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SUMMARY

Cortical processing of task-relevant information enables recognition of behaviorally meaningful 

sensory events. It is unclear how task-related information is represented within cortical networks 

by the activity of individual neurons and their functional interactions. Here, we use two-

photon imaging to record neuronal activity from the primary auditory cortex of mice during 

a pure-tone discrimination task. We find that a subset of neurons transiently encode sensory 

information used to inform behavioral choice. Using Granger causality analysis, we show that 

these neurons form functional networks in which information transmits sequentially. Network 

structures differ for target versus non-target tones, encode behavioral choice, and differ between 

correct versus incorrect behavioral choices. Correct behavioral choices are associated with shorter 
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communication timescales, larger functional correlations, and greater information redundancy. In 

summary, specialized neurons in primary auditory cortex integrate task-related information and 

form functional networks whose structures encode both sensory input and behavioral choice.

Graphical Abstract

In brief

Francis et al. find that, as mice perform an auditory discrimination task, cortical neurons form 

functional networks in which task-relevant information transmits sequentially between neurons. 

Network structures encode behavioral choice, and correct behavioral choices are associated 

with shorter communication timescales, larger functional correlations, and greater information 

redundancy between neurons.

INTRODUCTION

Cortical processing of task-relevant information enables mammals to recognize behaviorally 

meaningful stimuli while navigating the sensory environment. Performance of an auditory 

task modulates neural representations of task-related sounds at the level of single neurons 

or small populations, already in the primary auditory cortex (A1) (Kuchibhotla et al., 2017; 

Kato et al., 2015; David et al., 2012; Francis et al., 2018a, 2018b; Tsunada et al., 2016; 

Brosch et al., 2011; Carcea et al., 2017; Fritz et al., 2003; Insanally et al., 2019; Schwartz 

and David, 2018; Yin et al., 2020; Bagur et al., 2018; Mcginley et al., 2015; Guo et al., 
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2019; Rodgers and Deweese, 2014; Niwa et al., 2013; Christison-Lagay and Cohen, 2018). 

We recently showed that performing a pure-tone detection task increases neuronal responses 

to target tones in A1 layer 2/3 (L2/3) and changes functional connectivity by forming small 

strongly linked neuronal networks that encode behavioral choice (Francis et al., 2018b). 

However, natural auditory scenes typically include both target and non-target sounds that 

require discrimination. The effect of discrimination on the functional networking of neurons 

and how target versus non-target information propagates through the population are poorly 

understood.

Given the diversity of neuronal connectivity and stimulus selectivity in A1 L2/3 (Atencio 

and Schreiner, 2010; Atzori et al., 2001; Oviedo et al., 2010; Meng et al., 2017; 

Bandyopadhyay et al., 2010; Rothschild et al., 2010; Kanold et al., 2014; Maor et al., 

2016; Winkowski and Kanold, 2013; Sakata and Harris, 2009; Yang et al., 2008; Sadagopan 

and Wang, 2009; Liu and Kanold, 2021), we hypothesized that there may exist specialized 

neurons in A1 L2/3 that represent varying amounts of sensory or choice information and that 

a subset of these neurons, which carry sensory information used to inform behavioral choice, 

form functionally connected networks whose structural properties encode behavioral choice 

during task performance.

To investigate our hypotheses, we trained mice to behaviorally discriminate target versus 

non-target pure tones while we recorded neuronal activity in A1 L2/3 using two-photon (2P) 

Ca2+ imaging. We then quantified how much stimulus information (SI), behavioral choice 

information (CI), and intersection information (II), i.e., sensory information that is used to 

inform behavioral choice, was carried by individual neurons (Runyan et al., 2017; Panzeri 

et al., 2017). We used Granger causality (GC) analysis to study how these neurons were 

organized into functional networks (Kim et al., 2011; Sheikhattar et al., 2018; Francis et 

al., 2018b; Seth et al., 2015; Kaminski et al., 2001; Bresslerand Seth, 2011; Quinn et al., 

2015), and compiled network statistics to quantitatively compare key aspects of network 

structure. Here, we extended GC analysis to not only study functional network structure, but 

also the timescales of network interactions. Finally, to study how task-related information 

is transmitted and shared within functional networks, we computed information redundancy 

between pairs of neurons (Schneidman et al., 2003; Pola et al., 2003).

We found that task performance modulated neuronal response amplitudes, network 

structures, and information transmission in A1 L2/3. Individual neurons encoded II 
at different peak times which, across the population, tiled the duration of a trial. 

Networked neurons encoding II exhibited sparse connectivity and shared redundant stimulus 

information relevant for behavioral choice. Network structures differed for target versus 

non-target tones, encoded behavioral choice, and differed between correct and incorrect 

behavioral choices. Moreover, choice-dependent functional networks also showed different 

communication timescales. Together, our results describe how networked neurons in A1 

L2/3 that integrate sensory and behavioral information during auditory task performance 

sequentially transmit task-related information.
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RESULTS

To study how task-relevant information is transmitted within neuronal networks, we trained 

nine transgenic CBA × Thy1-GCaMP6s F1 mice (Frisina et al., 2011; Dana et al., 2014) to 

perform a pure-tone frequency discrimination task (Kuchibhotla et al., 2017; Pi et al., 2013) 

while we imaged neuronal responses in A1 L2/3 using in vivo 2P Ca2+ imaging (Figure 1).

Head-fixed mice learned to perform an auditory tone discrimination task

Head-fixed mice were trained to lick a waterspout in response to hearing a low-frequency 

target tone (Figure 1A; 7 or 9.9 kHz, red), and to avoid licking the waterspout after hearing a 

high-frequency non-target tone (14 or 19.8 kHz, blue). The four frequencies were randomly 

interleaved across trials. Figure 1B shows that the mice learned to behaviorally discriminate 

targets versus non-targets. Each trial’s behavioral response was categorized into four groups, 

based on the first lick on each trial: hit (H: licking after target onset), miss (M: no licking 

after a target), false alarm (F: licking after non-target onset), or correct rejection (C: no 

licking after a non-target). The middle panel of Figure 1B shows the distribution of H and 

F behavioral response times (i.e., the time of the first lick in a trial). The average H and F 

response latencies relative to stimulus onset were 0.64 ± 0.02 and 0.75 ± 0.04 s, respectively. 

Across the 34 experiments, the hit rate (78.8% ± 5.1%) was significantly higher than the 

false alarm rate (F = 27.1% ± 7.3%; p < 0.001, t test) and the correct rejection rate (74.3% ± 

6.9%) was significantly higher (p < 0.001, t test) than both the F and M rate (20.8% ± 5.2%). 

Thus, the mice were able to discriminate between target versus non-target tones (d’ = 1.4 ± 

0.4).

Decision making modulated neuronal response amplitude in A1 L2/3

To characterize neural responses during behavior, we imaged Ca2+-dependent fluorescence 

in the auditory cortex. To localize 2P imaging fields for each experiment to A1, we first 

mapped the tonotopy of the auditory cortex in each mouse using widefield imaging (Figure 

1C) (Liu et al., 2019; Francis et al., 2018b).

We performed 2P imaging (Figures 1D-1G) at a depth of 150–250 μm from the cortical 

surface in each mouse (34 experiments, 9 mice, 2,792 neurons). We observed fluorescence 

(ΔF/F) responses to all 4 tones with response dynamics typical of GCaMP6s (Chen et al., 

2013; Dana et al., 2014). Similar to previous studies, neural traces showed a complex pattern 

of task-dependent changes in response amplitude (Bagur et al., 2018; Brosch et al., 2011; 

Carcea et al., 2017; David et al., 2012; Francis et al., 2018a, 2018b; Guo et al., 2019; Kato et 

al., 2015; Kuchibhotla et al., 2017; Rodgers and Deweese, 2014; Schwartz and David, 2018; 

Tsunada et al., 2016; Yin et al., 2020).

To make sure our results do not reflect neural coding of task-related movement (i.e., licking/

behavioral choice) or reward, we first quantified how neuronal response amplitude varied 

with task performance and pure-tone frequency during passive trials, in which the mouse sat 

quiescently hearing tones without doing an auditory task, and then during behavioral task 

performance. To make a fair comparison, we averaged neural traces only during the first 0.5 

s after tone onset for the trials with behavioral response latencies greater than 0.5 s after 

Francis et al. Page 4

Cell Rep. Author manuscript; available in PMC 2022 August 18.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



stimulus onset. This accounted for 74% of H trials. While licking has been shown to impact 

activity in the auditory cortex (Nelson and Mooney, 2016), we previously showed that it did 

not drive neural activity in A1 L2/3 during a go/no-go task (Francis et al., 2018b).

As shown in Figure 1F, we found significant neural responses (p < 0.001) at all frequencies 

in both passive and behavior conditions, indicating that the mice could hear the tones. 

This result, in combination with our finding that behavioral responses were similarly time 

locked to both low- and high-frequency tone presentations in our go/no-go task (Figure 1B) 

provides compelling evidence that the mice were in fact doing a target versus non-target 

discrimination task, and not simply target detection. Overall, responses to non-target tones 

were smaller than those to target tones (p < 0.001). In contrast, trials without behavioral 

responses (M and C) had the lowest average response amplitudes and there were no 

significant differences in neuronal responses to target versus non-target frequencies (p > 

0.05, Kruskal-Wallis test). Thus, the amplitude of pure-tone responses in A1 during task 

performance was strongly modulated not only by acoustic stimulation but also by behavioral 

choice.

Aberrant attentional gain in A1 L2/3 reflects incorrect decision making

The change in neuronal response amplitude to the same sound for passive versus behavior 

trials quantifies attentional gain in A1. As shown in Figure 1G, correct behavioral choices 

(i.e., hits and correct rejections) had a small, but significant negative gain (7 kHz, H: −1.9% 

± 0.97%, p < 0.001; 9.9 kHz, H: −1.2% ± 1.01%, p < 0.05; 14 kHz, C: −1.85% ± 1.08%, p 

< 0.001; 19.8 kHz, C: −0.5% ± 1.02%, p > 0.05). In contrast, attentional gain for incorrect 

behavioral choices was more varied. False alarms occurred when neuronal responses had a 

small positive gain (14 kHz, F: 1.97% ± 1.23%, p <0.001; 19.8 kHz, F: 1.96% ± 1.42%, p < 

0.01), whereas misses occurred when responses had a large negative attentional gain (7 kHz, 

M: −9.76% ± 1.25%, p < 0.001; 9.9 kHz, M: −7.7% ± 1.24%, p < 0.001). Thus, incorrect 

decision making was associated with aberrant attentional gain, i.e., deviations from the slight 

negativity observed during correct decision making.

Task-relevant information is transiently encoded by individual neurons in A1 L2/3

We hypothesized that single neurons in A1 might represent varying amounts of sensory or 

choice information. We first performed spike inference, as summarized in Figure 2A and 

described in detail in STAR Methods, followed by quantifying the task-relevant information 

carried by each neuron in single trials using information theory (Shannon, 1948; Quian 

Quiroga and Panzeri, 2009). For each neuron, we quantified how much information was 

present about the acoustic stimulus (SI; i.e., target versus non-target tone; Figure 2B, left) 

and about the behavioral choice (CI; i.e., lick versus no-lick; Figure 2B, right). We also 

computed intersection information (II; Figure 2B, middle) (Panzeri et al., 2017; Pica et al., 

2017), which quantifies how much of the sensory information encoded by the neurons is 

used to inform behavioral choices, and is thus a direct measure of task-relevant information. 

We found that 1,183/2,792 neurons (42%) carried either significant SI or CI (permutation 

test, p < 0.1, corrected for comparisons across multiple time windows, see STAR Methods). 

A total of 708/1,183 neurons did not carry significant II (permutation test, p > 0.1); i.e., they 

either had stimulus information that did not inform choice (e.g., stimulus response was not 
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causal to formation of the choice), or choice information not related to the stimulus (e.g., 

internal choice bias). The remaining 475/1,183 neurons carried significant II, SI, and CI 
(permutation test, p < 0.1), and thus integrate both sensory and behavioral information that is 

directly relevant for the decision-making task (Panzeri et al., 2017).

To better illustrate the dynamics of the information carried by either the whole population 

or by the neurons with significant II, SI, and CI (shortened to “II neurons” hereafter), we 

computed the average II, SI, and CI time courses. II neurons carried the largest amounts 

of II, SI, and CI throughout the trial (Figure 2C). Moreover, CI was highly correlated to 

SI (Pearson correlation = 0.9) for II neurons, while this correlation was smaller across the 

entire population (Pearson correlation = 0.51), suggesting that similar levels of CI and SI are 

present across II neurons (Figure 2C). At the time of peak information, each neuron carried 

0.117 ± 0.003 bits of SI, 0.121 ± 0.004 bits of CI, and 0.085 ± 0.002 bits of II, respectively 

(mean ± SEM across the 475 II neurons).

We restricted our further analyses to 12 out of 34 sessions with at least 20 II neurons due 

to our interest in subsequent network analyses for which, given the number of experimental 

trials, up to 20 neurons could be analyzed with statistical confidence. This left us with 

375/475 II neurons for subsequent analyses (see STAR Methods). Figure 3A shows the 

peak-normalized information time courses for each II neuron, sorted by the peak latency 

of the respective information (SI, CI, or II) across neurons. Qualitative inspection showed 

that neurons transiently encoded SI, CI, or II, tiling the trial duration. The SI, CI, and II 
time courses of II neurons showed similar average trends, while neurons that carried either 

significant SI or CI, but not II, showed more heterogeneous trends (Figure S1).

We next computed the II/SI and II/CI ratios to identify how much of the stimulus and 

choice information was used for informing behavioral choice. The average II/SI and II/CI 
ratio was high (>70%) for II neurons throughout the trial, meaning that most of the SI was 

used for informing choice and most of the CI reflected stimulus discrimination rather than 

a stimulus-unrelated choice bias (Figure 3A). Conversely, neurons with significant SI or CI, 
but not II, showed an overall decrease of information within the 500 ms waiting period after 

tone onset (Figure S1). In addition, they showed lower II/SI or II/CI ratios down to ~30%, 

especially at the peak times, meaning that SI and CI are not optimally used to perform 

the task. These results indicate that we identified neurons in A1 L2/3 that transiently 

carry significant stimulus information used to inform behavioral choice. To quantify this 

transiency, we aligned information peaks across neurons and analyzed the peak-aligned 

traces within ±1 s of the peak (Figure 3A), which could be fit with an exponential with time 

constant τ ∼ 1
3.9 s ∼ 250 ms. Thus, individual neurons transiently carried SI, CI, and II for an 

effective duration of ~250 ms.

To inspect the dynamics of information carried across the trial duration, we clustered the 

neurons based on their II-peak latencies. We labeled neurons that peaked in the first 1.5 s 

after stimulus onset as peri-stimulus II, and the remainder as post-stimulus II (Figure 3B). 

We subdivided the peri-stimulus II neurons into three sequential task-related periods within 

a trial: (1) the 500-ms waiting period just after tone onset, (2) the 500-ms interval after the 

waiting period, and (3) the 500 ms after tone offset (labeled respectively in Figure 3B, left 
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column). We found that 52/375, 85/375, and 60/375 neurons had II that peaked in the first, 

second, and third peri-stimulus periods, respectively (Figure 3B, left column), adding up to 

197/375 neurons. Furthermore, 45/375, 40/375, and 48/375 neurons had II that peaked in 

the fourth, fifth, and sixth post-stimulus periods (1.5–3 s), respectively (labeled respectively 

in Figure 3B, right column). The remaining 45/375 neurons peaked after 3 s. Although 

the values of SI, CI, and II remained comparable throughout the trial, neurons with earlier 

responses carried slightly more SI than CI (Figure 3B, left column, blue versus green traces) 

and neurons with later responses carried slightly higher CI than SI (Figure 3B, right column, 

green versus blue traces).

Given that II neurons carried SI, we next examined their tuning properties (Figure 3C). We 

found that the best frequencies (BFs) (the frequency values eliciting the highest response 

during passive tone presentation) of II neurons were lower (p < 0.01, Wilcoxon rank-sum 

test) than the average BF of the overall population. II neurons also had narrower bandwidth 

(BW) (p < 0.05, Wilcoxon rank-sum test) than the overall population. Our results show 

that task-relevant information was transiently encoded by individual neurons, yet sustained 

throughout the trial by sequential encoding across a population of neurons in A1 L2/3.

Neurons with intersection information form sparse timescale-invariant functional networks

Since individual neurons had low information content and only transiently encoded II 
(Figures 2B, 2C, and 3A), we hypothesized that II neurons might form functional networks 

to more robustly encode task-relevant information. We previously used GC analysis to 

identify small functional networks of interacting neurons whose network structure depended 

on behavioral choice (Francis et al., 2018b), but did not study how network structure might 

vary with integration timescales, i.e., the duration over which neurons might interact. Our 

finding that II was transiently encoded by individual neurons, but sustained across time by 

the population, necessitated the examination of relevant timescales of interactions between 

II neurons. Hence, we extended our previous GC analysis by considering the interaction 

timescales.

GC analysis uses multivariate statistics to infer causal influences within a population of 

neurons by testing if the recent history of a neuron can improve the prediction of another 

neuron’s activity. The duration of the recent history over which interactions are quantified, 

referred to as the “integration window,” is a hyperparameter of GC analysis, whose value, 

w, sets the longest interaction window considered (Figure 4A, left schematic). Short (S; w = 

233 ms) integration windows quantify dynamics that are more likely to reflect local neuronal 

interactions. Long (L; w = 1033 ms) integration windows would additionally capture the 

effects of potentially slower and indirectly mediated interactions that may involve distant 

neurons. The specific values of w we used were integer multiples of the imaging frame 

rate. Importantly, the S-timescale interactions are a subset of the L-timescale interactions 

(see STAR Methods). For each experiment (n = 12), we performed GC analysis on the 

20 neurons with the lowest, i.e., “shortest,” II-peak latencies to identify the contribution 

of neurons whose activity carried task-relevant information during stimulus presentation. 

We used 20 neurons per experiment to avoid overfitting the data, given the limited number 

of experimental trials (see STAR Methods). GC networks were estimated individually for 
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each behavioral choice category (H, M, C, and F) in the discrimination task, importantly 

contrasting previous work (Francis et al., 2018b) in which we could only analyze networks 

corresponding to H and M categories in a detection task.

We found that across all trials GC networks were sparse: only 1% of possible links 

connecting 21.98% of the selected II neurons were detected in S-timescale networks, 

while 3.61% were detected in L-timescale networks connecting 51.67% of the selected II 
neurons. Unlike simpler measures, such as Pearson correlation, GC is a directed measure of 

communication, which can distinguish senders from receivers (Figure 4A). This allowed us 

to investigate the proportion of senders and receivers within the network. For the S-timescale 

networks, 10.10% of neurons were senders, 9.06% were receivers, and 2.81% were GC-

linked neurons that had net degree of zero. For the L-timescale networks, however, 24.58% 

of the neurons were senders, 19.79% were receivers, and 7.29% had a net degree of zero. 

This indicates that an additional 29.69% of the selected II neurons were recruited over the 

longer integration window.

Speculating that the information content of GC-linked neurons differed from GC-unlinked 

neurons, we compared SI, CI, and II at the II-peak time. We found that SI, CI, and II were 

higher in GC-linked than in GC-unlinked neurons, in both S- and L-timescale networks 

(Figure 4B). These results suggest that GC-linked neurons form networks carrying signals of 

greater relevance for performing the auditory discrimination task. Given that neurons carry 

information over a wide range of timescales (Figure 4B), we tested whether neurons’ II-peak 

latencies depended on their membership in S- or L-timescale networks. We compared the 

distributions of II-peak latencies of neurons in S- versus L-timescale networks and found 

no significant difference (Wilcoxon rank-sum test, p = 0.5847). Furthermore, we compared 

the II-peak latency for pairs of GC-linked neurons and found that the II-peak of receiver 

neurons follows that of sender neurons by 2.07 time bins (69 ms) on average; however, this 

difference was not statistically significant (Wilcoxon signed rank test, p = 0.1743). As such, 

we found no evidence to support that II-peak latency correlates with membership of the 

linked neurons in S- versus L-timescale networks or the direction of the GC links.

To characterize how the structure of the GC networks depends on the timescale of 

interactions and on behavioral choice, we analyzed four network statistics separately for 

H, M, C, and F trials: number of links, number of subnetworks (isolated subsets of neurons), 

subnetwork size (number of member neurons), and statistical strength of links (Youden’s J 
statistic) (Francis et al., 2018b) (shown from left to right in Figure 4C; see also Table S1). 

We focused on neurons with low II-peak latency, as they are more likely to be causally 

related to choice. For both M and F networks (incorrect behavior), the number of links 

and the size of subnetworks were greater for L- than S-timescale networks, while link 

strength was smaller for L-than S-timescale networks. In contrast, we found no differences 

for L- versus S-timescale networks in H or C trials (correct behavior) for the number 

of links, size of subnetworks, and link strengths. In C trials, the number of subnetworks 

increased with integration window length. Together, our results show that incorrect decision 

(M and F) L-timescale networks are larger but connected less strongly than their S-timescale 

counterparts. In contrast, the structure of correct decision networks (H and C) was invariant 

across timescales. Noting that S-timescale interactions are a subset of the L-timescale 
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interactions in our model, the invariance of the correct decision network structure between 

S- and L-timescales may suggest the involvement of a network of local cortical interactions, 

rather than of interactions mediated by wider loops involving farther neurons.

For S-timescale, comparison of H and M networks showed that the former had more links 

and larger subnetworks, suggesting that larger networks are beneficial for encoding correct 

discrimination of the target. The average link strength was greater in C than in F networks, 

suggesting that stronger links are beneficial for encoding correct rejection of the non-target. 

In contrast, for L-timescale, both the number of links and the sizes of subnetworks were 

smaller for correct than incorrect categories, while links remained stronger for the correct 

category.

Neuronal network structure encodes behavioral choice

Since the GC network structures for neurons with low II-peak latency strongly depended 

on behavioral choice, we sought to directly test if the network structures encode behavioral 

choice. Thus, we used the four network statistics as features for a support vector machine 

trained to distinguish between correct (H and C) and incorrect (M and F) decisions. For 

comparison, we trained a similar classifier for networks of neurons with high response 

rates, chosen regardless of the information content they carry. The comparison between 

the network structure of II neurons and responsive neurons is non-trivial because a pair of 

neurons both carrying II is neither necessary nor sufficient for there to be a GC link between 

them (see Figure S2 for counterexamples). The GC network statistics of highly responsive 

neurons are reported in Table S2. Of all low II-peak latency neurons, 30.21% were 

also identified as highly responsive neurons (see STAR Methods for selection criterion). 

The network structure of S-timescale networks for low II-peak latency neurons classified 

behavioral choice much more accurately than that of highly responsive neurons (Figure 4D, 

left bar plots). In contrast, the features of L-timescale networks classified behavioral choice 

well for both low II-peak latency and highly responsive neurons, although more accurately 

for the former (Figure 4D, right bar plots). These results show that S-timescale networks of 

low II-peak latency neurons better encode behavioral choice than those of highly responsive 

neurons and suggest that low II-peak latency neurons form a specialized group of neurons in 

A1.

One possibility is that strong choice predictivity from network interactions is not a special 

property of networks formed by II neurons but is also present in networks of neurons with 

either SI not used for choice or CI not related to the stimulus. To test this possibility, we 

compared the predictivity of low II-peak latency neurons with that of SI and CI neurons 

that did not have significant II (Figures S3A and S3B; Table S3). While seven sessions had 

a sufficient number of exclusively CI neurons, only one session had a sufficient number 

of exclusively SI neurons for GC network analysis; hence, we focused on the networks of 

exclusively CI neurons to contrast with the low-latency II neurons analyzed in Figure 4. 

Network structures of low II-peak latency neurons were more predictive than CI neurons 

(Figure S3B). Furthermore, the network structures of neurons with the greatest II-peak 

magnitudes (Figures S3C and S3D; Table S4) were also more predictive of behavioral 

choice than highly responsive neurons (Figure S3D). Our results suggest that the encoding 
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of behavioral choice in the S-timescale network structure is specific to II neurons, and it is 

not found as much in groups of neurons with choice information not related to the stimulus.

The spatial extent of neuronal subnetworks varies less by timescale during correct 
behavioral choices

Since 2P imaging gives the exact spatial location of each neuron in a field of view, 

we sought to characterize how II neurons and their functional networks were distributed 

spatially. We first studied if neurons with II peaks in peri- versus post-stimulus intervals 

were in different regions or if they were intermingled. We calculated the sum of the average 

distances of peri- (Pe) and post-stimulus (Po) neurons to their centroids (RPe and RPo, 

respectively) and compared the sum with the distance between the centroids (RPe – Po). 

The distance between centroids was smaller than the spread of each set of neurons (Figure 

5A). Thus, Pe and Po neurons were heterogeneously distributed within the field of view, 

suggesting that information flow did not have intrinsic spatial directionality from one 

subarea to another during task performance.

We next analyzed how subnetworks were dispersed by computing the vector distances 

of subnetworked neurons to the subnetwork centroid (Figure 5B, top schematic; see also 

STAR Methods). Subnetworks of L-timescale interactions tended to be more spatially 

dispersed than the S-timescale ones (Figure 5B, bottom subpanels), as indicated by the 

determinant of the distance vector covariance matrix (Figure 5C). The dispersion of M, F, 

and C subnetworks were larger for L- than S-timescales. Differences in dispersion were also 

observed between H and M trials for S-timescale subnetworks and between C and F trials 

for L-timescale subnetworks. To see if differences in the dispersion of subnetworks across 

timescales were due to greater distances between linked neurons, rather than the inclusion 

of additional neurons, we computed the average pairwise distance between linked neurons, 

i.e., the average link length (Figure 5D). Except for M networks, GC link lengths were stable 

across timescales, indicating that the greater subnetwork spatial dispersion for L-timescale 

interactions was more likely due to the inclusion of additional neurons than an increased 

distance between linked neurons. These results suggest that correct choices are associated 

with spatially stable compact subnetworks while incorrect choices involve activity spread to 

additional neurons.

Networked neurons communicate task-relevant stimulus information that reverberates 
redundantly

A functional link between neurons suggests that task-relevant information is transmitted 

from one neuron to another. This would create a population code whose information content 

is reverberated redundantly across neurons because the same information is shared by 

different neurons.

To investigate the nature of information present in the functional networks, we measured 

information redundancy (Schneidman et al., 2003; Pola et al., 2003) between GC-linked 

neurons (Figure 6A). We used a normalized redundancy index defined as the information 

carried jointly by two neurons minus the sum of the information that each carried 

independently, normalized with respect to the total information carried by the two neurons 
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jointly. The value of the normalized redundancy index indicates the fraction of total joint 

information that is shared by two neurons. Neurons share redundant information when the 

redundancy index is negative, i.e., together they carry less information than the sum of the 

information they carry separately. Positive values of the redundancy index are associated 

to synergy, i.e., the contribution from the interaction between the neurons to the joint 

information cannot be inferred by considering each neuron individually.

For SI, CI, and II, we computed redundancy at the peak time of II, for each pair of neurons 

used in GC analysis. Normalized redundancy between pairs of neurons with a S-timescale 

GC link was compared with those with no GC link (Figure 6A). For S-timescales, we found 

that information shared by pairs of neurons was redundant. This implies that neurons shared 

part of the information they transiently carried at different times. Normalized redundancy 

was much larger for II than CI and SI (Figure 6A, left bar plots versus middle and right 

bar plots). For L-timescales, we found similar trends but proportionally smaller variations 

between GC-linked and GC-unlinked neurons (Figure S4). This means that neurons shared 

more of the behaviorally relevant, than behaviorally irrelevant, portion of the SI they 

carried. Importantly, the difference between normalized redundancy for GC-linked versus 

GC-unlinked neurons was much larger for II than for SI or CI (Figure 6A, red versus black 

bar plots), reinforcing the interpretation that S-timescale GC links mediate the exchange of 

behaviorally relevant sensory information.

GC links can be positive or negative valued, reflecting functionally facilitative or suppressive 

interactions, respectively (Francis et al., 2018b; Sheikhattar et al., 2018). We found that 

negative GC links had a much larger effect on redundancy, suggesting that they mediate 

more II exchange than positive links (Figure 6A, orange versus yellow bar plots). These 

results might indicate a mediating role of inhibitory circuits in task-related network activity 

(Kuchibhotla et al., 2017). Sorting the normalized redundancy with respect to the II-peak 

time lags (Figure 6B, left panel) revealed that II redundancy varies across time lags with 

an overall increasing trend (from −0.1 to −0.15). This indicates that redundant information 

persists during the trial.

Previous studies showed that nearby cells typically interact redundantly (Nirenberg et al., 

2001; Reich et al., 2001; Chechik et al., 2006). We thus investigated how redundant 

information spreads spatially for II, SI, and, CI by plotting the time-lagged redundancy 

as a function of the Euclidean distance between pairs of neurons (Figure 6B, right panel). 

We found a peak of redundant interaction for II at a distance of ~50 μm (II = − 0.1971 

± 0.0187), which then reached a plateau at ~320 μm (II = − 0.1499 ± 0.0039), followed 

by a distance-independent trend. SI and CI were similarly redundant and reached a plateau 

at ~208 mm (SI = − 0.0691 ± 0.0019, CI = − 0.0709 ± 0.0019. Together, these results 

suggest that GC links indicate redundant communication of behaviorally relevant stimulus 

information, and that redundant neurons are located in close proximity of each other.

Signal correlations, noise correlations, and redundancy in correct versus incorrect trials

Redundancy is critically shaped by signal and noise correlation (Schneidman et al., 2003; 

Pola et al., 2003). To gain more insights into the origin of redundancy, we quantified 

noise correlations, i.e., the single-trial covariations of activity that are unrelated to stimulus 
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signals, and signal correlations, i.e., the covariations of activity that reflect similarity in 

trial-averaged stimulus tuning (see STAR Methods).

Figure 6C shows the signal and noise correlations for GC-linked and GC-unlinked pairs of 

neurons computed at the II-peak times using all available trials. Noise correlations reduce 

population information (and thus contribute to redundancy) when they have the same sign 

as the signal correlations (Schneidman et al., 2003; Pola et al., 2003). In our analysis, both 

signal and noise correlations were, on average, positive (Figure 6C). Thus, the observed 

redundancy reflects the matching positive signs of both signal and noise correlations. 

GC-linked pairs of neurons exhibited higher noise correlations than GC-unlinked pairs 

of neurons, consistent with the view that trial-to-trial correlations should be stronger for 

neurons that are functionally linked. Signal correlations did not vary (p > 0.05, t test) 

between GC-linked and GC-unlinked pairs of neurons.

To examine the possible advantages of the observed correlations and redundancy values 

for task performance and behavioral accuracy, we next refined them by separating correct 

(H or C) and incorrect (M or F) trials (Figure 6D). We found several results of interest. 

First, in correct trials, noise correlations were stronger and had the same sign as the 

signal correlations (Figure 6D, two leftmost subplots), leading to a strong redundancy of 

information in correct trials (Figure 6D, third subplot).

Second, neurons did not exhibit redundancy in incorrect trials, and were indeed synergistic, 

i.e., with positive redundancy index (Figure 6D, third subplot). This property held for both 

pairs that were or were not GC linked. It is important here to note that GC-linked neurons 

had stronger noise correlations in correct trials (Figure 6D, leftmost subplot), suggesting 

stronger noise correlations during correct behavior results, at least in part, from network 

communication as revealed by GC analysis. The source of the synergy between neurons 

during incorrect trials, despite having positive signal and noise correlations, is further 

examined in Figure S5.

Third, when computing the difference between the normalized redundancy index in correct 

and incorrect trials, we observed that there was more redundancy in correct trials for GC-

linked pairs (Figure 6D, rightmost panel). Together, these results suggest that redundancy 

and noise correlations may provide advantages for task performance. In addition, greater 

redundancy during correct behavior choices may partly result from increased within-network 

communication.

DISCUSSION

In this study we found that, during the performance of an auditory discrimination task, 

individual neurons in A1 L2/3 transiently carried information about the stimulus (SI), 
behavioral choice (CI), or both (II) for hundreds of milliseconds, and that task-relevant 

information was sustained across the duration of a 3-s trial by sequential propagation of 

SI, CI, and II in functionally connected neuronal populations. Furthermore, we identified 

a subpopulation of low II-peak latency neurons, which formed functionally connected 

networks whose structure could reliably predict behavioral choice. Our findings suggest that 
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the spatiotemporal structure of functional connectivity between low II-peak latency neurons 

in A1 L2/3 may form a neural population base for sustained representation of task-relevant 

information.

A1 L2/3 contains a diverse population of neurons with differing functional connectivity 

(Meng et al., 2017; Liu and Kanold, 2021). Here, we find that the bandwidth of II neurons 

is lower than that of other neurons. This suggests that these neurons might be part of a class 

of A1 L2/3 neurons that receive L4 inputs and have limited integration across the tonotopic 

axis (Meng et al., 2017).

Task relevance of S- versus L-timescale neuronal interactions

The nested parameterization of L- and S-timescale interactions allowed us to differentiate 

between solely S-timescale versus additional L-timescale interactions in functional 

networks. Comparing L- versus S-timescale networks showed that correct choice L-

timescale networks consisted of fewer but stronger links that were mostly S-timescale 

influences. In contrast, incorrect choice networks are characterized by a mixture of both S- 

and L-timescale links, and by an increased network size due to recruitment of additional 

spatially distant neurons nearby (within a 2P field of view). These additional L-timescale 

links likely reflect the local effects of slower interactions with distant neurons, perhaps 

reflecting non-sensory task-related interaction, such as error signaling or deviance detection 

(Parras et al., 2021; Steinmetz et al., 2019; Stringer et al., 2019; Chen et al., 2015; Khouri 

and Nelken, 2015). Since subnetworks during correct trials varied less by timescale, this 

suggests that the influence of more distant neurons is suppressed when correct decisions are 

made, leaving predominantly S-timescale interactions. Such suppression could be mediated 

by inputs to A1 that can activate inhibitory circuits (Fritz et al., 2010; Winkowski et al., 

2013, 2018; Liu et al., 2021).

Magnitude of stimulus, choice, and intersection information in A1 L2/3 neurons

We used information theory to characterize neural selectivity to the task variables, and 

quantify, as function of trial time, the amount of SI, CI, and II. Our non-parametric 

approach for establishing neural selectivity (Quian Quiroga and Panzeri, 2009) is relatively 

assumption-free and can capture linear dependencies on stimulus and choice (which are 

commonly captured using parametric approaches, such as generalized linear models) as well 

as possible non-linear interactions between stimulus and choice. The latter non-linearities 

are expected to exist under general conditions (Chicharro et al., 2021) and are difficult to 

reveal with parametric approaches unless one introduces strong model assumptions.

The amount of SI and CI per neuron were both approximately 0.1 bits at the information 

peak. Given that 1 bit of information is needed to solve the binary discrimination task, 

and that neurons were found to carry partly redundant information, a first implication of 

these values is that task performance must rely on networks of at least tens of neurons. 

This consideration is compatible with the high behavioral choice prediction afforded by 

networks of 20 functionally connected neurons. Previous studies of A1 L2/3 reported much 

higher values of SI than CI (Runyan et al., 2017; Pica et al., 2017). We interpret these 

dissimilarities as largely influenced by task design, which is distinct from the one used in 
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Runyan et al. (2017), rather than a difference of computations. In contrast to our use of a 

go/no-go task in tone discrimination, these previous studies involved discrimination of the 

location of broad-band sounds during spatial navigation in a virtual reality setting, with large 

delays between stimulus and reward, as well as using a forced-choice task, in which all 

stimuli could be associated with a reward. Here, we found values of II to be close to those of 

SI, suggesting that most of the auditory information carried by the neurons we identified was 

used to inform choice, supporting the assumption that the identified functional networks are 

important for the execution of the task.

Population coding via reverberation of redundant information in networks

We found high redundancy between the behaviorally relevant stimulus information carried at 

the time of information peaks between pairs of low II-peak latency neurons. The redundancy 

was higher between pairs of neurons that were GC linked based on S-timescale interactions, 

suggesting that the GC link may reflect the transfer of behaviorally relevant information 

from one neuron to another. Redundancy has been traditionally viewed as a negative 

feature of population coding that should be reduced, based on theories of efficient coding 

(Attneave, 1954; Barlow, 1961; Nigam et al., 2019), and on the often implicit assumption of 

optimal information readout, implying that higher neural information corresponds to better 

performance (Gold and Shadlen, 2001). However, other studies have proposed that high 

values of spatiotemporal redundancy might facilitate biophysical signal propagation (Valente 

et al., 2021; Salinas and Sejnowski, 2001; Alonso et al., 1996).

Recent studies have proposed that the benefits of redundancy may outweigh its 

disadvantages by making task-related signals available for longer timescales (Runyan et 

al., 2017) and facilitating the behavioral readout of the sensory signal (Valente et al., 

2021). Here, our results of higher redundancy and stronger noise correlations during correct 

behavior, especially for GC-linked neurons, confirm the prediction of these previous works 

and add the insight that stronger noise correlations and higher redundancy during correct 

behavior may partly originate from increased within-network communication as revealed by 

GC analysis.

Importantly, previous studies highlighting the role of redundancy in behavioral readout 

(Runyan et al., 2017; Valente et al., 2021) concentrated only on the average strength of 

pairwise noise correlations. In contrast, we characterized the network-level structure of 

behaviorally relevant information sharing and of correct perceptual decisions. We found 

that higher redundancy in GC-linked neurons was accompanied by a higher number of 

links, larger subnetworks in correct target detection, and stronger links in correct rejection 

of non-targets. Together, redundancy and GC analyses suggest that correct decisions in 

an auditory discrimination task may require temporary reverberation of information in the 

spatiotemporal structure of neuronal networks. This might explain larger redundancy for 

behaviorally relevant than behaviorally irrelevant sensory information.

In summary, our results show that, during behavioral discrimination of pure-tone 

frequencies, task-relevant information is transmitted sequentially across individual neurons 

in A1 and is sustained for long periods of time within compact neuronal networks.
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Limitations of the study

Our study demonstrates a statistical relationship between the considered features of neural 

activity and behavior but does not causally demonstrate the role of these features in 

generating correct and incorrect perceptions. Only perturbations of, and observation of, 

the behavioral changes that manipulations of such features (e.g., using holographic 2P 

optogenetics) induce could establish causality. Furthermore, we found similarities and 

differences with previous studies of the behavioral relevance of emergent features (e.g., 

correlations, redundancy, GC networks) of population codes in the auditory cortex. We 

speculate that some of these differences may be due to task differences. Since neither 

previous studies nor ours systematically manipulated the behavioral task design, we could 

not establish how our conclusions would vary in different task conditions.

STAR★METHODS

RESOURCE AVAILABILITY

Lead contact—Further information and requests for resources should be directed to and 

will be fulfilled by the lead contact, Patrick O. Kanold (pkanold@jhu.edu).

Materials availability—This study did not generate new unique reagents.

Data and code availability

• Imaging data have been deposited in the Digital Repository at the University of 

Maryland and are publicly available as of the date of publication. DOIs are listed 

in the key resources table.

• All original code has been deposited at Zenodo and the Digital Repository at the 

University of Maryland and is publicly available as of the date of publication. 

DOIs are listed in the key resources table.

• Any additional information required to reanalyze the data reported in this paper 

is available from the lead contact upon request.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

All procedures were approved by the University of Maryland Institutional Animal Care 

and Use Committee. We used n = 9 mice (3 female, 6 male) F1 offspring of CBA/CaJ 

strain (The Jackson Laboratory; stock #000654) crossed with transgenic C57BL/6J-Tg(thy1-

GCaMP6s)GP4.3Dkim/J mice (Dana et al., 2014) (The Jackson Laboratory; stock #024275) 

(CBAxThyl), 8–24 weeks old, in 34 total experiments. We used the F1 generation of the 

crossed mice because they have good hearing into adulthood (Frisina et al., 2011). Each 

mouse was tested once per day over multiple days. The mice were trained to perform the 

task before collecting 2P data during task performance. Mice were housed under a reversed 

12 h-light/12 h-dark light cycle and trained during the dark cycle.

METHOD DETAILS

Auditory task—We designed a pure-tone frequency discrimination task that used 

behavioral response-timing rules to induce well controlled behavioral responses in mice. 
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Each mouse was first trained on a positive reinforcement tone detection task, with water 

used as a rewarding stimulus, as done previously (Francis et al., 2018b). We then trained the 

mice on the frequency discrimination task. Each trial began with 1 s of silence, followed by 

a 55 dB SPL amplitude modulated (8 Hz) tone presented for 1 s. The target tone frequencies 

were 7 and 9.9 kHz. The non-target frequencies were 14 and 19.8 kHz. The tone frequency 

was randomized across trials. The tone was followed by 2 s of silence, and a random 5–9 s 

inter-trial interval (ITI). The tone was presented during every trial of task-performance, and 

the mice were trained to lick a waterspout after the onset of a target tone and to avoid licking 

the waterspout after a non-target tone. Each trial’s behavioral response was categorized as 

a hit (licking after target onset), miss (no licking after a target), false alarm (licking after 

non-target onset), or correct rejection (no licking in response to a non-target). Incorrect 

behavioral responses were punished with an 8 s time-out added to the ITI. The mice were 

trained to delay behavioral responses until 0.5 s after the onset of a target tone in order to be 

rewarded with a water droplet. While licking has been shown to impact activity in auditory 

cortex (Nelson and Mooney, 2016), we have previously shown that licking in the absence of 

perceptual decision making does not drive neural activity in A1 L2/3 during a go/no-go task 

(Francis et al., 2018b). Here, our use of a behavioral delay was primarily for improving task 

performance, since behavioral delays in a go/no-go task design reduces impulsive licking. 

Mice were trained on the task until hit rates were consistently above 70%, and then imaged 

during behavior. Mouse health was monitored daily by a skin turgor test and checking that 

body weight remained above 80% of the initial off-study weight.

Imaging—Chronic window implantation, widefield imaging, and 2-photon (2P) imaging, 

were performed as previously (Francis et al., 2018b). In brief, a chronic imaging window 

was implanted over a 3 mm craniotomy over auditory cortex. For widefield imaging, 

neuronal activity was quantified by comparing fluorescence during the stimulus versus the 

silent pre-stimulus baseline, resulting in a response amplitude (ΔF/F). After visualizing 

wide-field tonotopic maps, a site was selected for 2P imaging in primary auditory 

cortex (A1) for each mouse. For each 2P imaging site, we determined the frequency 

selectivity (best frequency [BF]) of individual neurons during passive trials, i.e., trials 

when the mouse sat quiescently hearing tones without doing an auditory task. BFs were 

determined from neuronal responses to 55 dB SPL pure tones ranging f–om 4–56.6 kHz. 

We used a scanning microscope (Bergamo II series, B248, Thorlabs) coupled to a pulsed 

femtosecond Ti:Sapphire 2-photon laser with dispersion compensation (Vision S, Coherent). 

The microscope was controlled by ThorImageLS software. The laser was tuned to λ = 940 

nm. The field of view was 370 × 370 μm. Imaging frames of 512 × 512 pixels (pixel size 

0.72 μm) were acquired at 30 Hz by bidirectional scanning of an 8 KHz resonant scanner.

A different set of neurons was imaged for each experiment. Using an average field of view 

from each experiment, the somatic centers of putative neurons were manually localized and 

stored. A ring-like region of interest (ROI) was cropped around the cell center using the 

method described in Chen et al. (2013). Overlapping ROI pixels (due to closely juxtaposed 

neurons) were excluded from analysis. For each labeled neuron, a raw fluorescence signal 

over time was extracted from somatic ROIs. Pixels within the ROI were averaged to create 

individual neuron fluorescence traces, FC(t), for each trial of the experiment. Neuropil 
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fluorescence was estimated for each cellular ROI using an additional ring-shaped ROI, 

which began 3 pixels from the somatic ROI. Pixels from the new ROI were averaged to 

obtain neuropil fluorescence traces, FN(t), for the same time-period as the individual neuron 

fluorescence traces. Pixels from regions with overlapping neuropil and cellular ROIs were 

removed from neuropil ROIs. Neuropil-corrected cellular fluorescence was calculated as 

FC(t) = FC(t) − 0.7 FN(t). Only cells with positive values obtained from averaging FC(t) across 

time were kept for analysis, since negative values may indicate the dominance of neuropil 

contamination. ΔF/F was calculated from FC(t), for each neuron, by finding the average F 

taken from the silent baseline period, subtracting that value from subsequent time-points, 

then dividing all time-points by the baseline F. All images were processed using MATLAB 

(The Mathworks) using our prior methods (Francis et al., 2018b).

Computation of stimulus and choice information—We first deconvolved the single-

trial fluorescence traces into spike rates, obtained with a sliding window approach across 

the entire duration of a trial (Figure 2A). We inferred the relative spiking activity from 

the fluorescence traces with a first-order autoregressive model using the CaImAn algorithm 

(Giovannucci et al., 2019; Vogelstein et al., 2010) and binarized the deconvolved traces into 

0, when there was no activity at all, and 1, if the spiking activity was above 0 (Figure 2A). 

To validate our deconvolution, we computed the averaged spiking activity time course of 

the whole population. In accordance with previous studies (Forli et al., 2018; Petrus et al., 

2014), we found the firing rates in the pre-/peri-stimulus intervals were 4.4 ± 0.7 and 8.2 ± 

1.6 Hz (mean ± s.d. across cells) respectively (Figure 2A). We computed mutual information 

carried by neurons at a given time either about stimulus category S (low vs high frequency 

tones), and about the behavioral choices C (lick vs. no-lick), defined as follows (Quian 

Quiroga and Panzeri, 2009; Cover and Thomas, 1991):

I(X; Rt) = ∑
x, rt

p(x, rt)log 2
p(x, rt)

p(x)p(rt) (Equation 1)

where X = S, C denotes the set of task variables, either stimuli S or choices C. Rt is the set 

of responses of the neuron measured at a given time t. p(x, rt) denotes the joint probability 

of observing in a given trial a value x for the stimulus or choice variable and a value rt for 

the activity of the neuron at time t . p(x) = ∑r p(x, rt), and p(rt) = ∑x p(x, rt), are the marginal 

probabilities.

To compute the time dependent spike rates rt, we first inferred the relative spiking activity 

from the fluorescence traces with the CalmAn first-order autoregressive model (Giovannucci 

et al., 2019; Vogelstein et al., 2010). We then averaged the spiking activities with a 

sliding window of 10 imaging frames, in time-steps of 1 imaging frame, and the resulting 

activity was binarized as 0/1 (occurrence or not of at least 1 spike in each window). We 

then computed information in these spike rates from Equation (1) with the Information 

Breakdown Toolbox (Magri et al., 2009). We then subtracted for each neuron the average 

information computed in the pre-stimulus interval. This procedure insures the removal of 

the limited sampling bias, as well as the removal of possible contributions of pre-stimulus 

choice signals (Niwa et al., 2013) reflecting e.g. stimulus-unrelated internal bias.
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Computation of intersection information—We computed intersection information 

II(S,R,C), following exactly the procedure published in (Pica et al., 2017), to which we 

refer for full details. II(S, R, C) builds on the mathematical and numerical techniques of 

Partial Information Decomposition (Bertschinger et al., 2014; Makkeh et al., 2018; Williams 

and Beer, 2010), and it quantifies the part of sensory information that is is used to inform 

behavioral readout and is bounded by both I(S;R) and choice I(S;C) (Pica et al., 2017). 

As for stimulus and choice information, we subtracted the average intersection information 

evaluated in the pre-stimulus interval to remove limited sampling biases.

Computation of information significance—To select individual neurons with 

significant information of each type, we used a non-parametric permutation test (creating 

a null hypothesis distribution of information values obtained randomly shuffling across 

trials the stimulus-response or choice-response associations), and we set a threshold of p 

< 0.1. Note that we constructed the null hypothesis distribution selecting for each random 

permutation the maximum information over all time windows of the permuted values. 

The so obtained p values are already corrected for multiple comparisons across time bins. 

Because having significant II also requires having significant CI and SI, when selecting 

neurons with significant II we required that those neurons have also significant SI, CI 
and II at p < 0.1. Given that these three tests are not independent, we could not evaluate 

the expected number of falsely labeled II neurons simply by taking the product of the 

three p value thresholds. To empirically estimate the rate of falsely labeled II neurons, we 

repeated our selection procedure using surrogate data in which for each neuron we randomly 

permuted the trials at the outset. The fraction of surrogate neurons that exhibit significance 

at p < 0.1 simultaneously for CI, SI and II provides an empirical estimate of the false 

positive rate in our selection procedure. We found that only 1% (31 out of 2,792 neurons) 

of the surrogate neurons were classified as significant. Thus, our set of II-selected neurons 

contains 1% of falsely labeled II neurons, which corresponds effectively to a p < 0.01 

selection p value.

We further checked how our results generalize when requiring at same time significant SI, 
CI and II with a more stringent threshold at p < 0.05. In this case, we could only select 

7 (rather than 12) experimental sessions with at least 20 II neurons for GC analysis. We 

repeated our analysis for II neurons chosen with threshold p < 0.05 (See Figures S3E-S3F 

and Table S5), finding the same qualitative trends of Figure 4 but with fewer significant 

differences due to fewer number of sessions (n = 7 in Figures S3E-S3F vs. n = 12 in Figure 

3). Notably, we were able to decode correct vs. incorrect choice more accurately (Figure 

S3F) with this even more stringent threshold.

Granger Causality Analysis—Granger causality (GC) analysis evaluates the predictive 

influence of the past activity of one neural process on present activity of another. GC 

analysis was performed similarly as in our previous work (Francis et al., 2018b) by 

fitting sparse vector autoregressive (VAR) models to the ensemble neural responses (ΔF/F), 

calculating an unbiased GC measure for each potential link, and characterizing the GC link 

strengths using Youden’s J-statistics following false discovery rate control at a rate of 0.001. 

We highlight here three key differences from previous analysis regarding model estimation, 
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modeling history-dependency, and neuron selection, and refer the reader to (Francis et al., 

2018b) for a recapitulation of the remaining details.

In order to estimate GC network connectivity amongst larger networks, the maximum 

likelihood problem in (Francis et al., 2018b) is solved, employing the Orthogonal Matching 

Pursuit (OMP) algorithm (Zhang, 2011; Cai and Wang, 2011) to fit sparse VAR models 

rather than ℓ1-regularisation. OMP enables the sparsity of the estimated parameter vector—

i.e. the number of non-zero parameters—to be controlled, thus mitigating model overfitting 

more robustly. The sparsity level of each VAR model is obtained by cross-validation. The set 

of non-zero parameters, called the model support set, is iteratively selected: at each iteration, 

a new parameter with the greatest contribution to the residual estimation error is added to the 

support and maximum likelihood estimation is performed over the updated support set.

The neural responses of a set of C neurons, indexed by c = 1,…,C, are denoted by 

yr, t
(c)

r = 1:R, t = 1:T
c = 1:C

, where tt = 1,…,T and r = 1,…,R index time bins and trial repetitions, 

respectively. The covariates of the VAR model of each neural response incorporate the 

self- and cross-histories of activity over an integration window of L samples within which 

neuronal interactions are assumed to occur. The integration window is subdivided into M 
non-overlapping windows of lengths {Wm}m = 1:M. The average activity of neuron (c) in the 

m-th window lag with respect to time bin t and trial r is given by

ℎr, t, m
(c) = 1

W m
∑

k = t − 1 − bm

t − 1 − bm − 1
yr, k

(c) , (Equation 2)

where bm = ∑l = 1
m W m and b0 = 0. The collection of history covariates ℎr, t, m

(c)
m = 1:M
c = 1:C

comprises the regressors of yr, t
(c). Note that the conditional independence of responses given 

the collection of history covariates allows to estimate the VAR parameters at the single-trial 

level by maximizing the joint likelihood of the within-trial responses via OMP (Francis et 

al., 2018b).

Interactions between neurons over short timescales (S) are modeled with an integration 

window of L = 7 lags with M = 3 subdivisions with window lengths {Wm}m = 1:M = 

{2m–1}m = 1:M lags. Long timescale (L) interactions are modeled by instead using a cross-

history integration window of length L = 31 lags with M = 5 subdivisions whose window 

lengths are similarly defined. S and L timescale interactions thus respectively correspond 

to 233 ms and 1033 ms windows of effective history. It is clear from the parameterization 

that the S and L interactions are modeled in a nested fashion. We validate this approach 

by simulating a 10 neuron network consisting of both S- and L-timescale links (see Figure 

S6). Employing the L integration window for GC analysis, we are able to correctly identify 

all L- and S-timescale interactions; however, using the S integration window, while the 

S-timescale links are correctly identified, the L-timescale links are expectedly discarded, 

thus corroborating the sensitivity and specificity of our proposed inference framework.
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Twenty neurons were analyzed from each 2P experiment. Analyzing a subset of fixed 

size avoids intersession variations in the number of recorded neurons that could affect 

analyses. The total number of model parameters, M•C, needs to be much smaller than 

the total number of samples, R•T, for reliable model estimation. We use at most M = 5 

subintervals and per trial used the T = 105 time samples of the response after stimulus 

onset; we calculated C = 20 to be the maximum number of neurons that satisfies this 

condition, conservatively assuming at minimum R = 10 trials per session of each behavioral 

choice category. In our main results, 20 II neurons with the lowest II-peak latency in each 

experiment (n = 12) in which at least as many II neurons were identified. For consistency, 

20 exclusively CI neurons were similarly selected in the analyses presented in Figures S3A-

S3B. Highly active neurons in each 2P experiment (n = 34) were selected per behavioral 

choice category. The neural response of the cth neuron at the tth time index of the rth repeated 

trial of a behavioral category, yr, t
(c), is normalized yr, t

(c) =
yr, t
(c)

∑t(yr, t
(c))2

. The 20 neurons with the 

smallest trial-averaged variances of the normalized responses, σ(c)2 = 1
R ∑rV ar yr, t

(c) , were 

selected.

Decoding behavioral choice from network structure—To test if network structures 

encode behavioral choice, we trained classifiers on four GC network statistics — number 

of links, number of subnetworks, size of subnetworks, and statistical strength of links — to 

distinguish correct (Hit or Correct Rejection) and incorrect (Miss or False Alarm) decisions. 

Feature vectors consisting of these statistics were compiled for each behavioral choice 

network from the VAR parameters estimated at the single-trial level. We then trained a linear 

support vector machine (SVM) at the single-trial level to predict behavioral choice using 

a randomly selected 75% of the feature vectors, with the remaining 25% used to evaluate 

prediction accuracy. This procedure was repeated 2000 times, each with a new randomized 

partition of feature vectors, to characterize the distribution of average classification accuracy.

Spatial distribution of GC subnetworks—To investigate the spatial scales over which 

functionally linked neurons interact, we leveraged the spatial location of individual neurons 

available in 2P imaging to analyze how subnetworks were distributed across the imaged 

cortical area. To this end, the locations of subnetworked neurons relative to their centroid 

were obtained as follows. For a subnetwork of R neurons with positions {(xi, yi)}i = 1
R , 

we compute their locations relative to the subnetwork centroid, {(xi − x, yi − y)}i = 1
R , 

where x = 1
R ∑i = 1

r xi, and y = 1
R ∑i = 1

r yi. The relative locations are compiled over all 

subnetworks to yield an empirical distribution. The covariance matrix of the distribution 

describes the spatial spread of subnetworks. Its determinant – which accounts for both the 

covariance between x and y as well as their respective variances – is used as a comparative 

statistic to quantify differences in the spatial dispersion of subnetworks across conditions.

Computation of information redundancy—We used a normalized redundancy index 

defined as the information carried jointly by two neurons minus the sum of the information 
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that each carried independently, normalized with respect to the total information carried by 

the two neurons jointly (Pola et al., 2003; Schneidman et al., 2003):

Redundancy =
I(X; R1, t1, R2, t2) − I(S; R1, t1) − I(S; R2, t2)

I(X; R1, t1, R2, t2) (Equation 3)

For each of the two neurons, we selected activity at the time t1,t2 of their peak information. 

The single neuron information was computed as in section “Definition of stimulus, choice 

and intersection information for single neurons”. The joint time-lagged stimulus and choice 

information was computed as follows:

I(X; R1, t1, R2, t2) = ∑
x

∑
r1, t1, r2, t2

p(x, r1, t1, r2, t2)log 2
p(x, r1, t1, r2, t2)

p(x)p(r1, t1, r2, t2) (Equation 4)

Notations are as in Equation (1), with now p(X, r1,t1, r2,t2) denoting the probability of 

observing in a given trial a value x of the behavioral variable (stimulus category or choice) 

and a joint response r1,t1 , r2,t2 of the two neurons at times t1,t2 respectively. Intersection 

information was computed with the methods detailed in (Pica et al., 2017), using the joint 

response r1,t1, r2,t2 as the neural response variable.

Computation of signal and noise correlations—We computed noise correlations as 

across-trials Pearson correlations of the activity of pairs of neurons at fixed stimulus (then 

averaged over stimuli), whereas signal correlations were computed as Pearson correlations 

across stimuli of the trial-averaged responses to each of the two stimuli (high vs low 

frequency tones). Given the imbalance in the number of correct and incorrect trials, we 

equalized the sample sizes by randomly subsampling the correct trials, to avoid systematic 

errors in the comparisons between correct and incorrect trials (see Figure 6D).

QUANTIFICATION AND STATISTICAL ANALYSIS

Unless noted otherwise, statistical comparisons were performed using a bootstrap t test with 

10,000 iterations or a Kolmogorov–Smirnov test (KS-test), for both one- and paired-sample 

tests. Kruskal-Wallis tests were used when there were >2 groups being compared. We used 

a Bonferroni correction for multiple comparisons. All mean values are reported with 2 

standard errors of the mean, unless noted differently.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights

• Aberrant attentional gain in auditory cortex reflects incorrect decision making

• Task-relevant information is transiently encoded by individual neurons

• Neuronal network structures with task-relevant information encode behavioral 

choice

• Networked neurons communicate task-relevant information redundantly
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Figure 1. Two-photon imaging in awake-behaving mice shows neural responses modulated by 
behavioral choice
(A) Head-fixed mice were trained to discriminate low-frequency target tones (red) versus 

high-frequency non-target tones (blue).

(B) Average lick rates within a trial during task performance (left panel). The horizontal 

black bar shows the tone presentation. The red trace and blue traces show the lick rate for 

hits (H) and false alarms (F), respectively. The dotted line illustrates chance performance, 

where licking is not timed to tone presentation, but rather it is evenly distributed across a 

given trial. Cumulative distribution functions across experiments for hit (red) and false alarm 

(blue) response rates and latencies (middle panels). Average behavioral choice rates, i.e., hit 

(red), miss (pink), false alarm (blue), and correct rejection (cyan), for each presented tone 

(right panel). Error bars show 2 SEM (n = 34 experiments).

(C) Primary auditory cortex (A1) was localized within a craniotomy by using widefield 

imaging to visualize tonotopy in auditory cortex.

(D) Average neuronal population response traces in A1 layer 2/3 (L2/3) (n = 2,792 neurons) 

color coded for behavioral choice as in (B). Each trace shows the response to the indicated 

tone. Shading shows 2 SEM. The horizontal colored bars show the peri- and post-stimulus 

windows, respectively, used for later analyses.

(E) Neurons in A1 L2/3 responded transiently, with jittered amplitude and timing in 

response to repeated identical tones.

(F) Neuronal response amplitude varied with both task performance and tone frequency. 

Error bars show 2 SEM.

(G) Attentional gain was defined as the difference between neural responses during 

behavioral versus passive trials for the same tone. Error bars show 2 SEM, and asterisks 

indicate statistically significant differences based on bootstrap t test (*p < 0.05, **p < 0.01, 

***p < 0.001).
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Figure 2. Processing pipeline and information-theoretic framework
(A) Examples of deconvolution of the ΔF/F response traces (first panel); trial-by-trial 

spiking activity and peri-stimulus time histogram for a single neuron (second panel); average 

firing rate across neurons is higher in the post-stimulus interval than pre-stimulus (rightmost 

panel; p < 0.001, Wilcoxon rank-sum test).

(B) Stimulus encoding and behavioral readout during auditory task performance. Blue, 

green, and red circles, respectively, represent neurons with stimulus information (SI) only, 

choice information (CI) only, and intersection information (II). II accounts for the part of 

sensory and choice information used to perform the task.

(C) Time courses of information types (SI, CI, and II) in different groups of neurons. Solid 

lines represent the mean and shaded areas represent the SEM across all neurons in each 

group.
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Figure 3. A1 L2/3 neurons transiently carried SI, CI, and II
(A) Information time courses were normalized to the peak of each neuron’s information and 

sorted by peak time of II. Information ratio was first computed for each neuron and then 

averaged across neurons. Transiency of SI, CI, and II shown by the peak-aligned information 

decay within ±1 s from the peak (bottom panel). Error bars show 1 SEM.

(B) Time course of SI, CI, and II averaged over neurons. We quantified the SI, CI, and II in 

six separate stages of the behavioral task, which account for the peri-stimulus (0–1.5 s) and 

the post-stimulus intervals (1.5–3 s) shown by the shaded regions. Error bars show 1 SEM.

(C) Violin plots of the estimated best frequency (BF) (left) and tuning bandwidth (BW) 

(right) of neurons with early II versus overall population. Early II neurons had significantly 

lower BFs (p < 0.01, Wilcoxon rank-sum test) and narrower BWs (p < 0.05, Wilcoxon 

rank-sum test) compared with the overall population.
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Figure 4. Behavioral choice was encoded in the network structure of low II-peak latency neurons
(A) Functional networks of short (S)- and long (L)-timescale interactions among low II-peak 

latency neurons were estimated using Granger causality (GC) analysis for each behavioral 

choice: hit (H), miss (M), correct rejection (C), and false alarm (F). Disjoint sets of 

interlinked neurons constituted subnetworks (dashed gray boundaries).

(B) GC-linked neurons, for both S- and L-timescales, had more information than GC-

unlinked neurons (*p < 0.05, **p < 0.01, ***p < 0.001).

(C) Four GC network statistics were analyzed: number of links, number of subnetworks, 

size of subnetworks, and statistical strength of links. Error bars show 2 SEM. Statistically 

significant differences, indicated by asterisks, were identified by Wilcoxon’s signed rank test 

(p < 0.05). See also Table S1.

(D) Network statistics were used to train a support vector machine (SVM) to classify 

behavioral responses into correct or incorrect decisions. Across timescale and selection of 

neurons, decisions were predicted significantly better than chance (p < 0.001). S-timescale 

network structure of low II-peak latency neurons was better decoded than highly responsive 

neurons (p < 0.001). L-timescale network structures had high decoding accuracy, but low 

II-peak latency networks were better decoded than highly responsive neurons (p < 0.001). 

Two-sample t tests (p < 0.05) were used to compare distributions and a one-sample t test (p 

< 0.05) to compare with chance performance.
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Figure 5. Subnetwork dispersion varied less by timescale during correct behavioral choices
(A) Neurons with peri- (Pe) and post-stimulus (Po) II peaks were spatially intermingled. The 

sum of average distances of Pe neurons to their centroid (RPe) and of Po neurons to theirs 

(RPo), denoted as RPe + Po, was smaller than the distance between centroids (RPe − Po) (p < 

0.001, two-sample t test).

(B) Subnetwork spatial distributions. Low II-peak latency neurons (black) that are linked 

(green) in groups isolated from others constitute subnetworks (top left). Relative locations 

of subnetworked neurons were aggregated over all subnetworks (top right). The distributions 

of relative locations are shown as 2D histograms (25 × 25 μm bins) for S- and L-timescales 

(bottom left and right).

(C) Determinant of spatial distribution covariance matrix. L-timescale C, M, and F 

subnetworks were more spatially dispersed than S-timescale subnetworks (M: p < 0.001; 

F: p = 0.002; C: p = 0.014). For S-timescales, H versus M subnetworks were more dispersed 

(p = 0.002), as were F versus C subnetworks for L-timescales (p = 0.003).

(D) Pairwise distances between linked neurons remained similar for S- versus L-timescales, 

except for M trials (p = 0.047). (C) and (D) show mean ±2 SEM. Asterisks indicate 

statistically significant differences based on Wilcoxon’s signed rank test (p < 0.05).
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Figure 6. Redundancy and correlations increase during correct behavioral choice
(A) Left panel: decomposition of joint information of pairs of neurons into synergistic, 

cell-unique, and redundant components. Right panel: normalized time-lagged redundancy 

computed for GC-linked neurons (red), either positive (orange) or negative (salmon), 

and GC-unlinked pairs of neurons (black). GC-linked neurons carried more redundant 

information than GC-unlinked neurons (II, SI, CI). Pairs of neurons connected with negative 

GC links carried more redundant information related to II.
(B) Normalized redundancy across time-lagged neuronal activity (left panel), and versus the 

Euclidean distance (right panel) between pairs of both GC-linked and GC-unlinked neurons.

(C) Pairwise time-lagged signal and noise correlations between pairs of neurons at the peak 

of intersection information. Noise correlations were higher in GC-linked than GC-unlinked 

neurons, while signal correlations are distributed similarly.

(D) Noise and signal correlations in correct versus incorrect trials (two leftmost panels); 

normalized time-lagged redundancy in correct versus incorrect trials (center-right panel); 

difference between the redundancy in correct versus incorrect trials for GC-linked and GC-

unlinked neurons (rightmost panel). Statistical comparisons were made with a two-sample t 

test (*p < 0.05, **p < 0.01, ***p < 0.001).
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KEY RESOURCES TABLE

REAGENT or RESOURCE SOURCE IDENTIFIER

Deposited data

2-photon dataset This paper https://doi.org/10.13016/m2yt-mfxk

Experimental models: Organisms/strains

Mouse: CBA/CaJ The Jackson Laboratory JAX: 000654

Mouse: C57BL/6J-Tg(Thy1-GCaMP6s)GP4.3Dkim/J The Jackson Laboratory JAX: 024275

Software and algorithms

MATLAB MathWorks https://www.mathworks.com

Granger Causality Analysis This paper https://doi.org/10.13016/ebv5-yzqy

Intersection Information Analysis This paper https://doi.org/10.5281/zenodo.850362

Other

Bergamo II series multiphoton microscope ThorLabs Cat# B248; Serial# 1

Pulsed femtosecond Ti:Sapphire 2-photon laser Coherent Vision S

CMOS camera ThorLabs Cat# DCC3240M

470nm bandpass filter for blue wide-field LED Chroma Cat# ET470/40x

495nm longpass filter for CMOS camera Chroma Cat# Q495lp
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