melanogaster andM. sexta, contain 39, 25, and 34
CTL genes, respectively (45, 127, 168, 169), whereas 183 CTL
genes have been reported in Caenorhabditis elegans (168).
Mosquito, shrimp, and Drosophila CTLs help these species
defend themselves against bacterial infections. It has also been
reported that silencing of CLTs causes rapid bacterial growth in
cases of infection, which ultimately results in a short lifespan (170,
171). Furthermore, it has been described that mosquito CTLs play
functions in the maintenance of homeostasis of the gut
microbiome (36). CLTs play significant role in the activation of
the melanization cascade in Ae. aegypti (172). Moreover, the CRDs
of lectins and the Bti Cry toxin domains II and III adopt similar
structures (48–50, 173). The tertiary structures of different Bti Cry
toxins have determined through X-ray crystallography (27)
(Figure 2). All of these structures are very similar to the three-
domain organization, suggesting that all proteins in the Cry three-
domain family share a similar mode of action. The N-terminal
domain (domain I) consists of seven a helices, the central -a5
helix is hydrophobic and surrounded by six additional
amphipathic helices; the helical domain is necessary for
membrane insertion and pore formation. Domain II is made up
of three anti-parallel b-sheets with exposed loop sections, while
domain III is made up of a b-sandwich (174, 175). In domains II
and III, exposed regions are required for receptor binding (27).
Domain II shares structural resemblances with various
carbohydrate-binding proteins, including lectin jacalin, lectin
Mpa and vitelline (59, 176–179); Domain III is structurally
identical to other carbohydrate-binding proteins like the
cellulose binding domain of 1,4-b-glucanase C, b-glucoronidase,
b-galactosidase, galactose oxidase, sialidase, and xylanase U (180).
Because of these similarities, carbohydrate moieties may play a
substantial part in the mechanism of three-domain Cry toxins.

Due to various structural similarities, it is very important to
further understand the function and molecular mechanism of
mosquito lectin in Cry toxicity, protein-protein interactions
among lectin, Cry toxin, and other important receptors (51, 52,
54, 125, 173).

Role of Lectins in the Ae. aegypti
Response Against Cry Toxin
Cry toxin tolerance, especially Cry1A, has been extensively
studied in Lepidoptera such as B. mori. Cry1A toxicity is
May 2022 | Volume 13 | Article 898198
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altered in the presence of the midgut protein P252 and has
antimicrobial activity against Bt, E. coli, and Serratia marcescens
(181). These midgut membrane proteins also show low toxicity
of Cry1Ac in H. armigera (182). In other Lepidopteran larvae,
like Lymantria monacha, Thaumetopoea pityocampa, Heliothis
virescens, M. sexta, and Spodoptera exigua, decrease Cry toxicity
in late instars is associated with a decreased number of available
binding sites (25, 183–186). Weaker interaction of Cry1A toxins
was identified among the apical brush border of the midgut
epithelium of Orgyia pseudotsugata and Cry1A toxins due to the
presence of toxin-binding glycoproteins in the larval midgut
(55). In M. sexta, Cry1Ac binding to the APN receptor is
inhibited by the presence of N-acetylgalactosamine (GalNAc)
on the receptor and decreases Cry toxicity. The Cry-domain III
folds are involved in receptor recognition of carbohydrates, and
GalNAc binds to Cry1Ac domain III positions and plays a
competitive role like the lectin domain (56, 187).

Cry toxins bind to putative receptors, including ALP, APN,
and CAD in the midgut epithelium of Ae. aegypti. ALP contains
at least two Cry11Aa binding sites, such as residues R59-G102
interacting with loop a-8 from Cry11Aa domain II, and residues
N257-I296 interacting with domain III of Cry11Aa (26, 124).
The full-length AaeAPN2 region, including amino acids 569–
641, has the highest binding activity to the Cry11Aa toxin and
efficiently competes with the toxin binding to Aedes BBMV (54).
The cadherin fragment, which contains CR7–11 (cadherin
repeats 7–11) binds to Cry11Aa, primarily through loop a8 of
domain II toxin, while Loop-3 of Cry11Aa binds to CR11
(cadherin repeats) of Ae. aegypti (51). Midgut proteins play an
important role in this toxicity mechanism and alter the binding
activity with receptors and Cry toxins. Previously, we identified
Frontiers in Immunology | www.frontiersin.org 6
highly expressed C - and G-type lectins in the Ae. aegyptimidgut
after treatment with the Bt LLP29 toxin (176). These midgut
CTLs and galectins have been reported to inhibit Cry11Aa
toxicity in Ae. aegypti by competing with Cry11Aa for binding
to ALP and APN receptors (176–178) (Figure 3), but no
evidence of binding competition was found in the case of CAD
(177). Further silencing of these midgut proteins results in
enhanced toxicity of Cry toxins (177). Moreover, the three-
dimensional protein structures of the putative receptors ALP,
APN, CAD, Cry11Aa toxin, and CTL were modeled in
previously reported study (177–179) (Figures 4A, B).
Molecular docking of ALP, APN, and CAD with both
Cry11Aa and CTL showed that all receptors were docked to
the CTL and Cry11Aa (178), and the residues (yellow colored)
were the binding sites of the two proteins (Figures 5A–F). Even
when these two proteins docked together with ALP and APN
receptors, overlapping binding sites were found where residues
in Cry11Aa and CTL were competing to bind with receptors
(overlapping sites colored in yellow) (177, 178). Residues in red
are the CTL binding sites, while the green smudge regions are the
Cry11Aa binding sites in the ALP and APN receptors
(Figures 6A, B) (178). However, no overlapping sites were
found when CTLs and Cry11Aa were docked with the CAD
receptor (179) (Figure 6C). It was suggested that these important
proteins could sequester the toxin and interfere with the
insecticidal process. Furthermore, the fact that these proteins
are immune-related may suggest that Cry toxins may alter may
alter insect’s immune responses. Such compounds or chemicals
should be introduced to counteract the effect of CTLs in the
midgut and improve the toxicity mechanism. These interesting
ideas warrant future studies.
A

B

FIGURE 2 | Three dimensional structural comparisons between different Cry toxins and CTL domain. (A) Cry1Aa (PDB: D6J4), Cry11Aa (PDB: 1DLC), Cry4Aa (PDB:
2C9K), Cry4Ba (PDB: 1W99); (B) CTL domain (PDB: 5E4L).
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CONCLUDING REMARKS AND FUTURE
PERSPECTIVES

To date, many researchers have focused on the identification of
different lectins and their further characterization in different
Frontiers in Immunology | www.frontiersin.org 7
organisms. Lectins have also been well studied in higher
organisms, such as plants and animals, but limited literature is
available on insects. Lectins play a crucial role in the innate
immunity of insects. Both invertebrate and vertebrate CTLs
contain specific CRDs. Nevertheless, research into the
A

B

FIGURE 4 | Three dimensional structural presentation of putative receptors, toxin and CTL domain in Ae. aegypti. (A) ALP (PDB: IK7H), APN (PDB: 4WZ9), Cadherin (PDB:
4UX8), Cry11Aa toxin (PDB: 1DLC) and (B) CTL domain (PDB: 5E4L).
FIGURE 3 | Schematic presentation of the 3D-Cry toxin mechanism with Receptors and Lectin in Mosquito.
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mechanisms and actions of insect CTLs in innate immunity will
contribute to the protection of beneficial insects as well as the
biological control of harmful vectors. Therefore, it is important
to study the role of lectins in mosquitoes, especially in Ae.
aegypti. Thus, if the major interaction among toxins and their
receptors is reduced or eliminated, the toxicity of Bt will be
greatly altered. Midgut protein engineering may also a
considerable way to improve Cry toxicity. The expression of
Frontiers in Immunology | www.frontiersin.org 8
Ae. aegypti galection-14 was knocked down which resulted in
increasing Cry toxicity (177). Still, the molecular studies in this
domain are limited and need more experimental evidence in
mosquitoes and other species. On another side, many reports
published showed improving Cry toxins activity against
mosquitoes and insects by using recombinant Cry toxins (188).
Several reported studies have shown that midgut proteins may
influence Cry toxin activity and have been studied in many other
A B

C

FIGURE 6 | Overlapping binding sites in receptors interface. When both CTL and Cry11Aa proteins docked together in ALP, APN and Cadherin receptors
overlapping binding sites (colored in yellow) were found in (A) ALP and (B) APN but none of residue in Cadherin receptor (C) found to be overlapped. Red colored
residues are CTL binding sites while Cry11Aa binding sites are colored in green smudge.
A B

D E F

C

FIGURE 5 | Molecular docking representation of receptors with Cry11Aa and CTL proteins. Cry11Aa binding with (A) ALP, (B) APN, and (C) Cadherin receptors.
CTL binding with (D) ALP, (E) APN, and (F) Cadherin receptors. Yellow color showed the binding sites of two proteins.
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https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Alam et al. CTLs Enhance Cry Toxicity
insect species, including P. xylostella (193), Trichoplusia ni (194),
Leptinotarsa decemlineata (195), Cnaphalocrocis medinalis (196),
Achaea janata (197), and the insect family Noctuidae (198).
Therefore, the detection and identification of important midgut
proteins that may interfere with this critical step may open a new
avenue of research to fully understand the Bt mechanism and
give a theoretical foundation for the development of new
bioinsecticides for mosquito control.
AUTHOR CONTRIBUTIONS

The review of literature, and manuscript writing were
accomplished by IA and KB. WT, AI, XG and LZ revised the
Frontiers in Immunology | www.frontiersin.org 9
manuscript. XG and LZ provided technical support and vigorous
guidance, and founded the research project. The authors read
and approved the final manuscript.
FUNDING

This work was funded by the National Program of China (Grant
Numbers 2017YFE0121700 and 2017YFE0122000); the United
Fujian Provincial Health and Education Project for Tackling Key
Research (Grant No. 2019-WJ-29); Natural Science Foundation
of Fujian Province (Grant No. 2020J01550 and 2020I0031); the
Special Fund for Scientific and Technological Innovation of
Fujian Agriculture and Forestry University (KFA20124A).
REFERENCES
1. De Almeida JPP, Aguiar ERGR, Armache JN, Olmo RP, Marques JT. The

Virome of Vector Mosquitoes. Curr Opin Virol (2021) 9:7–12. doi: 10.1016/
j.coviro.2021.04.002

2. Sabir MJ, Al-Saud NBS, Hassan SM. Dengue and Human Health: A Global
Scenario of Its Occurrence, Diagnosis and Therapeutics. Saudi J Biol Sci
(2021) 28(9):5074–80. doi: 10.1016/j.sjbs.2021.05.023

3. Chouin-Carneiro T, Vega-Rua A, Vazeille M, Yebakima A, Girod R,
Goindin D, et al. Differential Susceptibilities of Aedes Aegypti and Aedes
Albopictus From the Americas to Zika Virus. PloS Negl Trop Dis (2016) 10
(3):e0004543. doi: 10.1371/journal.pntd.0004543

4. Vorou R. Zika Virus, Vectors, Reservoirs, Amplifying Hosts, and Their
Potential to Spread Worldwide: What We Know and What We Should
Investigate Urgently. Int J Infect Dis (2016) 48:85–90. doi: 10.1016/
j.ijid.2016.05.014

5. Gloria-Soria A, Payne AF, Bialosuknia SM, Stout J, Mathias N, Eastwood G,
et al. Vector Competence of Aedes Albopictus Populations From the
Northeastern United States for Chikungunya, Dengue, and Zika Viruses.
Am J Trop Med (2021) 104(3):1123–30. doi: 10.4269/ajtmh.20-0874
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the Americas? Pan-Amazonian Health Magazine (2015) 6:9–10.
doi: 10.5123/S2176-62232015000200001

70. WHO. Alert Global Response (GAR): Impact of Dengue. World Health
Organization (2013). Available at: http://www.who.int/csr/disease/dengue/
impact/en.

71. Oliveira RMD. Dengue in Rio De Janeiro: Rethinking Popular Participation
in Health. Cad Public Health (1998) 14:S69–78. doi: 10.1590/S0102-
311X1998000600006

72. Vilarinhos P, Dias J, Andrade C, Araújo-Coutinho C. Use of Bacteria for the
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for Bacillus Thuringiensis Cry1Ab Toxin Is Lost During Larval Development
in Two Forest Pests. Appl Environ Microbiol (2000) 66:1553–8. doi: 10.1128/
AEM.66.4.1553-1558.2000

184. Jurat-Fuentes JL, Adang MJ. Characterization of a Cry1Ac-Receptor Alkaline
Phosphatase in Susceptible and Resistant Heliothis Virescens Larvae. Eur J
Chem (2004) 271:3127–35. doi: 10.1111/j.1432-1033.2004.04238.x

185. Herrero S, Gechev T, Bakker PL, Moar WJ, De Maagd RA. Bacillus
Thuringiensis Cry1Ca-Resistant Spodoptera Exigua Lacks Expression of
One of Four Aminopeptidase N Genes. BMC Genomics (2005) 6:96.
doi: 10.1186/1471-2164-6-96
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