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Abstract

Background: The aim of the present study was to to assess the relative effectiveness of the various types of
electromechanical-assisted arm devices and approaches after stroke.

Method: This is a systematic review of randomized controlled trials with network meta-analysis. Our primary
endpoints were activities of daily living (measured e.g. with Barthel-Index) and hand-arm function (measured e.g.
with the Fugl-Meyer Scale for the upper limb), our secondary endpoints were hand-arm strength (measured e.g.
with the Motricity Index) and safety. We used conventional arm training as our reference category and compared it
with different intervention categories of electromechanical-assisted arm training depending on the therapy
approach. We did indirect comparisons between the type of robotic device. We considered the heterogeneity of
the studies by means of confidence and prediction intervals.

Results: Fifty five randomized controlled trials, including 2654 patients with stroke, met our inclusion criteria.

For the primary endpoints activities of daily living and hand-arm function and the secondary endpoint hand-arm
strength, none of the interventions achieved statistically significant improvements, taking into account the
heterogeneity of the studies.

Safety did not differ with regard to the individual interventions of arm rehabilitation after stroke.

Conclusion: The outcomes of robotic-assisted arm training were comparable with conventional therapy.
Indirect comparisons suggest that no one type of robotic device is any better or worse than any other device,
providing no clear evidence to support the selection of specific types of robotic device to promote hand-arm
recovery.

Trial registration: PROSPERO 2017 CRD42017075411
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Introduction

Stroke is one of the most common diseases worldwide
and leads to permanent disability, reduced quality of life
and thus to a high burden of disease [1]. A majority of
stroke patients have limited hand and arm function and
are therefore restricted in their daily activities [2]. The
recovery of hand-arm function is therefore an important
goal for rehabilitation after stroke [1]. In recent years,
interventions such as electromechanical-assisted arm
training have been introduced to improve hand and arm
functions [3, 4]. It has been argued that use of
electromechanical-assisted arm training can support the
provision of evidence-based rehabilitation, by facilitating
therapy that is intensive, frequent and repetitive [3].
However, while systematic reviews show some beneficial
effects of electromechanical-assisted arm training on
upper limb motor function, these effects are not clin-
ically relevant [3, 4]. Furthermore, there is also some
evidence of a detrimental effect, with one systematic
review concluding that muscle tone of the upper limb
might be negatively influenced by robotic-assisted
arm-training [4].

The devices used in electromechanically-assisted arm
therapy target the motor function of either the shoulder/
elbow, elbow/wrist, wrist/hand, hand/finger or the entire
upper extremity [3, 5]. There are two broad types of
electromechanical devices which have been used to en-
able or assist arm and/or hand movement in a patient
with a paretic limb following stroke:

(a) An external robotic arm, known as an exoskeleton,
which is designed to control one or more joints of
the paretic arm. The exoskeleton uses torque
actuators in order to apply rotational forces to
move, or assist the movement, at a joint. For
example, a robotic arm could support the weight of
a patient’s arm in the horizontal plane, and assist
combined movement at the shoulder and elbow [5].

(b) A robotic device, known as an end-effector,
which assists movement of only the distal part of
the paretic arm [3, 4]. These devices generally
only have contact with the patient’s hand/fingers;
and move — or assist the movement — of the dis-
tal part of the arm, which may result in move-
ment at more proximal parts of the arm. End
effectors may act to move just the paretic limb,
or may act to support bilateral arm movement.
For example, an end effector may comprise two
handles, which are held by the patient’s hands.
Movement of the handles facilitates bilateral pro-
nation/supination of the forearm and flexion/ex-
tension of the wrist. Movement of the patient’s
affected arm may be passive, either driven en-
tirely by the robot or by active movement of the
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unaffected arm, or may be active-assisted, sup-
ported by the robot or unaffected arm [5].

In addition to generating either passive or assisted
movement of a paretic arm, electromechanically assisted
arm therapy can give patients feedback about the joint
position and the arm power used.

Electromechanical-assisted arm therapy may, alterna-
tively, be classified based on whether the robot acts:
more proximally or distally, with a one-sided / unilateral
or double-sided / bilateral exercise approach, or to give
support to specific joint sections. End effector-based
therapy robots generally initiate movement via contact
with the patient’s hand, generating movement of more
proximal joints from this distal contact; while exoskeletal
devices can directly guide and control movement of both
proximal and distal joints via series of drive elements.

Furthermore, the torque actuators which can be used
within robotic devices may have different mechanisms of
action, and there is ongoing debate regarding these dif-
ferent approaches to control of force. For example, it re-
mains unclear whether a compliant actuator (e.g. series
elastic actuators, an elastic element attached) is any
more beneficial than an assist-as-needed control mech-
anism (e.g. which encourages patients’ active participa-
tion), or an impedance control mechanism (e.g. an end
effector that takes into account the kinematics and dy-
namics of the object being manipulated).

With a rapid growth in new technologies and devices
over recent decades, there are now a large number of
different electromechanical-assisted arm training devices
designed to move, or assist movement of, the arm. The
types of therapy provided by different devices differ sig-
nificantly both in terms of the technologies employed
and the therapy provided. There is a growing body of
evidence, synthesized within systematic reviews, that
demonstrates that electromechanical-assisted arm train-
ing may be beneficial for recovery of arm function after
stroke, with quality of the evidence judged to be ‘high’
(using the GRADE approach) [3, 4]. However, although
the evidence on robotic-assisted arm training after
stroke seems robust, there remains a lack of information
about the relative effects of different types of devices.
The existing systematic reviews are arguably limited by
their narrow focus, for example on the effectiveness of
robotic-assisted arm training or electromechanical-
assisted arm rehabilitation compared to control inter-
ventions [3, 4, 6]. Thus, while in practice it is crucial to
know which type of robotic device performs most effect-
ively in a given situation, the current evidence base lacks
direct comparisons of two or more different types of de-
vice. Furthermore, it remains unclear which of the differ-
ent devices or approaches may be most effective for
certain subgroups of patients with stroke, meaning that
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a treating clinician will encounter difficulties in deciding
which specific form of treatment to select and/or apply for
a specific patient after stroke. Thus, while systematic re-
views have explored the effectiveness of electromechanical-
assisted arm rehabilitation [3, 4], these have not directly
compared the effects of the different types of devices or
therapy provided by devices, in order to determine the opti-
mal type of electromechanical-assisted arm training for in-
dividual patients.

An approach to solving this problem is offered by net-
work meta-analyses. These enable quantitative synopsis
of an “evidence network” by combining direct and indir-
ect effects of three or more interventions, compared to
the same comparative intervention (often a control or a
no-treatment intervention), within a randomized con-
trolled trial [7]. This is also called a multiple treatment
comparison [8].

In this way, network meta-analyses allow the quantita-
tive synthesis of evidence of effectiveness of interven-
tions directly compared within the same randomised
controlled trial (direct comparisons) and interventions
from different randomised controlled trials which have a
common comparator (indirect comparisons) [7]. Net-
work meta-analyses could therefore provide an efficient
method for determining the relative effects of different
electromechanical-assisted arm training devices and
therapy approaches, without the need for new rando-
mised controlled trials.

The aim of the present study was therefore to provide
a systematic overview of current randomised controlled
trials of electromechanical-assisted arm training, and to
use network meta-analysis to assess the relative effective-
ness of the various types of electromechanical-assisted
arm devices and approaches. We aimed to evaluate the
relative effect of different types of electromechanical-
assisted arm training on activities of daily living, hand/
arm function and hand/arm strength in patients with
stroke, and to explore the safety of these devices.

Methods

Study protocol and registration

We registered a study protocol for the present study,
which is published in the PROSPERO database under ID
CRD42017075411 according to PRISMA criteria [9].

Role of the funding source
There was no funding source for this study.

Eligibility criteria

We included published and unpublished studies with
adults after stroke (by clinical definition). We included
all randomized controlled trials with parallel group de-
sign and randomized cross-over studies comparing any
type of electromechanical-assisted arm training with any
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other intervention. For inclusion, studies had to measure
at least one of our pre-stated outcomes of interest at the
end of the intervention period. Our primary outcomes of
interest were measure of activities of daily living (ADL)
and hand/arm function. Our secondary outcomes of
interest were hand/arm strength and safety after stroke.

For our primary outcome of ADL we accepted mea-
surements taken using the Barthel Index [10] or the
Functional Independence Measure (FIM) if they were
available. These outcome measurement scales were
prioritised as we anticipated that these would be re-
ported by the majority of our included studies. If these
scales were not available, we accepted other scales that
measured ADL. Although our primary outcome of inter-
est was ADL, it was not necessary for a study to either
state that they aimed to improve ADL, or to include a
measure of ADL, in order to be included.

For our primary outcome of hand-arm function we
prioritised reports of the Fugl-Meyer-Scale for the upper
limb [11]. We chose to focus on the Fugl-Meyer scale
because there is evidence that 2/3 of studies in this field
report this [3]. If this scale was not available, we ac-
cepted other scales that measured hand-arm function
such as the Wolf Motor Function Test or shoulder-
disability scales; but where the Fugl-Meyer scale was
available we did not extract data from any other hand/
arm function scales. A short overview of the included
studies, and the assessment used for hand-arm-function
is shown in Table 1 (Table 1: Overview of categories of
included studies and devices).

For our secondary outcome of hand-arm strength we
accepted the scales such as the Motricity Index [12], grip
strength and equivalent scales and versions. However, if
these scales were not available, we accepted other scales
that measured hand-arm muscle strength. Where more
than one measure of hand/arm strength was reported,
we used a pre-specified list to inform selection; this list
first prioritized the Motricity Index and second priori-
tized grip strength, as we anticipated that the majority of
studies would have used these scales.

Information sources

We searched the Cochrane Stroke Group’s Trials Regis-
ter (last searched July 2019), the Cochrane Central
Register of Controlled Trials (CENTRAL) (the Cochrane
Library 2019, Issue 6), MEDLINE (1950 to July 2019),
Embase (1980 to July 2019), CINAHL (1982 to July
2019), AMED (1985 to July 2019), SPORTDiscus (1949
to July 2019), PEDro (searched July 2019), Compendex
(1972 to July 2019), and Inspec (1969 to July 2019). We
also handsearched relevant conference proceedings,
searched trials and research registers (clinicaltrials.gov
last searched July 2019), checked reference lists, and
contacted trialists, experts, and researchers in our field,
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Table 1 Overview of categories of included studies and devices

Study ID Intervention device Assessment Hand-Arm Function
Abdullah 2011 UPAHT industrial robot CAHAI-7
Ang 2014 DGFHT Haptic knob UE-FM
Brokaw 2014 EXAHT ARMin 1ll, HandSOME UE-FM
Burgar 2011 UPAHT MIME UE-FM
Bustamante 2016 UDFHT Robot Gym (TheraDrive) UE-FM
Conroy 2011 UPAHT InMotion 2.0 UE-FM

Daly 2005 UPAHT InMotion UE-FM
Fazekas 2007 EPAHT REHABROB UE-FM
Grigoras 2016 DGFHT Hybrid FES Exoskelett UE-FM
Hesse 2005 EBAHT Bi-Manu Track UE-FM
Hesse 2014 EBAHT Bi-Manu Track UE-FM
Hollenstein 2011 EXAHT Armeo UE-FM
Housman 2009 EXAHT T-WREX UE-FM
Hsieh 2011 EBAHT Bi-Manu Track UE-FM
Hsieh 2014 EBAHT Bi-Manu Track UE-FM
Hwang 2012 UDFHT Amadeo UE-FM
KlamrothMarg anska 2014 EXAHT ARMin UE-FM
Kutner 2010 UDFHT Handmentor SIS hand function
Lee 2016 UPAHT NEURO X System Manual function test
Liao 2011 EBAHT Bi-Manu Track UE-FM

Lo 2010 UPAHT MIT Manus UE-FM

Lum 2006 UPAHT MIME UE-FM
Masiero 2007 EPAHT NEREBOT UE-FM
Masiero 2011 EPAHT NEREBOT UE-FM
Mayr 2008 EXAHT ARMOR CMSA
McCabe 2015 UPAHT InMotion 2.0 UE-FM
Orihuela- Espina 2016 UDFHT Amadeo UE-FM
Rabadi 2008 UPAHT MIT-Manus MITManus/InMotion 2.0 UE-FM

Sale 2014 UPAHT Amadeo UE-FM
Stein 2017 UDFHT Hand-exoskelett (self made) UE-FM
Susanto 2015 DGFHT Reogo UE-FM
Takahashi 2016 UPAHT HapticMaster UE-FM
Timmermans 2014 EPAHT Armassist UE-FM
Tomic 2017 UPAHT Gloreha UE-FM
Vanoglio 2017 DGFHT Gloreha Quick-DASH
Villafane 2017 DGFHT MIT-Manus Quick-DASH
Volpe 2000 UPAHT In Motion 2.0 UE-FM
Volpe 2008 UPAHT Hand Mentor per UE-FM
Wolf 2015 UDFHT Bi-Manu Track UE-FM

Wu 2012 EBAHT Reogo UE-FM

Yoo 2013 UPAHT RT-AAN WMFT

Cho 2019 UPAHT NMES ROBOT UE_FM
Qian 2017 EPAHT Inmotion UE_FM

Hung 2019 UPAHT Bi-Manu Track UE_FM
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Table 1 Overview of categories of included studies and devices (Continued)

Study ID Intervention device Assessment Hand-Arm Function
Hung 2019 EBAHT Armeo Spring UE_FM
Daun 2018 EXAHT RA- Shoulder UE_FM
Kim 2019 EPAHT therapy K_SDQ
Lee 2018 EPAHT REJOYCE Rob UE_FM
RATULS 2019 UPAHT MIT-Manus UE_FM
Conroy2019 UPAHT Inmotion UE_FM

as well as manufacturers of commercial devices for un-
published studies.

Search

The search strategy for MEDLINE can be found in our
Additional file 1. This search strategy was adapted for
the other databases.

Study selection

One reviewer (BE) considered titles and excluded obvi-
ously irrelevant studies. Two independent reviewers (BE
and JM) applied selection criteria to the abstracts and
full texts of remaining studies. Differences were resolved
through discussion, involving a third reviewer where
necessary.

Data collection process and data items
Two independent reviewers (BE and JM) extracted the
following information from each included study:

— participants (country, number of participants, age,
gender, type of stroke, time from stroke onset to
entry to the study, inclusion and exclusion criteria);

— comparison (details of the intervention in treatment
and control groups, details of cointervention(s) in
both groups, duration of treatment);

— outcomes and time points of measures (number of
participants in each group and outcome, regardless
of compliance)

— methods of generating randomisation schedule;

— method of concealment of allocation;

— blinding of assessors;

— adverse events and dropouts for all reasons;

Any discrepancies were resolved through discussion.

Categories of robotic-arm training

Prior to study onset, we defined categories of different
types of robotic arm-training. Informed by an existing
systematic review for robotic-arm training [3], review
authors discussed different possible robotic approaches
and reached consensus on intervention categories. Our
rationale and aim was, from a clinical point of view, to
clearly define distinguishable groups of robotic-assisted

arm training interventions. Our goal was to identify less
than eight distinct intervention categories which could
be used within this study.

We initially reached agreement that key clinical deci-
sion making generally needed to consider the following
key aspects of intervention delivery: unilateral or bilat-
eral robotic arm training, end effector-assisted or exo-
skeleton assisted robotic arm training, emphasis on
proximal or distal arm training, glove-finger-based or
not, and the combination of these approaches.

We then pre-defined the following categories of
electromechanical-assisted arm training interventions
used in the studies:

e UDFHT, unilateral distally emphasized finger/hand
training

e EPAHT, end effector-assisted proximal emphasised
unilateral arm/hand training

e UPAHT, unilaterally proximal emphasized arm/
hand training

e EXAHT, exoskeleton assisted unilateral arm/hand
training

e DGFHT, unilateral distal glove -based finger/hand
training

e EBAHT, end effector assisted distal and bilateral
arm/hand training.

We defined conventional arm training as any other
control intervention which used arm training to improve
ADL, without electromechanical-assisted arm training
intervention.

Two reviewers independently categorised the interven-
tions within each included study, with any differences
resolved through discussion, involving a 3rd reviewer if
necessary.

A short overview of the included studies, type of the
device, and intervention category is shown in Table 1
(Table 1: Overview of categories of included studies and
devices).

Geometry of network

The geometry of the network characterized the relation
and accuracy of the direct comparisons. We produced
network diagrams [13] in order to assess of network
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geometry. Each intervention was represented by a node
in the network. Direct comparisons between interven-
tions were shown by lines connecting the nodes. The
thickness of the line in the network graphs represents
the amount of studies included for this comparison. The
different colours indicate the risk of bias among the tri-
als for each of the three dimensions (randomization se-
quence, concealment of randomization sequence, and
blinding) as a covariable at study level in network
diagrams.

Risk of bias within individual studies
Two authors (JM and MP) independently assessed the
methodological quality of the included trials using the
Cochrane ‘Risk of bias’ tool (using the categories, ran-
dom sequence generation,

allocation concealment, and blinding of outcome as-
sessor as high, low or unclear risk of bias) [14]. We pro-
vided all details about the characteristics and the
methodological quality of each included study in tables
(Additional file 2: characteristics of studies and Add-
itional file 3: Risk of bias of included studies). As de-
scribed above, the risk of bias of the individual studies
was represented within the network diagrams by using
different colours.

Summary measures

When trials used the same test procedure (e.g., Barthel
Index), we calculated mean differences (MD) and the
corresponding 95% confidence intervals (CI). If various
result measures were used for a given endpoint, we cal-
culated standardized mean differences (SMD) with 95%
CI. For dichotomous endpoints we determined the index
of the risk difference (RD) with 95% CI.

If trials used a cross-over design we used the data from
the first phase of the study (i.e. the period before cross-
over).

We generated contrast-based forest plots for all com-
parisons. We compiled a relative ranking of the compet-
ing interventions on the basis of their surface under the
cumulative ranking line (SUCRA) [15]. The SUCRA
values give the percentage efficacy of each individual
intervention in comparison with an “ideal” treatment.
All statistical analyses were performed using the soft-
ware STATA SE Version 15.0 [16, 17].

Planned method of analysis

This network meta-analysis was conducted according to
a frequentist approach with weighted least squares based
on a multivariate regression with random effects. This
approach enables adequate consideration of multiple-
arm studies and includes restricted maximum-likelihood
estimation [18].
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Assessment of inconsistency

To test for possible infringement of the transitivity as-
sumption, we assessed global inconsistency by accom-
modating a consistency and an inconsistency model [18,
19]. Transitivity means there are no systematic differ-
ences among the various arms of the individual studies.
At local level we used the node-splitting approach [18,
20]. Alongside the quantitative tests, we performed
qualitative verification of the description of the trials in-
cluded with regard to important effect modifiers.

Risk of bias across studies

We assessed the risk of bias among the trials for each of
the three dimensions (randomization sequence, conceal-
ment of randomization sequence, and blinding) as a co-
variable at study level in network diagrams.

Additional analyses

We compiled a relative ranking of the competing inter-
ventions on the basis of their surface under the cumula-
tive ranking line (SUCRA). The SUCRA values give the
percentage efficacy of each individual intervention in
comparison with an “ideal” treatment.

The P-score of an intervention, which may range from
0 to 1 and, can be interpreted as the mean certainty of
its superiority and describes the mean degree of cer-
tainty about a particular treatment being better than an-
other treatment.

We viewed generation of the randomization sequence,
concealment of the allocation sequence, and blinding of
the investigators as potentially important methodological
effect modifiers and integrated them into a sensitivity
analysis (Additional file 3).

Results

Study selection

Our systematic search found 6744 matches after remov-
ing duplicates. After excluding irrelevant records 55 ran-
domized controlled trials met our selection criteria, with
a total of 2654 patients and were suitable for inclusion
within our statistical meta-analyses (Fig. 1, flowchart).

Study characteristics

Of the 55 trials meeting our inclusion criteria, 53 (96%)
were randomized controlled trials and the remaining 2
trials (4%) were randomized cross-over trials. Number of
participants included in the trials ranged from 8 to 770,
with a mean of 24 participants. The mean age of partici-
pants ranged from 44 to 76years, and the mean time
since stroke from 14 days to 4 years.

Presentation of network structure
Figures 2, 3, 4 and 5 provide network graphs, illustrating
the volume of evidence from RCTs comparing different



Mehrholz et al. Journal of NeuroEngineering and Rehabilitation (2020) 17:83 Page 7 of 14

[=
.g Records identified through Additional records identified
.g database searching through other sources
f'é (n=10,110) (n=4)
]
3
— y A 4
PR Records after duplicates removed
(n=7,739)
o0
&
c
: v
2 Records screened R Records excluded
(n=7,739) g (n=7,587)
A4
Full-text articles assessed Full-text articles excluded
Z for eligibility (n=84)
E (n=152) irrelevant intervention
& (n=24),
“ irrelevant comparison
¥ (n=19),
) Studies included in irrelevant study design
qualitative synthesis (n=41)
(n=55)
° v
3
S Studies included in
= quantitative synthesis
(meta-analysis)
(n=55)
Fig. 1 PRISMA Flow Chart

EBAHT

UPAHT

EXAHT

CON

UDFHT®

EPAHT
DGFHT®

Fig. 2 network graph_ADL




Mehrholz et al. Journal of NeuroEngineering and Rehabilitation

(2020) 17:83

Page 8 of 14

EBAHT

EXAHT

UDFHT

DGFHT

Fig. 3 network graph_Hand_Arm_Function
A\

UPAHT

CON

[ )
EPAHT

types of electromechanical-assisted arm training with con-
ventional hand-arm therapy without devices (comparator).

Figure 2 and Fig. 3 shows a network graph for the pri-
mary endpoints activities of daily living and hand-arm
function, respectively. Figure 4 and Fig. 5 shows a net-
work graph for the secondary endpoints hand-arm
strength and safety.

The thickness of the lines in Figures 2, 3, 4 and 5 illus-
trate that the majority of direct comparisons were of
UPAHT with control. The line thickness also highlights
that there were more measures of muscle strength for

comparisons of EBAHT and EXAHT with control than
measures of ADL or hand-arm function. There was only
one direct comparison of different robotic devices
(EBAHT vs UPAHT); the trial which had this compari-
son also included a direct comparison with a control

group.

Summary of network geometry

All studies compared an active electromechanical-
assisted arm training group with an active control group
and a total of 28 different devices were used (as shown

EBAHT

EXAHT

UDFHT®

DGFHT®

Fig. 4 network graph_Arm strength

UPAHT
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in Additional file 2). Most commonly used were the
MIT-Manus / InMotion in ten studies (18%), the Bi-
Manu-Track in seven studies (13%) and the Amadeo in
three studies (5%). The active control was a form of con-
ventional hand-arm therapy, not using any robotic de-
vices, in all of the studies (Additional file 2). The time
spent within conventional therapy was practically the
same as the time spent using a robotic device.

The electromechanical-assisted arm training was cate-
gorised as UDFHT in 8 study arms; EPAHT in 8 study
arms; UPAHT in 23 study arms; EXAHT in 7 study
arms; DGFHT in 5 studies and EBAHT in 7 study arms
(some studies used two or more treatment arms; Add-
itional file 2).

The primary outcome of activities of daily living was
measured in 30 studies, including 1857 participants re-
ceiving electromechanical-assisted arm training, and
hand-arm function was measured in in 50 studies, in-
cluding 2456 participants.

The secondary outcome of muscle strength of the par-
etic arm was measured in 24 studies, with 839 partici-
pants receiving electromechanical-assisted arm training,
and 55 studies, with 2654 participants, described safety
endpoint data.

Synthesis of results

Results of comparisons of different categories of
electromechanical-assisted arm training with conven-
tional training without devices for outcomes of activities
of daily living, hand-arm function, and safety are re-
ported in Figs 6, 7 and 8. Figure 6 shows the forest plot
of electromechanical-assisted arm training for improving
ADL capacity. Figure 7 shows the forest plot of

electromechanical-assisted arm training for improving
hand-arm function. Figure 8 shows the forest plot of
electromechanical-assisted arm training for adverse
events.

For the primary outcome of activities of daily living,
exoskeleton assisted unilateral arm/hand training
(EXAHT) achieved significant improvements (stan-
dardized mean difference (SMD) =1.04, 95-% confi-
dence interval (CI): 0.41, 1.68). Taking into account
the heterogeneity of the studies (95-% predictive in-
tervals, e.g. EXAHT: -0.05, 2.13), however, none of
the intervention categories significantly improved
ADL measures (Fig. 6). Indirect comparisons of the
different types of electromechanical-assisted arm
training did not identify any one type of intervention
which was significantly more effective at improving
activities of daily living than any other type of inter-
vention (supplement).

For the primary outcomes of hand-arm functions, only
unilateral proximal emphasized arm/hand training
(UPAHT) achieved significant improvements (SMD =
0.43, 95%CI: 0.16, 0.70). Considering the heterogeneity
of the studies (95% predictive intervals, e.g. UPAHT:
-0.61, 1.46), however, none of the interventions
significantly improved hand-arm functions (Fig. 7). In-
direct comparisons of the different types of
electromechanical-assisted arm training did not iden-
tify any one type of intervention which was signifi-
cantly more effective at improving hand-arm function
than any other type of intervention (Additional file 4).

For the secondary outcome of hand-arm strength, no
network-meta analysis could be done due to inconsist-
ency in the network.
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Reference treatment: CON

Fig. 6 Forest Plot ADL

Treatment Effect Mean with 95%Cl and 95%Prl
UDFHT —————— -0.58 (-1.40,0.24) (-1.80,0.64)
DGFHT —— 0.06 (-1.01,1.13) (-1.36,1.48)
UPAHT — = 0.11(-0.18,0.39) (-0.80,1.01)
EPAHT — 0.29 (-0.18,0.77) (-0.70,1.29)
EBAHT — 0.40 (-0.05,0.84) (-0.58,1.38)
EXAHT ——&—— 1.04 (0.41,1.68) (-0.05,2.13)
T T T T
-18 -8 0 1.1 241

For the secondary outcome of safety, we found no sys-
tematic differences in the individual interventions
(Fig. 8). Indirect comparisons of the different types of
electromechanical-assisted arm training did not identify
any one type of intervention which was significantly
more effective at improving hand-arm strength or was

significantly safer than any other type of intervention
(Additional file 4).

Exploration for inconsistency
Significant inconsistency, which means disagreement be-
tween direct and indirect comparisons, was not observed

Reference treatment: CON
Treatment Effect Mean with 95%CI and 95%Prl
UDFHT ———fe———  0.22(-0.30,0.74) (-0.91,1.36)
DGFHT ———1e———  0.25(-0.32,0.82) (-0.91,1.41)
EBAHT  ——+f1e———  0.25(-0.20,0.70) (-0.85,1.35)
UPAHT — e+ 0.43(0.16,0.70) (-0.61,1.46)
EPAHT — 4 —e——— 0.43(-0.03,0.90) (-0.67,1.54)
EXAHT — 4 —e——— 0.48(-0.06,1.01) (-0.66,1.62)
T T T
-9 -30 1.6
Fig. 7 Forest Plot Hand_Arm_Function
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Reference treatment: CON
Treatment Effect Mean with 95%CI and 95%Prl

EXAHT — +—————— 0.65 (0.21,2.00) (0.20,2.06)
DGFHT +~—————— 0.69 (0.18,2.70) (0.17,2.80)
EPAHT — e —— 0.83 (0.28,2.48) (0.27,2.56)
UPAHT —a— 0.92 (0.60,1.40) (0.59,1.42)
UDFHT ——— 1.10 (0.51,2.38) (0.50,2.43)
EBAHT ————— 1.35(0.36,5.13) (0.34,5.32)

T T T T

2 4 1 22 55

Fig. 8 Forest Plot AEs

for the endpoints ADL, function and safety neither by
global nor local examination (x> 0.60, p = 0.74; x> 0.00,
p =10 and x* 0.05, p = 0.97, respectively. There was ex-
cess inconsistency for the endpoint hand-arm strength
(x> 6.81, p =0.03), so we did not perform an analysis for
this outcome.

Risk of bias across studies

Thirty-four of the 55 included studies (62%) reported
adequate generation of the random sequence, 15 of the
55 included studies (27%) reported adequate allocation
sequence concealment and 41 of the 54 included studies
(75%) reported adequate blinding of the outcome asses-
sors. The risk-of-bias assessments for each study are
shown in Additional file 3.

Results of additional analyses

The results of a compiled relative ranking of the com-
peting interventions on the basis of their surface under
the cumulative ranking curve (SUCRA) can be found in
Additional file 5.

We provided a table with a description of all adverse
events or drop outs that occured in included studies
(Additional file 6).

To investigate the effects of using different methods or
tools to assess our primary outcome of hand-arm func-
tion, we performed subgroup analyses to compare differ-
ent outcomes used in studies on our primary outcome
hand-arm function (Additional file 7: e.g. subgroup of 41
studies with 2244 participants using the Fugl-Meyer

Armtest). There was only one study with 21 participants
(ID: Kutner 2010) using SIS hand function and only one
study with 22 participants (ID: Yoo 2013) using the Wolf
Motor Function Test. Therefore for these outcome mea-
sures no NMA was possible. There were further upper
limb assessments used in studies (e.g. K-SDQ in one
study with 38 participants; ID: Kim 2019, or the Quick-
DASH in two 2 studies with 59 participants; ID: Vano-
glio 2017 & ID: Villafane 2017; or CMSA in one study
with 8 participants; ID: Mayr 2008 and other assess-
ments) but no subgrouping was possible here.

To investigate the effects of different severities of arm
paresis we compared three subgroups (Additional file 8),
however, we did not find an effect of different severities
of arm paresis.

To investigate the effects of different durations of ill-
ness (acut and subacute versus chronic phase after
stroke) we compared two subgroups (Additional file 9).
However, we did not find an effect between patients in
the first 3 months or later after stroke.

Discussion

Our systematic review with a network meta-analysis in-
cluded a total of 55 studies with 2654 patients. We dir-
ectly and indirectly compared the effects in a network
meta-analysis comparing six categories of 28 different
electro-mechanical devices for improving ADL and
hand-arm function after stroke. We did not find any sys-
tematic differences in any outcomes between different
approaches to hand-arm training after stroke. Overall,
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the number of side effects was low in all studies, indicat-
ing that safety was therefore good.

Our network meta-analyses provide new and valuable
insights into the relative effects of different types of elec-
tromechanically assisted hand—/arm training after stroke.

We propose that these analyses can be regarded as a
supplement to the previous systematic reviews on the
topic [3, 4].

The Cochrane review [3] included 44 studies, conclud-
ing that there was high quality evidence of small but
beneficial effect of robotic arm training on ADL, arm
function and strength. High GRADE quality of evidence
means that the reviewers are confident that further re-
search will not change the evidence of effect. However,
these conclusions relate to the overall effect of robotic
arm training, and arise from studies that have used a
variety of different robotic devices. Our new network
meta-analyses further enhance knowledge in this field by
exploring the relative effectiveness of different types of
robotic arm training devices. We found evidence that no
one category of robotic device was any better or worse
than any other device-category. Therefore our results in-
dicate that the type of device (exoskeleton, end-effector,
proximal, distal, unilateral etc.) may not be important to
patient outcomes.

These findings suggest that there is currently no clear
evidence to support the selection of specific types of ro-
botic device as tools to promote hand-arm recovery.

That leaves the clinical practitioner with a dilemma.
Currently it is not clear how decisions about the types of
robotic device should be made. Our analyses suggests,
that the type of electromechanical-assistive device does
not matter (which seems to disagree with arguments
made by industry, which suggest that different types of
device have different actions and will therefore result in
different patient outcomes). However, our analyses did
not explore whether results varied in sub-groups of pa-
tients with different characteristics.

We did not find differences in effects when different
tests were used to assess arm function, or when partici-
pants had different arm severity or were different times
post stroke. This suggests that our main results might be
relatively robust and our confidence in these findings is
not reduced byknown confounding variables such as
duration and severity of stroke. As highlighted earlier,
conclusions that can be drawn from previous systematic
reviews of arm rehabilitation after stroke have been lim-
ited by having a much narrower focus. Our network
meta-analyses have sought to address the limitations of
previous reviews. The advantages, and novelty, of the
work presented here lies in the combination of the re-
sults of of randomized controlled trials which have ex-
plored various methods of robotic-arm training in one
statistical multiple treatment comparison.
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Strengths and limitations

Our pre-planned, rigorous, methods are a key strength
of this study. We used a systematic and comprehensive
search strategy, and searched a large number of data-
bases for published and unpublished studies. Neverthe-
less, a publication bias due to non-publication of
negative results cannot be ruled out.

Inconsistencies in the description of complex interven-
tions by trial authors can be common [21], and can cre-
ate challenges to the synthesis and interpretation of
evidence. However, the authors pre-planned intervention
categorization and statistical comparisons in order to
avoid the introduction of bias and post-hoc decisions.

In addition, the heterogeneity of the studies was taken
into account by calculating so-called prediction intervals
(also called predictive intervals) in addition to confi-
dence intervals. The representation of such predictive in-
tervals is increasingly required for the calculation of
effects in meta-analyses, especially in recent times [22].

There are many different important features associated
with an electromechanical robotic device. Within our re-
view we categorisedthe electromechanical devices into
pre-defined catetories according to whether the device
was an end-effector or an exoskeleton (including gloves);
and whether the focus was unilateral or bilateral, and on
fingers, hand or arm. However there are many other fea-
tures which will be important to researchers and clini-
cians with an interest in robotic devices, such as the type
of actuation and/or control mechanism. A key limitation
of our review is that we have not explored the impact of
these features, meaning that our findings are limited to
our predefined categories of robotic-approaches, and are
unable to answer questions about additional important
features of robotic devices.

One may argue that the contents of the control group
differed as much as those of the experimental group.
However, the authors tried to categorize the therapy de-
scription as well as possible on the basis of the informa-
tion provided by the included studies. The description of
the content of the control group was overall rather
poorly described, which does limit our confidence in our
indirect comparisons.

The authors used arm function as an aspect of severity
after stroke and used it in statistical analyses. However,
other variables, such as stroke localization, prognostic
criteria or handiness, were not included in the evalu-
ation, and these may have influenced the result. How-
ever, it is unclear in which direction the result would be
biased by this approach.

Mean values of outcomes from the individual studies
were used within our study. More exact estimations of
treatment effects would be obtained from individual pa-
tient data; however, this was beyond the aim of the
present study.
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We created network diagrams which clearly illustrate
the direct comparisons which have been carried out in
this field. However, there were an absence of closed
loops in the network geometry, which leads to the argu-
ment that our analysis is not, in the strictest sense, a
NMA or a multiple treatment comparison (MTC), but
rather belongs to the NMA genus of Adjusted Indirect
Treatment Comparison (ITC) [23].

In our systematic review we did not assess measures of
muscle tone of the upper limb. Previous reviews have
suggested that this might be negatively influenced by
robotic-assisted arm-training [4]. This should be there-
fore be further investigated.

One limitation of our work is that we have not in-
cluded other endpoints that are significant for the pa-
tient, such as quality of life and participation. In this
paper, we concentrated on clinically important end-
points such as everyday activities, hand/arm function
and hand/arm strength, which are also important for the
patient’s recovery from stroke. However, further studies
should focus in particular on other outcomes such as
health-related quality of life and social participation.

Conclusions
The outcomes of robotic-assisted arm training were
comparable with conventional therapy.

Indirect comparisons suggest that no one type of ro-
botic device is any better or worse than any other device,
and there remains no clear evidence to support the se-
lection of specific types of robotic device to promote
hand-arm recovery.

It is important that future studies consider and report
key patient characteristics, such as stroke severity and
level of upper limb impairment, and important parameters
in hand-/arm rehabilitation interventions, such as repeti-
tions, therapy intensity/ -frequency and-increments. Fu-
ture meta-analyses should incorporate individual patient
data in order to support the exploration of the effects of
different types of hand-/arm rehabilitation on different
populations of patients with stroke.
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1186/512984-020-00715-0.
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Additional file 2. Characteristics of included studies.
Additional file 3. Risk of bias of included studies.
Additional file 4. a-c: Forest plots of indirect comparisons.

Additional file 5. Tables of the surface under the cumulative ranking
curve (SUCRA) for all outcomes.

Additional file 6. Table with description of all adverse events or drop
outs occured.
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Additional file 7. Forest plot of subgroup of studies using the Fugl-
Meyer Armtest.

Additional file 8. Forest plot of subgroups of studies with three
different severities of arm paresis.

Additional file 9. Forest plot of subgroups of studies with patients in
the first 3 months or later after stroke.
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