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Abstract
Renal transplant is a lifesaving and cost-effective intervention for patients with End Stage Renal Failure. Yet it is often regarded
as replacement therapy rather than a cure given the overall failure rate over time. With a shortage of organs, this global issue has
been further compounded by increased incidences of obesity, hypertension and diabetes, such that the disease burden and need
for transplantation continues to increase. Considering the lifetime of immunosupression in transplant patients, there will also be
significant associated co-morbidities By leveraging the advances in innovation in Next Generation Sequencing, the field of
transplant can nowmonitor patients with an optimized surveillance schedule, and change the care paradigm in the post-transplant
landscape. Notably, low grade inflammation is an independent risk for mortality across different disease states. In transplantation,
sub-clinical inflammation enhances acute and chronic rejection, as well as accelerates pathologies that leads to graft loss. Cell free
DNA has been shown to be increased in inflammatory processes as we all as provide an independent predictor of all-cause
mortality. This review considers the utility of AlloSure, a donor derived cell free DNA molecular surveillance tool, which has
shown new clinical insights on how best to manage renal transplant patients, and how to improve patient outcomes.
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Following the initial technical challenge of implanting an or-
gan, maintaining the organ against a vast array of pathologies
for years to come remains a colossal challenge for all clini-
cians working in transplantation. Drug toxicity, opportunistic
infection, primary disease recurrence, and the constant battle
against organ rejection are all differentials that are considered
when graft dysfunction is observed, promoting a lifetime of
laborious surveillance.

Current recommendations in kidney transplantation are to
follow indicators of allograft damage (serum creatinine (SCr),
estimated glomerular filtration rate (eGFR), and proteinuria),
markers of immune activity (donor-specific antibodies (DSA),
and to consider performance of protocol (surveillance) biop-
sies as methods to assess graft abnormalities and identify early
the need to intervene (Weir and Wali 2009). However, once

SCr rises or DSA or proteinuria appears, the decline in renal
function is usually inevitable. All of these are lagging indica-
tors, which occur in response to inflammation or significant
graft damage, leading to chronic graft dysfunction and loss.
While surveillance biopsies may be able to identify graft ab-
normalities early, there is evidence that nearly 62% of
borderline histological change in pathology on surveillance
biopsies, which resolve without treatment (Nankivell et al.
2019). They also expose patients to significant risk of iatro-
genic harm with a low yield of actionable evidence.

From the moment allografts are implanted, there is persis-
tent sub-clinical inflammation. Post-transplant graft inflam-
mation impairs the induction of tolerance and enhances acute
and chronic rejection (Braza et al. 2016). Increased inflamma-
tion has also demonstrated an independent association with
death with a functioning graft (Molnar et al. 2017), as well
as increased risk of graft loss (Dahle et al. 2011; Abedini et al.
2009). As the current lagging indicators are poorly sensitive,
subclinical inflammation can lead to the progression of fibro-
sis and chronic humoral rejection as well as the formation of
DSAs (Fig. 1). The ability to identify and quantify inflamma-
tion earlier in the pathologic course can better risk stratify
transplant patients in need of intervention (Torres et al. 2014).

Across all disease states, low-grade inflammation is an in-
dependent risk for mortality (Bonaccio et al. 2016). Proctor
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et al. have demonstrated that an inflammation-based prognos-
tic score, combining high sensitivity C-reactive protein, albu-
min, and neutrophil count, is prognostic of all-cause mortality
(Proctor et al. 2015). As a biomarker of injury, end-stage renal
disease (ESRD) patients with increased circulating cell-free
DNA (cfDNA) have also been shown to have increased in-
flammatory processes and increased mortality, where cfDNA
is an independent predictor of all-cause mortality (Tovbin
et al. 2012).

Classification of allograft rejection

Allograft rejection is also intertwined with inflammation,
resulting in specific pathologic changes, with or without graft
dysfunction. This occurs due to the recipient’s immune system
recognizing the non-self-antigen in the allograft and leads to
progressive tissue damage. In this way, the precursors to organ
injury can be detected using AlloSure dd-cfDNA.

Both innate and adaptive immune systems play a signifi-
cant role in rejection, but the T lymphocytes (a component of
the adaptive immune system) are the principal cells that rec-
ognize the allograft and amplify a response via the delayed
type (type IV) hypersensitivity reaction. However, there are
other costimulatory molecules and cytokines which can also
play a major role in this reaction. Depending on the histopa-
thology and immunological characteristics, renal transplant
rejections can be classified broadly under the following
categories:

(1) Hyperacute rejection: This happens within minutes after
transplant and has been directly linked to preformed an-
tibody to the human leukocyte antigens, the tissue, or
ABO incompatibility; this is rarely seen now due to the
very sensitive crossmatch tests performed before the
transplant.

(2) Acute rejection: This can occur any time after transplant,
usually within days to weeks after transplant. It classifies
into the following:

(A) Antibody-mediated rejection (ABMR): which usu-
ally demonstrates evidence of circulating donor-
specific alloantibodies and immunological evidence
of antibody-mediated injuries to the kidney, such as
complement deposition, inflammation of glomeruli
(glomerulitis) or peritubular capillary (peritubular
capillaritis).

(B) Acute T cell-mediated rejection (TCMR): which is
characterized by varying amounts of lymphocytic
infiltration of the tubules, interstitium, and, in ad-
vanced stages, the arterial intima.

(3) Chronic rejection: This usually develops more than
3 months post-transplant and can either be chronic
ABMR or chronic TCMR.

(4) Mixed rejection: This occurs when multiple immunolog-
ical pathways are queued and results in acute rejection
superimposed on chronic rejection.

The burden and cost of allograft rejection

ABMR is the leading cause of allograft dysfunction and loss
after kidney transplantation. The detection of DSA was previ-
ously required as a prerequisite to diagnose ABMR; however,
more recently, there is recognition that ABMR that occurs is
the absence of detectable DSA. Therefore, other molecular
markers of injury, including dd-cfDNA detected by
AlloSure, are increasingly being used as substitutes for
DSA. The Banff working group in 2017 accepted molecular
assays as substitutes for DSA when diagnosing ABMR (Haas
et al. 2018).

Fig. 1 Showing the time course
post-transplant of inflammation,
function, and contributors of
injury leading to graft failure. The
progression of inflammation and
injury can be quantified by
AlloSure dd-cfDNA
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Sussell et al. have shown that, despite improvements in
outcomes for kidney transplant recipients in the past decade,
graft failure continues to impose substantial burden on pa-
tients (Sussell et al. 2020). In this study, authors compared
outcomes from a simulation model of kidney transplant pa-
tients, in which patients who were at risk for graft failure were
compared with an alternative simulation in which the risk of
graft failure is assumed to be zero. Transitions through the
model were estimated using Scientific Registry of
Transplant Recipients (SRTR) data from 1987 to 2017.
Lifetime costs, overall survival, and quality-adjusted life years
(QALYs) for both scenarios were analyzed and compared to
obtain the burden of graft failure.

Within this study, the average patient with graft failure will
impose additional medical costs of $78,079 (95% confidence
interval [CI] $41,074, $112409) and a loss of 1.66 QALYs
(95%CI 1.15, 2.18). Given 17,644 kidney transplants in 2017,
the total incremental lifetime medical costs associated with
graft failure is $1.38B (95% CI $725M, $1.98B) and the total
QALY loss is 29,289 (95% CI 20291, 38,464). Thus, efforts
to reduce the incidence of graft failure or to mitigate its impact
are urgently needed.

The current treatment options for ABMR, its clinical and
economic burden, and approaches for reducing the risk of
ABMR are of grave concern as ABMR is responsible for up
to 60% of late graft failures. While ABMR is notoriously
resistant to treatment with corticosteroids, additional ap-
proaches have been used over the evolution and understand-
ing of pathogenic antibodies such as depletion, inhibition, or
neutralization of DSA. These partially effective treatments do
not come without a cost, which can range between reported
costs of USD $49,000–$155,000 per episode (Muduma et al.
2016).

Unfortunately, leaving ABMR untreated is not an alterna-
tive option as it places patients at high risk for adverse events
which may ultimately result in a return to dialysis (Reyna-
Sepulveda et al. 2017). Given the cost and inefficiency of
treatment, interventions targeting prevention of ABMR are
critical. Preventing nonadherence to immunosuppressants is
a key strategy; however, it has proved an exceedingly difficult
target given the dynamic process of nonadherence and lack of
accurate real-time community-wide monitoring method.

It has become evident that a more sensitive marker or pre-
dictor of allograft injury is required to identify at-risk patients
early enough that meaningful clinical intervention may even
be possible.

Donor Derived Cell Free DNA

Since its discovery in 1948, cfDNA has made an impactful
change in transplantation. A growing body of evidence (109
manuscripts from 55 studies) and clinical use has demonstrat-
ed that donor-derived cell-free DNA (dd-cfDNA), as an early

and accurate detector of allograft injury, provides a quantita-
tive marker of inflammation as part of screening and routine
monitoring during the post-transplant period (Knight et al.
2019; Sherwood and Weimer 2018; Thongprayoon et al.
2020).

dd-cfDNA itself has also been identified as a trigger of
inflammation, thereby adding insult to injury (Dholakia et al.
2020). Being able to identify early un-resolving molecular
allograft injury measured via changes in dd-cfDNA allows
the stratification of patients who are at risk of subsequent
allograft injury, immunological activity, or declining graft
function (Jordan et al. 2018; Clayton et al. 2016).
Considering dd-cfDNA as a continuous and clinically signif-
icant biomarker for kidney transplant opens the potential for
new management strategies, optimizing clinical decisions and
the potential for improved clinical outcomes.

Clinical validity for dd-cfDNA in plasma has been shown
by numerous studies showing the value of dd-cfDNA in the
surveillance in kidney transplant recipients (Sigdel et al. 2018;
Bloom et al. 2017).

The Circulating Donor-Derived Cell-Free DNA in blood
for diagnosing Acute Rejection in Kidney Transplant
Recipients (DART) study (ClinicalTrials.gov Identifier:
NCT02424227) assessed 1272 blood specimens from 384
kidney recipients from 14 clinical sites at scheduled post-
transplant intervals (Bloom et al. 2017). The median levels
of dd-cfDNA in kidney transplant recipients with active rejec-
tion were significantly higher (1.6%) than in the comparator
group (0.3%) of biopsy specimens without active rejection
(p < 0.001) with a receiver-operating characteristic (ROC) ar-
ea under the curve (AUC) of 0.74. At 1.0% dd-cfDNA, there
was an 85% specificity and 59% sensitivity to discriminate
active rejection from no rejection. The PPV was 61% and
NPV was 84%, at 1.0% dd-cfDNA.

The ROC plot for ABMR had an AUC of 0.87. At 1.0%
dd-cfDNA, there was an 83% specificity and 81% sensitivity
to discriminate ABMR from no ABMR. The PPV was 44%
and NPV was 96.4% at 1.0% dd-cfDNA for ABMR vs no
ABMR. Median dd-cfDNA was 2.9% (ABMR), 1.2%
(TCMR, types ≥ IB), 0.2% (TCMR type IA), and 0.3%
(controls); p < 0.001, ABMR vs controls; p = 0.05, TCMR
type ≥ IB vs controls.

In the DART study, most (204/242) kidney transplant bi-
opsies were clinically indicated; yet, only 27% of these clini-
cally indicated biopsies revealed active rejection, and so, op-
timizing the use of renal biopsy using AlloSure is important.

Huang et al. further showed clinical validation of AlloSure
in a single-center experience (Huang et al. 2019). A total of
485 samples from 352 adult kidney transplant patients were
assessed with AlloSure. Sixty-three patients had a paired allo-
graft biopsy; 27 patients (43%) had donor-specific antibodies
(DSA) and 34 patients (54%) had biopsy-proven rejection.
There were 22 patients with isolated ABMR, 10 with
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TCMR, and 2 with mixed rejection. The study found that
AlloSure was able to distinguish patients with antibody-
mediated rejection (ABMR) from those with no rejection (me-
dian dd-cfDNA 1.35% vs 0.38%, respectively; p < 0.001).
The AUC-ROC was 0.82 (95% CI: 0.71–0.93) for
distinguishing ABMR from no rejection. With a dd-cfDNA
cutoff value of 0.74%, AlloSure detected ABMR with 100%
sensitivity, 71.8% specificity, 68.6% PPV, and 100% NPV.

From the moment the allograft is implanted, there is a con-
tinuous release of dd-cfDNA into the recipient’s circulation.

Therefore, considering AlloSure as a continuum rather than
a discrete threshold is important.

Stites et al. published a violin pilot (Fig. 2) showing the
gradient in the relative change in AlloSure levels at the time of
biopsies showing borderline changes or TCMR grade 1A,
demonstrating the continuum of dd-cfDNA as allograft dam-
age progresses (Stites et al. 2020). The same way clinicians
trend blood pressure, creatinine, or changes in drug levels,
changes in AlloSure provide insight into the directionality of
allograft injury. Bromberg et al. have shown that results of
0.2% are associated with immune quiescence and give clini-
cians a peace of mind score, with a high NPV, showing that
there is no significant injury to the allograft (Bromberg et al.
2017). Stites et al. published results above 0.5% are associated
with progression to clinical outcomes when measured at the
time of biopsies demonstrating borderline changes or
TCMR1A rejection, which is supported by Huang et al. who
showed that 0.74% was associated with allograft rejection.
Bloom et al. published level at 1% and higher are associated
with allograft rejection (Sigdel et al. 2018; Bloom et al. 2017),
which continue to increase in PPV as levels continue to rise.

Dd-cfDNA values greater than 1.2% are above the 97.5th
percentile in a study of stable kidney transplant recipients and
therefore are outside the normal range for this population.
Additionally, an increase of <61% in a consecutive dd-cfDNA
value in an individual is achange that may be attributable to nor-
mal biological variation (Bromberg et al. 2017).

Donor-specific antibodies DSA have become an established
biomarker predicting ABMR and has a prevalence of around
15–20% within the first year of transplantation. Everly et al.
reported that 11% of the patients without detectable DSA at
the time of transplantation will have detectable DSA 1 year
later, and over the next 4 years, the incidence of de novo DSA
will increase to 20%. After de novo DSA development, 24%
of allografts will fail within 3 years (Everly et al. 2013).

Preformed DSAs in sensitized patients can trigger hyper-
acute rejection, accelerated acute rejection, and early acute
ABMR (Terasaki and Cai 2005). Transplant patients with
DSA have twice the graft failure rate as those without and
those without DSA. Additionally, patients without DSA have
a superior graft survival 4 years post-transplant compared to
those with DSA. It is now further understood that while not all
DSA carry equal immunogenicity, depletion or reduction of
DSA can result in increased allograft survival (Terasaki 2012;
Willicombe et al. 2012).

The pathogeneses of ABMR include not only complement-
dependent cytotoxicity, but also complement-independent
pathways of antibody-mediated cellular cytotoxicity and di-
rect endothelial activation and proliferation. The novel assay
for complement binding capacity has improved our ability to
predict and stratify potentially pathogenic antibodies from
less-harmful antibody (Chen et al. 2011). C1q fixation is a
classic marker of the complement-dependent pathway and,
thus, is a surrogate marker for the ability of antibody to signal
through this pathway. This stratification and classification of
DSA can be even further enhanced by DSA sub-typing as
some classes of antibody are more efficient at fixing comple-
ment than others (Zhang 2018). C1q binding donor-specific
antibodies are closely associated with acute ABMR, more
severe graft injuries, and early graft failure, whereas C1q non-
binding donor-specific antibodies correlate with subclinical or
chronic ABMR and late graft loss (Ponsirenas et al. 2018).

Jordan et al. have shown that dd-cfDNA identifies ABMR
in DSA-positive kidney transplant recipients. The authors also

Fig. 2 Violin plot, showing the
continuum of AlloSure across the
population. The negatively
skewed distribution shows how
the change in AlloSure in
combination with the absolute
number supports clinical
decisions at different levels
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demonstrated that higher dd-cfDNA levels are associated with
de-novo DSA formation, elucidating how prospective dd-
cfDNA monitoring, with immunosuppression augmentation
in response to dd-cfDNA levels, may be beneficial in patients
deemed “at-risk” in the absence of clinical symptoms or biop-
sy findings. DSA mean fluorescence intensity (MFI) had a
positive correlation with dd-cfDNA levels (r = 0.30 CI −
0.083 to 0.466 p = 0.004), with 99% of the MFIs being greater
than 500. Logistic modeling with multivariate analysis
showed that dd-cfDNA is independently a predictor of de-
novo DSA, when controlling for race, age, donor type, and,
prior transfusion, and HLA mismatch (p < 0.001).
Importantly, in the instance, a transplant recipient has a posi-
tive biopsy for ABMR in the presence of DSA AlloSure holds
an 89% PPV, at a 2.9% threshold (Jordan et al. 2018).

Further data from Stites et al. revealed that elevated levels
of dd-cfDNA predicted adverse clinical outcomes. Among
patients with elevated cfDNA, de novo DSA formation was
seen in 40% (17/42) vs 2.7% with low AlloSure levels
(P < 0.0001) and patients with elevated AlloSure dd-cfDNA
went on to have future or persistent rejection that occurred in 9
of 42 patients (21.4%) vs 0% (P = 0.003) (Stites et al. 2020).

The relationship of dd-cfDNA detecting DSA has also been
published in other organ transplants such as heart and lung trans-
plantation. Kobashigawa et al. showed that the average dd-
cfDNA for the patients with DSA was 1.2%, which was signif-
icantly higher than patientswithoutDSA (0.4%). ThemeanDSA
level, defined as MFI, was 6984 ± 4460 (MFI range 5000 to
17,500) (Kobashigawa et al. 2019). The authors concluded that
dd-cfDNA appears to be correlated to the development of DSA.
Furthermore, it suggests that DSA may be injuring the donor
organ and may necessitate treatment of these patients.
Additionally, Agbor-Enoch and Jackson et al. showed that ele-
vated dd-cfDNA was an early risk factor for the development
and persistence of de novo donor-specific HLA antibody in lung
transplantation (Agbor-Enoh et al. 2018).

BK nephropathy and viremia

Between 10 and 30% of kidney transplant recipients (KTR) de-
velop BK viremia, with 1–10% of KTR developing BK virus-
associated nephropathy (BKVAN), accounting for 7% of all re-
nal allograft failures (Hirsch et al. 2005). BK viremia is also
associated with increased risk for de novo DSA (Patel et al.
2016). Sawinski et al. explored this phenomenon and interesting-
ly found that while persistent BK viremia was associated with
formation of de novo class II DSA, after a median of 3 years
post-transplant showed no difference in allograft survival
(Sawinski et al. 2015). The diagnosis of BKVAN currently re-
quires biopsy confirmation. The primary management, immuno-
suppression reduction, has limited efficacy, and patients often
require re-biopsy to assess disease progression or resolution.

Improved methods to diagnose BKVAN and follow disease pro-
gression or resolution are needed.

In a retrospective analysis of the DART study, of the 102
biopsies performed with paired dd-cfDNA, 10 patients with
BK viremia or BKVAN had 14 paired dd-cfDNA and renal
biopsy results, performed between 2015 and 2018. Seven KTR
had BKV PCR titers that were correlated to dd-cfDNA results
and biopsy pathology findings. Analysis showed a positive cor-
relation of dd-cfDNA and BK viral load. Correlation identified
an r value = 0.874 (95% CI 0.35–0.98, p = 0.01). Additionally,
those patients with BK viremia without BKVAN had a median
dd-cfDNA= 0.58% (IQR 0.43–1.15), while BKVAN had a me-
dian dd-cfDNA= 3.38% (IQR 2.3–4.56). KTR with biopsies
meeting Banff criteria for acute cell-mediated rejection
(TCMR; >Banff 1A) had a median BK PCR load = 4.42 × 105

(IQR 2.1 × 103–5 × 105) while KTR not meeting criteria had
median PCR load = 3.71 × 104 (IQR 1 × 105–2.2 × 107), these
were not statistically different (p = 0.45). Yet, five of seven
BKVAN patients, but only two of seven with isolated viremia,
had biopsies meeting Banff criteria for TCMR, with median dd-
cfDNA in non-rejection patients = 0.43% (IQR 0.29–0.91) ver-
sus 2.84% (IQR 1.49–4.29) in rejection patients, p = 0.001
(Brennan et al. 2019).

eGFR decline

Clinical trials designed to investigate the effectiveness of in-
terventions on allograft loss or death of renal transplant recip-
ients are challenging as these tend to be events which occur
long-term. Therefore, surrogate markers are necessary. The
decline in eGFR is commonly used as a surrogate for hard
outcomes in kidney transplantation. Clayton et al. examined
7949 transplants performed from 1995 to 2009, including
71,845 patient-years of follow-up, 1121 graft losses, and
1192 deaths. Percentage change in eGFR between years 1
and 3 after transplant was examined where a ≥ 30% decline
in eGFR, which were associated with subsequent death (haz-
ard ratio, 2.20; 95% confidence interval, 1.87 to 2.60) and
death-censored graft failure (hazard ratio, 5.14; 95% confi-
dence interval, 4.44 to 5.95) (Clayton et al. 2016).

Additional surrogate markers were assessed in this study
including acute rejection, doubling of SCr level, and eGFR at
year 1 or year 2. A 30% decline in eGFR was considered
superior. The authors also concluded that 30% decline in
eGFR between years 1 and 3 after kidney transplant is com-
mon and strongly associated with risks of subsequent death
and death-censored graft failure, which mirrors findings in
CKD (Clayton et al. 2016). Faddoul et al. reported results
from clinical trials in organ transplantation (CTOT) 17 also
identifying a 40% decrease in post-kidney transplant eGFR
from 6 months post 2 years post-transplant as a surrogate for
5-year outcomes (Faddoul et al. 2018).
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Based on these data, the DART investigators assess wheth-
er increases in dd-cfDNA could be a predictor of second year
eGFR decline. Of the 384 patients, 173 patients had AlloSure
dd-cfDNA and eGFR measured 1–10 times during the first-
year post transplant and 1–6 times during follow-up visits
during the second year. The mean eGFR results from years
1 and 2 were compared in patients with ≥ 1 elevated dd-
cfDNA (AlloSure ≥ 1%) in year 1 vs. those < 1% dd-cfDNA
elevation. Association between elevated dd-cfDNA (≥ 1%)
and the future occurrence of a low eGFR below a target level
of 15–30 mL/min/1.73 m2 was also tested. Seventy-three per-
cent of patients with high first year dd-cfDNA (≥ 1%) had a
significant drop in eGFR in year 2 (median eGFR change −
25%, IQR − 46% to + 2%) compared to 45% patients without
elevated dd-cfDNA (median eGFR change + 2%, IQR − 18%
to + 45%), p = 0.002. This study summarized that dd-cfDNA
≥ 1% was indeed associated with eGFR < 30 mL/min (p =
0.040) and was a significant risk factor for a 30% decline in
eGFR in the Cox model (p = 0.047), with a hazard ratio of
2.31 (95% CI 1.01–5.28) (Alhamad et al. 2019).

Continuing with this trend, elevated levels of dd-cfDNA
(AlloSure ≥ 0.5%) in patients with TCMR1A predicted ad-
verse clinical outcomes. Stites et al. found among patients
with elevated cfDNA, eGFR rate declined by 8.5% vs 0%
in low dd-cfDNA (AlloSure < 0.05%) patients (p = 0.004)
(Stites et al. 2020).Recent publications compared different
dd-cfDNA and found that although dd-cfDNA is similar,
they are not the same, and so, assessing diagnostic test
characteristics and clinical evidence on the supporting plat-
form is important. As more data is generated, cross walk-
ing published dd-cfDNA data across different platforms is
likely to be ineffective as different dd-cfDNAs, although
similar are not the same (Dengu 2020). With the wide
adoption of dd-cfDNA and the potential for further assays
entering the field, a clear understanding of the technology
and evaluation of real-life patient validation data supports
the importance to remain consistent to a single platform
and consistent surveillance schedules.
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