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Abstract: Colletotrichum gloeosporioides is a hemibiotrophic ascomycetous fungus that causes anthrac-
nose in many plants worldwide. During infections, C. gloeosporioides produces an appressorium in
response to various plant surface signals. However, the mechanism mediating host surface signal
recognition remains unclear. In this study, C. gloeosporioides ∆CgMsb2 and ∆CgMsb2Sho1 mutants
lacking hypothetical sensors of plant surface signals were examined. The mutations in ∆CgMsb2
and ∆CgMsb2Sho1 adversely affected conidial size and sporulation, while also inhibiting growth.
Significant transcriptional changes were detected for nearly 19% and 26% of the genes in ∆CgMsb2
and ∆CgMsb2Sho1, respectively. The lack of these plasma membrane receptors altered the expression
of specific genes, especially those encoding hydrolases, ABC transporters, and mitogen-activated
protein kinases (MAPKs). The encoded MAPKs participate in the signal transduction of ERK and
JNK signaling pathways, activate downstream signals, and contribute to metabolic regulation. Our
data demonstrate that the C. gloeosporioides membrane proteins Msb2 and Sho1 affect gene regulation,
thereby influencing conidial growth, metabolism, and development. These findings provide new
insights into the regulation of C. gloeosporioides’s development and infection of plant hosts.

Keywords: Colletotrichum gloeosporioides; membrane receptor; signal recognition and transduction;
pathogenicity

1. Introduction

Colletotrichum Corda is one of the top 10 fungal plant pathogens in molecular plant
pathology [1]. Colletotrichum gloeosporioides, which is an important plant pathogen, is widely
distributed in tropical, subtropical, and temperate regions, where it can infect and damage
gramineous and woody plants [2–4]. More specifically, C. gloeosporioides is a hemibiotrophic
fungus that produces conidia, which initiate infections at the leaf surface. First, after conidia
are activated, their tips secrete mucilage that enables them to adhere to the leaf surface.
Next, bud tubes form on the surface of the conidia and then quickly undergo polar growth
and cell division. The polar growth then ceases at the bud tube end, which subsequently
expands to form a special infection-related structure called an appressorium [5]. After
reaching a certain turgor pressure, the mature appressorium penetrates the plant epidermis
and invades the host tissue to produce primary hyphae [6]. The continuous expansion of
C. gloeosporioides in plant cells results in the substantial production of secondary hyphae
that secrete a large number of cell-wall-degrading enzymes, resulting in the degradation of
plant tissues. Additionally, the hyphae obtain nutrients for their growth and development.
Finally, the pathogen causes leaf necrosis (e.g., in poplar trees), which is a typical symptom
of anthracnose [7]. The key of C. gloeosporioides infecting plants is the recognition on the
plant surface and the formation of appressorium.

On the plant surface, appressorium formation involves specific signals, including
epidermal wax and keratinocytes [8], which provide information regarding the physical
properties of the plant surface (e.g., hydrophobicity and hardness) [9]. These stimuli are
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perceived by fungal cell surface sensors, after which the signals are transmitted to cells
via downstream signaling pathways. Meanwhile, appressorium formation is a complex
and highly regulated process involving modifications to the cell wall [10,11], gene expres-
sion [12–15], and the cytoskeleton [16–18]. Thus, characterizing the molecular mechanisms
underlying the perception and integration of these stimuli is important for elucidating
how plant pathogens enter the host. Sensing the host surface signals is an important
part of pathogen infections, with hypothetical sensors playing an indispensable role. In
Magnaporthe grisea, Sho1 and Msb2 have overlapping functions in recognizing different
plant surface signals, while also regulating the phosphorylation of Pmk1 [19]. In cells,
mitogen-activated protein kinase (MAPK) is an important signal transducer and regulator
of a variety of physiological processes [20]. The following four MAPK subfamilies have
been identified in eukaryotic cells [21]: extracellular signal-regulated kinase (ERK) 1/2,
p38MAPK, c-Jun, and ERK5. In Ustilago maydis, Sho1 and Msb2 are specifically involved in
the perception of host surface hydrophobicity [22] and have overlapping functions related
to appressorium development and plant infections. In many plant pathogens, homologs of
the yeast protein Msb2 have been identified as putative sensors involved in plant surface
signal recognition, pathogenicity, and Pmk1 (i.e., MAPK) activation [23]. We previously
demonstrated that CgMsb2 plays a significant role in the recognition of various host surface
signals. The lack of CgMsb2 leads to a defective appressorium formation and decreased
pathogenicity. In addition, CgSho1 plays a secondary role and cooperates with CgMsb2
to jointly regulate host signal recognition as well as pathogenicity. However, the regula-
tion of gene changes related to CgMsb2 and CgSho1 is unclear, and how to activate the
downstream signal pathway remains to be explored. To clarify the host surface signal
recognition and transduction mechanism of pathogens, we explored the regulation of
CgMsb2 and CgSho1 through transcriptomes and screened the key regulatory genes and
signal pathways in the early stage of appressorium formation.

In the present study, we performed a transcriptome analysis of C. gloeosporioides
mutants lacking Msb2 (∆CgMsb2) or lacking Msb2 and Sho1 (∆CgMsb2Sho1). More specif-
ically, their transcriptomes were sequenced and analyzed to reveal differences in gene
expression profiles.

2. Materials and Methods
2.1. Fungal Strains and Culture Conditions

The WT C. gloeosporioides strain CFCC80308, which was used for analyzing transcrip-
tome profiles, was isolated from Populus × beijingensis in Beijing, China. The ∆CgMsb2 and
∆CgMsb2Sho1 mutants were generated in one of our previous studies [24]. For all strains,
conidial suspensions (in 50% glycerol) were kept at −80 ◦C for long-term storage. All
strains were cultured at a room temperature of 25 ◦C in plates containing potato dextrose
agar (PDA) medium (200 g of potato, 20 g of glucose, and 15 g of agar per liter).

2.2. Analyses of Vegetative Growth and Conidiation

Conidial suspensions of the WT and mutant strains were prepared using sterilized
deionized water (106 conidia/mL). A 1 µL aliquot of the conidial suspension of each strain
was used to inoculate PDA medium in plates, which were then incubated at 25 ◦C for 5 days.
The colony diameter was measured daily starting on day 2. After the 5-day incubation, the
spores on the mycelium were washed with 2 mL sterile water and then the conidial yield
and size were determined for each strain. Additionally, the WT and mutant spores were
examined using an optical microscope and photographed. All experiments were performed
three times.

2.3. RNA Extraction

The conidia on the mycelium were washed with sterile water and centrifuged. After re-
moving the supernatant, the conidia were immediately frozen in liquid nitrogen. Total RNA
was extracted using the TRIzol reagent (Invitrogen, Carlsbad, CA, USA). RNA degradation



J. Fungi 2022, 8, 207 3 of 15

and contamination were assessed by 1% agarose gel electrophoresis, whereas RNA integrity
was evaluated using the 2100 Bioanalyzer (Agilent, Mainz, Germany). The RNA concentra-
tion was determined using the NanoDrop 8000 spectrophotometer (NanoDrop, Waltham,
MA, USA). High-quality RNA samples were retained for transcriptome sequencing.

2.4. Preparation of Transcriptome Sequencing Libraries

For each strain, the total RNA (3 µg) was used for constructing transcriptome sequenc-
ing libraries using the Illumina kit (San Diego, CA, USA). Briefly, the mRNA among the
total RNA was enriched using oligo-(dT) magnetic beads and then immediately treated
with a fragmentation buffer. The resulting mRNA fragments served as the template for syn-
thesizing first-strand cDNA using random hexamers, after which buffer, dNTPs, RNase H,
and DNA polymerase I were added to synthesize the second cDNA strand. The cDNA was
subsequently purified using AMPure XP beads. Following an end-repair step, the cDNA
was modified by the addition of a tail sequence and a sequencing adapter. A fragment
size selection step was performed using AMPure XP beads, which was followed by a PCR
amplification to complete the construction of the sequencing library.

2.5. Transcriptome Analysis and Sequence Assembly

The transcriptome analysis was performed using three biological replicates. The pre-
pared libraries were sequenced on the Illumina HiSeq 2000 system at the Beijing Genome
Institute, which resulted in 150 bp paired-end reads. Raw reads were filtered by elimi-
nating low-quality reads using the Trimmomatic program (version 0.33) (RWTH Aachen
University, Aachen, Germany). The retained reads were aligned to the reference transcrip-
tome to identify new genes and quantify gene expression using HISAT2 software [25].
The aligned reads were assembled using StringTie [26] to construct complete transcripts
and analyze expression. The reads were aligned to the reference genome according to a
Burrows–Wheeler transformation-based method [27] to calculate the number of mapped
reads. The fragments per kilobase million (FPKM) value was calculated for the fragments
with two paired-end reads.

2.6. Analysis of Differential Gene Expression

Differential expression between samples was analyzed using DESeq2 [28]. The follow-
ing criteria were used to identify significant DEGs: fold-change ≥ 1.5 and p < 0.01. The
false discovery rate was calculated on the basis of the p value. Multiple public databases
were screened to assemble the transcripts in the transcriptomes. Gene Ontology terms
were used to functionally characterize gene products and clarify their cellular localization.
The DEGs were classified into the three main GO categories (biological process, cellular
component, and molecular function) using the GOseq R package [29]. Additionally, the
R package was used to calculate adjusted p values. An adjusted p < 0.05 was used as the
threshold for determining the significance of the annotation of a DEG with a particular
GO term. The adjusted p value was adjusted according to the Benjamini and Hochberg
method (false discovery rate < 0.05) [30] to identify significant DEGs. The KEGG database
was used to further elucidate the functions of the identified DEGs in biological systems,
including cells, organisms, and ecosystems. The hypergeometric test was used to analyze
the significant enrichment of KEGG pathways among the DEGs.

2.7. qRT-PCR

The samples used for the RNA-seq analysis were also used for the qRT-PCR analysis,
which was conducted to evaluate the reliability and reproducibility of the transcriptome
data. Primer pairs for the selected genes (Supplementary Table S3) were designed using
Primer Premier 6.0. First-strand cDNA was synthesized using the Hifair® II 1st Strand
cDNA Synthesis SuperMix for qPCR (with gDNA digester plus) (Yeasen Biotechnology,
Shanghai, China). The qRT-PCR analysis was performed using the 2 × HQ SYBR qPCR
Mix (Zoman Biotechnology, Beijing, China). The CFX Connect Real-Time PCR instrument
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(Bio-Rad, Hercules, CA, USA) and CFX Manager Software 3.0 were used. Each sample was
analyzed in triplicate and the average values were calculated. Relative gene expression
levels were determined according to the 2−∆∆Ct method [31].

2.8. Statistical Analysis

Raw data were analyzed using the SPSS 17.0 program (SPSS Inc., Chicago, IL, USA). In
this study, significant differences between samples (p < 0.05 and p < 0.01) were determined
by a one-way analysis of variance (Duncan’s test).

3. Results
3.1. ∆CgMsb2 and ∆CgMsb2Sho1 Exhibit Defects in Vegetative Growth and Conidiation

There were no significant differences in the length/width ratios of the wild-type (WT),
∆CgMsb2, and ∆CgMsb2Sho1 conidia (Figure 1B). Interestingly, the spore yield was much
higher for ∆CgMsb2Sho1 than for the WT control (Figure 1A,D). Regarding growth, we
measured the diameters of the WT, ∆CgMsb2, and ∆CgMsb2Sho1 colonies starting from
day 2 of the growth period (Figure 1E). The colony growth rate was slightly higher for
the WT control (12.48 mm/day) than for the ∆CgMsb2 (11.37 mm/day) and ∆CgMsb2Sho1
(11.76 mm/day) mutants.
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Figure 1. Effects of the lack of Msb2 and Sho1 on conidial size, growth, and sporulation. (A) Images
of the conidia from WT, ∆CgMsb2, and ∆CgMsb2Sho1 strains. Conidia were washed with 2 mL
sterile water. Scale bar: 10 µm. (B) Length/width ratio of conidia. Error bars represent the standard
deviation for three independent replicates, each comprising three technical replicates. Asterisks
indicate significant differences (p < 0.05). (C) The WT, ∆CgMsb2, and ∆CgMsb2Sho1 strains were
cultured on PDA medium in plates at 25 ◦C for 5 days. (D) Conidial production on PDA medium
in plates after 5 days. Error bars represent the standard deviation for three independent replicates.
Asterisks indicate significant differences (** p < 0.01). (E) Colony diameter of the strains cultured on
PDA medium in plates.
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3.2. RNA Sequencing (RNA-seq) Profiles and Identification of Differentially Expressed
Genes (DEGs)

To explore the transcriptomes of C. gloeosporioides associated with Msb2 and Sho1,
biological replicates of the control samples (T0-1, T0-2, and T0-3) and the mutant samples
(M0-1, M0-2, and M0-3 as well as MS0-1, MS0-2, and MS0-3) were included in the transcrip-
tome analysis. The Q scores exceeded 30 for >85% of the reads in all nine libraries (Table 1),
reflecting the high quality of the RNA-seq data. More than 1.21 Gb of clean bases were
obtained per library.

Table 1. RNA sequencing data for the T0, M0, and MS0 samples. Note: T0, wild-type C. gloeosporioides
conidia; M0, ∆CgMsb2 conidia; MS0, ∆CgMsb2Sho1 conidia.

Sample Data (bp) Clean
Reads Q30 (%) Total Mapping

(%)
Uniquely

Mapping (%)

T0 6,286,653,483 21,019,807 94.81% 91.01% 90.66%
M0 8,905,212,135 29,816,717 94.01% 95.79% 95.54%

MS0 9,194,480,861 30,799,568 94.74% 95.99% 95.74%

Analyzing the DEGs among the control and mutant samples may be useful for further
clarifying the regulatory effects of the signal-transduction-related C. gloeosporioides mem-
brane proteins. Genome-wide transcriptional profiling of M0 and MS0 detected substantial
transcriptional changes to 19–26% of the genes. A total of 1788 DEGs were detected in
the T0 vs. M0 comparison, of which 1056 and 732 were upregulated and downregulated,
respectively. Additionally, 2481 DEGs were detected in the T0 vs. MS0 comparison, of
which 1461 and 1020 were upregulated and downregulated, respectively. The overall DEG
distribution is presented in Figure 2A. The significant DEGs (i.e., adjusted fold-change ≥ 2
and corrected p < 0.01) (Figure 2B,C).

3.3. DEGs among the Transcriptomes

To explore gene expression similarities and differences among transcriptomes, we
generated Venn diagrams to profile the DEG distribution between the T0 vs. M0 and T0 vs.
MS0 comparisons. Of the upregulated DEGs, 312 were specific to the T0 vs. M0 comparison,
whereas 717 were specific to the T0 vs. MS0 comparison. However, 744 upregulated DEGs
were common to both comparisons (Figure 3A). There were slightly fewer downregulated
DEGs in the T0 vs. M0 comparison than in the T0 vs. MS0 comparison (Figure 3B). The Gene
Ontology (GO)-based functional annotations indicated that molecular-function-related GO
terms were significantly enriched among ten upregulated DEGs (T0 vs. M0 and T0 vs.
MS0), of which five were associated with transmembrane transport. Interestingly, three of
these five DEGs were identified as genes encoding ATP-binding cassette (ABC) transporters
(i.e., BEA3 and FUM19) (Table 2). Moreover, half of the 10 most downregulated DEGs
(T0 vs. M0 and T0 vs. MS0) were identified as hydrolase-related genes (Table 2). The
downregulation of glycosyl hydrolase in C. gloeosporioides affects the penetration of plant
epidermal barrier.

3.4. GO Analysis of DEGs

All DEGs were functionally characterized and classified according to a GO term
enrichment analysis. The DEGs were distributed in the three main GO categories (i.e., bio-
logical process, cellular component, and molecular function). In the M0 samples, metabolic
process (GO: 0008152), cell (GO: 0005623), and catalytic activity (GO: 0003824) were the
main GO terms assigned to the DEGs in the molecular function, cellular component, and
biological process categories, respectively (Figure 4). The MS0 samples lacking Msb2 and
Sho1 had similar GO classifications and ratios. The DEGs of metabolic process obviously
changed, which indicates that CgMsb2 and CgSho1 affect the process of material and
energy exchange.
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Figure 2. Differentially expressed genes (DEGs) in the ∆CgMsb2 and ∆CgMsb2Sho1 mutant strains.
(A) Number of DEGs in the ∆CgMsb2 and ∆CgMsb2Sho1 strains. Red and blue indicate upregulated and
downregulated expression, respectively. (B,C): Volcano plots presenting the distribution of DEGs (fold-
change ≥ 2 and adjusted p < 0.01) in the ∆CgMsb2 mutant (compared with the control) (B) and in the
∆CgMsb2Sho1 mutant (compared with the control) (C). Red and green indicate significantly upregulated
and downregulated DEGs, respectively, whereas purple indicates DEGs that are not significant.

3.5. Kyoto Encyclopedia of Genes and Genomes (KEGG) Pathway Enrichment Analysis of DEGs

The distribution and ratio of enriched KEGG pathways among the identified DEGs
are presented in Figure 5. Ribosome, carbon metabolism, biosynthesis of amino acids, and
amino acid metabolism (glycine, serine, and threonine) were among the top five enriched
KEGG pathways in both mutants. We mapped the enriched KEGG pathway network for
the DEGs (Supplementary Figure S1).
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Table 2. Upregulated and downregulated genes in the ∆CgMsb2 and ∆CgMsb2Sho1 mutants.

Condition ID Fold Change p Value Annotation

T0-M0-up

EVM0005631 807.4227 1.46 × 10−61 Glyoxylate reductase
EVM0008231 277.6544 0.0000608 DJ-1/PfpI family, transcription factor
EVM0015745 204.4752 1.14 × 10−10 Glycosyl hydrolase family 31
EVM0012935 133.5726 2.74 × 10−9 MFS transporter
EVM0008406 106.5425 3.04 × 10−27 Linoleate 9S-lipoxygenase 1
EVM0009311 18.0056 0.001193 BEA3, ABC transporter
EVM0003035 12.4763 0.000566 pmd1, ABC transporter
EVM0006436 11.2868 0.000732 PPS1, Protein phosphatase
EVM0000077 9.1756 0.002521 FUM19, ABC transporter
EVM0007629 8.7358 5.10 × 10−14 Feruloyl esterase

T0-M0-down

EVM0008257 316.9458 3.09 × 10−19 Pectate trisaccharide-lyase
EVM0002108 62.7619 1.17 × 10−20 Pectate lyase
EVM0010374 55.0161 7.21 × 10−9 Polysaccharide deacetylase
EVM0010120 50.3543 1.40 × 10−6 Glycosyl hydrolase family 12
EVM0006919 31.4844 0.000891085 erg-4, methyltransferase
EVM0009169 15.2328 0.001032984 Glycosyl hydrolase family 18
EVM0013863 14.7652 1.39 × 10−6 Cutinase
EVM0006990 13.1765 9.29 × 10−10 Scytalone dehydratase
EVM0010167 7.7034 1.84 × 10−5 Glycosyl hydrolase family 17
EVM0000353 7.1256 7.81 × 10−8 Guanine nucleotide-binding protein

T0-MS0-up

EVM0002782 680.7201 5.15 × 10−63 Carboxylesterase
EVM0005631 577.5573 4.67 × 10−170 Glyoxylate reductase
EVM0005555 156.8511 2.32 × 10−12 Nitrogen assimilation transcription factor
EVM0015745 90.8438 4.78 × 10−14 Glycosyl hydrolase family 31
EVM0009311 19.3072 3.04 × 10−10 BEA3, ABC transporter
EVM0008406 14.4585 3.47 × 10−34 Linoleate 9S-lipoxygenase 1
EVM0006436 4.8744 0.00386738 PPS1, protein phosphatase
EVM0000077 7.3816 0.000153315 FUM19, ABC transporter
EVM0005624 4.9106 7.34 × 10−3 E3 ubiquitin-protein ligase, sporulation
EVM0009704 4.1047 5.11 × 10−5 conidium formation

T0-MS0-down

EVM0001785 834.5262 1.79 × 10−10 Pectate lyase
EVM0002699 588.0388 5.66 × 10−85 Hypothetical protein
EVM0008890 321.3349 3.59 × 10−33 YheN, polysaccharide deacetylase
EVM0002162 275.5874 1.33 × 10−37 isp4, transporter protein
EVM0006990 70.4276 1.47 × 10−15 Scytalone dehydratase
EVM0006183 15.7665 1.67 × 10−18 cAMP-dependent protein kinase
EVM0010120 13.0258 8.16 × 10−9 Glycosyl hydrolase family 12
EVM0000353 8.8958 2.96 × 10−25 Guanine nucleotide-binding protein
EVM0013863 8.0850 0.000000818 Cutinase
EVM0001921 6.6476 0.005086478 Inositol 5-phosphatase
EVM0010374 4.8228 0.007172842 Polysaccharide deacetylase
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Figure 4. The Gene Ontology (GO) classification of DEGs. GO classification of identified DEGs based
on their functional annotations in response to various samples was conducted according to the GO re-
source (http://geneontology.org/, accessed on 17 January 2022). (A–C) Indicate biological processes,
cellular components, and molecular function under mutant CgMsb2, while (D–F) indicate biological
processes, cellular components, and molecular function under mutant CgMsb2sho1, respectively.

3.6. Hydrolase-Related DEGs

Compared with the corresponding expression levels in the T0 transcriptome, 52 genes
encoding 22 glycosyl hydrolase family members had upregulated or downregulated ex-
pression levels in the mutant transcriptomes (Supplementary Table S1). The gene en-
coding glycosyl hydrolase family 31 (GH31; EVM0015745) was the most differentially
expressed (i.e., upregulated nearly 204 times). This enzyme is an alpha-glucosidase that
is indispensable for glucose metabolism. Additionally, many of the genes were identified
as β-glucosidase genes belonging to the cellulase group, including GH3 (EVM0005913,
EVM0002132, EVM0015132, EVM0003379, and EVM0014350), GH5 (EVM0004843), and
GH17 (EVM0010167 and EVM0004774). Of these β-glucosidase genes, the downregu-
lated expression of only GH17 (EVM0010167) was verified by quantitative real-time PCR
(qRT-PCR). In C. gloeosporioides, GH17 (EVM0010167) may contribute to plant cell wall
degradation during the infection of host plants. In addition to the above-mentioned β-
glucosidases, GH7 and GH12 were annotated as glycoside hydrolases related to cellulose
decomposition. Notably, only one of GH18 (EVM0009169) and GH25 (EVM0010374) were
revealed to be related to chitin hydrolases. The GH25 and GH18 genes were detected in
the ∆CgMsb2, but not in the ∆CgMsb2Sho1, suggesting they are closely associated with
CgMsb2 (Figure 6).

3.7. Differential Expression of Candidate ABC Transporter Genes

The ABC proteins, which are present in all living cells, are important because they are
often associated with the multidrug resistance of microbial pathogens [32]. An examination
of gene expression patterns in the ∆CgMsb2 and ∆CgMsb2Sho1 mutants detected 12 ABC-
transporter-encoding DEGs (fold-change ≥ 2 and corrected p < 0.01). The expression levels
of most of the ABC transporter genes were significantly upregulated during appressorium
development, especially BEA3 (EVM0009311) (i.e., upregulated nearly 18 times). This gene

http://geneontology.org/
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belongs to the same family as the gene encoding ABC transporter B family member 4
(ABC4), which is reportedly involved in appressorium formation and is a pathogenicity
factor in Magnaporthe species [33]. Moreover, the expression levels of Pmd1 and FUM19,
which encode ABC transporters, were, respectively, 12.48 times and 9.17 times higher in the
M0 samples than in the T0 samples (Table 2). Significant changes with ABC transporters
may affect the transport of C. gloeosporioides nutrients and lipids, as well as the transport of
secondary metabolites
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Figure 5. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis of
the DEGs in the Colletotrichum gloeosporioides mutants. (A) T0 vs. M0 comparison. (B) T0 vs. MS0
comparison. The KEGG pathways were classified into hierarchical categories according to the
KEGG website (https://www.kegg.jp/kegg/kegg2.html, accessed on 17 January 2022). T0, wild-type
C. gloeosporioides conidia; M0, ∆CgMsb2 conidia; MS0, ∆CgMsb2Sho1 conidia.

3.8. DEGs Involved in the MAPK Signaling Pathway

The MAPK signaling pathway is necessary for the infection of susceptible hosts by
plant pathogens [34]. Regarding C. gloeosporioides, MAPK signaling pathway components
are crucial for appressorium formation. The upregulated expression of PPS1 (EVM0006436)
was revealed by the T0 vs. M0 and T0 vs. MS0 comparisons. This upregulated expression
likely inactivated MAPK via the negative regulation of protein phosphorylation, thereby
preventing the normal transmission of the MAPK signaling pathway. Conversely, the
expression of genes related to guanine-nucleoside-binding protein subunit β (EVM0000353)
was downregulated in the M0 and MS0 samples by 7.13 times and 8.90 times, respectively.

https://www.kegg.jp/kegg/kegg2.html
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The EVM0000353 gene influences the MAPK scaffold activity and positively regulates pro-
tein phosphorylation. The detected downregulated expression of the EVM0000353-related
genes in the mutants may adversely affect the normal formation of appressoria after spores
germinate by disrupting the MAPK signaling pathway.
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3.9. Verification of Gene Expression by qRT-PCR

To verify the accuracy of the transcriptomic data, we selected specific DEGs in the M0
and MS0 samples encoding glycosyl hydrolases, MAPKs, and proteins related to sporulation
and transport for a qRT-PCR analysis. For the 12 selected DEGs (Supplementary Table S2),
the qRT-PCR data were consistent with the RNA-seq data (Figure 7), implying the RNA-seq
results were reliable.

We also performed a qRT-PCR analysis to verify the RNA-seq data for the upregulated
genes (EVM0005624 and EVM0009704) related to conidia production. Both of these genes
were not detected in the M0 samples, suggesting they were specifically expressed in the
MS0 samples, which affected spore production to some extent.
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4. Discussion

In this study, 19–26% of the C. gloeosporioides genes were differentially regulated in
the ∆CgMsb2 and ∆CgMsb2Sho1 mutants. To elucidate the regulatory mechanisms of the
membrane proteins Msb2 and Sho1 in plant pathogens, a few transcriptomic studies on ba-
sidiomycetous fungi have been conducted. In U. maydis, Sho1 and Msb2 are two membrane
receptor proteins that regulate the expression of genes encoding plant cell-wall-degrading
enzymes, which is consistent with our findings regarding some cellulose-degrading en-
zymes and pectin lyases. However, we specifically screened for spore-producing genes
related to phenotypic changes, MAPKs, and ABC transporters. On the basis of the results
presented herein, the mutations in ∆CgMsb2 and ∆CgMsb2Sho1 triggered major changes
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in gene transcription. In this study, we revealed gene expression differences between
∆CgMsb2 and ∆CgMsb2Sho1. The RNA-seq analyses suggested that the mutations in
∆CgMsb2 and ∆CgMsb2Sho1 considerably affected catalytic activities, transporter activities,
and oxidoreductase activities. However, the expression analyses indicated that the extent
of the changes to gene expression was generally greater in ∆CgMsb2Sho1 than in ∆CgMsb2,
which is in accordance with our observation that the pathogenicity of ∆CgMsb2Sho1 was
significantly more adversely affected than that of ∆CgMsb2.

Fungal cell walls are mainly composed of carbohydrate polymers and glycoproteins.
The conserved carbohydrate components within fungal cell walls include β-glucans, chitin,
and mannans [35]. Structurally, chitin, β-glucans, and mannans tend to be in the inner,
middle, and outer parts of the cell wall, respectively. Hence, mannans cover the β-glucans
and chitin, which impairs fungal recognition. Glycosyl hydrolase is a critical enzyme for
the decomposition of the above-mentioned polysaccharides. Many glycosyl hydrolases
that hydrolyze diverse substrates were derived from the same ancestor and are struc-
turally and functionally similar. Among the DEGs identified in this study, the glycosyl
hydrolase family 18 genes are mainly involved in the amino sugar and nucleotide sugar
metabolic pathway. More specifically, GH18-related enzymes convert chitin to chitobiose or
N-acetylglucosamine. Additionally, the glucan endo-1,3-beta-glucosidase eglC in GH17
contributes to the conversion of beta-1,3-glucan to glucose during starch and sucrose
metabolism. The cell surface mannoprotein MP65 of GH17 is one of the main components
of the cell wall of fungus. Mannoproteins are formed through the glycosylation of specific
proteins. The initial glycosylation generally occurs in the endoplasmic reticulum, after
which the protein is further processed in the Golgi body [36]. Mannosylation patterns may
vary broadly among fungal species. Moreover, heterogeneous mannosylation reactions may
occur in the strains and morphological types of a single species [37]. We believe that the
cell surface mannoprotein MP65 in C. gloeosporioides is the result of a long-term evolution
of a specific glycosyl hydrolase.

When plant pathogens sense the plant cell wall composed of cellulose, hemicellulose,
and polysaccharide components [38], they secrete a variety of glycosyl hydrolases to
enable the infection of susceptible hosts. These enzymes convert the plant polysaccharides
to oligosaccharides or monosaccharides, while also destroying the cell wall structure to
facilitate the penetration of the epidermal barrier [39]. The secretion of cell-wall-degrading
enzymes is an important process during the infection of plants by pathogens [40]. The
glycosyl hydrolases secreted by pathogenic fungi are closely associated with infection
characteristics. In an earlier study on Magnaporthe grisea, an RNA interference-based
strategy was applied to decrease the expression of GH6 and GH7 family genes [41], which
was detrimental to cell wall degradation and led to a significant decrease in pathogen
virulence. When C. gloeosporioides changes from a biotroph to a necrotroph, glycosyl
hydrolase genes are highly expressed and there is a significant increase in virulence [42].
However, to increase the degradation of cellulose, lignocellulose should be converted to
oligosaccharides or monosaccharides. We identified a lytic polysaccharide mono-oxygenase,
which can effectively degrade the cellulose in plant cell walls.

After glycosylases hydrolyze various sugar-containing compounds to generate monosac-
charides, ABC transporters bind ATP and use the energy to drive the transport of various
molecules. A previous study demonstrated that ATP serves as hydrolytic energy to drive
cellular activities, including the input and export of nutrients and lipids, respectively [43].
Fungal transporter proteins have a wide range of biological functions. They are crucial for
the pathogenicity of plant pathogenic fungi [44,45]. The prototypical ABC protein com-
prises two transmembrane domains and two nucleotide-binding domains [32]. The ABC
protein family has been divided into nine subfamilies (A–I) according to the nucleotide-
binding domain structure and amino acid sequence [46]. In C. gloeosporioides, an ABC
protein (CgABCF2) is reportedly required for appressorium formation and plant infec-
tions [47]. In Fusarium graminearum, FgABC1 is involved in the secretion of fungal secondary
metabolites [48]. We detected the upregulated expression of several ABC transporter genes



J. Fungi 2022, 8, 207 13 of 15

(EVM0009311, EVM0003035, EVM0000077, EVM0009520, EVM0012444, EVM0001131, and
EVM0010668) in the T0 vs. M0 and T0 vs. MS0 comparisons. We speculate that the upregu-
lated genes are related to the transmembrane transport of fungal secondary metabolites.
Pathogens produce various secondary metabolites, such as quinones, flavonoids, and
phenols, to protect against adverse environmental conditions. Additionally, ABC trans-
porters play an important role in the accumulation and excretion of compounds. Some ABC
proteins (e.g., ABCB1) function as transporters and channel proteins that help maintain
intracellular homeostasis. The upregulated expression of ABC transporter genes in this
study may be relevant for future research on pathogen secondary metabolism and the
regulation of the related genes in ∆CgMsb2 and ∆CgMsb2Sho1.

An earlier investigation determined that a MAPK cascade controls the infection-related
morphogenesis of C. gloeosporioides [49]. In Botrytis cinerea, Msb2 regulates host surface sens-
ing and penetration via the BMP1–MAPK signaling pathway [50]. The upregulated protein
phosphatase gene PPS1 (EVM0006436) is a MAPK phosphatase (MKP) that functions as
an important negative regulator of MAPK activity. More specifically, MKP inactivates
MAPK by dephosphorylating the enzyme. There are three important members of the
MAPK family, namely ERK, stress-activated protein kinase (JNK or SAPK), and p38, which
can be regulated by MKP. Interestingly, PPS1 inhibits the formation of ERK as well as the
activation of downstream transcription factors via dephosphorylation.

In this study, the ∆CgMsb2 and ∆CgMsb2Sho1 mutants differed from the WT control
in terms of gene expression. Thus, we speculated that the downregulated expression
of some genes in ∆CgMsb2 and ∆CgMsb2Sho1 during the growth stage (relative to the
corresponding expression in the initial spore stage) is conducive to the complete induction
of the transcriptional network in the developing fungus. Additionally, the Src homology 3
(SH3) domain is a conserved small module in the membrane protein Sho1. The presence of
the SH3 domain enables proteins to interact with specific proline-rich sequences in protein
partners [51]. The SH3 domain mediates interactions associated with the regulation of
signal transduction events. Therefore, the SH3 domain of CgSho1 likely contributes to the
synergistic effects of CgSho1 and CgMsb2. The combined activities of CgSho1 and CgMsb2
have a greater effect on gene expression than the CgMsb2 activity alone.

According to our results, the absence of CgMsb2 and CgSho1 in C. gloeosporioides
has inhibitory effects on some MAPK pathways (e.g., ERK and JNK). The qRT-PCR data
generated in this study verified some of these changes, while also providing evidence of
the importance of hydrolases in carbohydrate metabolism. Additionally, DEGs associated
with ABC transporter upregulated in ∆CgMsb2 and ∆CgMsb2Sho1 in response to the
transport of carbohydrate and secondary metabolites, and therefore ABC transporters
apparently play an important role in metabolic processes. The study findings revealed
that CgMsb2 and CgSho1 direct central transcription networks that enable C. gloeosporioides
to penetrate the plant hosts. It is clear that Msb2 and Sho1 trigger major differences in
C. gloeosporioides. Furthermore, the results described herein may provide insights into the
effects of the membrane proteins Msb2 and Sho1 on the transcriptional networks associated
with other plant diseases caused by fungi. This study should lay an important foundation
for the further study and verification of related gene functions in MAPK pathway, glycosyl
hydrolase and ABC transporters.
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