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Activin A is involved in inflammation. The present study was performed to clarify if lipopolysaccharide, a component of Gram-
negative bacteria, stimulates activin A secretion from human amniotic epithelial cells and to determine if activin A plays a
role in amnionitis. Fetal membranes were obtained during elective cesarean sections performed in full-term pregnancies of
patients without systemic disease, signs of premature delivery, or fetal complications. Amniotic epithelial cells were isolated by
trypsinization. The activin A concentrations in the culture media were measured by enzyme-linked immunosorbent assay, and
cell proliferation was assessed by 5-bromo-2󸀠-deoxyuridine incorporation. Amniotic epithelial cells secreted activin A in a cell
density-dependent manner, and lipopolysaccharide (10𝜇g/mL) enhanced the secretion at each cell density. Lipopolysaccharide
(10–50𝜇g/mL) also stimulated activin A secretion in a dose-dependent manner. Contrary to the effect of activin A secretion,
lipopolysaccharide inhibited cell proliferation in amniotic epithelial cells. The present study suggests that lipopolysaccharide
stimulation of activin A secretion may be a mechanism in the pathogenesis of amnionitis.

1. Introduction

Activins, which were first identified as stimulators of FSH
secretion, are pluripotent growth factors in the TGF-beta
superfamily [1]. Among the many functions of activins, the
involvement of activin A in inflammation has been noted [1–
6]. The administration of lipopolysaccharide (LPS), a Gram-
negative bacterial cell wall component, prominently increases
the serum activin A level in sheep and mice [7, 8]. Activin A
levels in the circulation were higher in mice that died than in
mice that survived after the administration of a sublethal dose
of LPS [8]. Furthermore, cotreatment with follistatin, which
neutralizes activin by binding to it, increased the survival rate
of LPS-treatedmice [8].The activinA release inmice depends

on a signaling cascade through Toll-like receptor 4 (TLR4), a
receptor for LPS [8].

Serum activin A concentrations are elevated in patients
with septicemia [9]. During pregnancy, serum activin A
concentrations increase [10] and activin A dimers and activin
beta-A subunits are detected in trophoblasts and amniotic
epithelial cells (AEC) in the human placenta [11, 12]. The
expression of activin beta-A subunit mRNA in fetal mem-
branes increases during labor [13]. Activin A concentrations
in amniotic fluid are higher in women with preterm labor
than in women without preterm labor at the same stage of
gestation [13]. Activin A concentrations in amniotic fluid are
also elevated in women with intra-amniotic infection [14].
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The notion that activin A is involved in chorioamnionitis
is also supported by in vitro studies. Activin A secretion
from gestational tissues and cells is stimulated by inflamma-
tory cytokines. Tumor necrosis factor-𝛼 (TNF-𝛼) stimulates
activin A production in explant cultures of human amnion,
and choriodecidua [15], and cultured human AEC [16].
Interleukin (IL)-1𝛽 also stimulates activin A production in
the amnion, choriodecidua [15], and AEC [16]. Activin A
modulates the secretion of IL-6, IL-8, and prostaglandin E2
in explant cultures of human amnion and choriodecidua [17].

Compared to the effects of TNF-𝛼 and IL-1𝛽, the effect of
LPS on activin A secretion from human AEC is inconsistent,
despite the expression of functional TLR4 in human AEC
[18]. Rosenberg et al. reported that LPS stimulated activin A
release from cultured amniochorion explants but not from
placental villous tissue [14]. On the other hand, Keelan
et al. reported that LPS did not affect activin A secretion
from amnion explant cultures [15]. Since the amnion is an
avascular tissue andAEC are located in the innermost layer of
the amnion, secretions of AEC must be directly released into
the amniotic fluid and affect the fetus. The present study was
performed to determine if LPS stimulates activin A secretion
from AEC and to verify the notion that activin A is involved
in amnionitis.

2. Materials and Methods

2.1. Reagents. LPS that was phenol extracted from E. coli
O26 was purchased from Paesel & Lorei GmbH (Hanau,
Germany) (catalogue no. 100976, Lot. 15303).

2.2. AEC Culture. With the permission of the Institutional
Review Board of Gunma University Hospital and the written
informed consent of the patients, we obtained fetal mem-
brane samples during elective cesarean sections performed
on four patients with full-term pregnancies who did not
have any systemic disease, signs of premature delivery,
or fetal complications. AEC were prepared as previously
reported [19] on the basis of the method established by
Okita et al. [20] with slight modifications. Briefly, the
chorion was removed from amnion mechanically, and the
amnion was washed thoroughly with phosphate-buffered
saline. The removal of the chorion was ascertained by using
hematoxylin/eosin-stained paraffin sections of amnions. The
amniotic membrane was cut into pieces and incubated in
170mL of Krebs-Ringer solution containing 0.15% trypsin,
1.26mg/mL sodium bicarbonate, 25mM HEPES, 100 𝜇g/mL
streptomycin, and 0.5 𝜇g/mL amphotericin B at 37∘C in a
spinner flask. The liberated cells were decanted at 30min
intervals, and the incubationwas performed seven times with
freshly made trypsin solution. Each fraction of dispersed
cells was centrifuged and resuspended in DME/Ham’s F12
medium supplemented with 10% fetal bovine serum (FBS),
100 𝜇g/mL streptomycin, and 0.5 𝜇g/mL amphotericin B.The
first fractionwas discarded.The cell viability of the remaining
fractions was determined by trypan blue exclusion, and the
fractions with viabilities of at least 80% were pooled. Cells in
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Figure 1: Effect of LPS on activin A secretion at various densities of
AEC. Human AEC were seeded in 96-well microplates at densities
of 1,250, 2,500, 5,000, 10,000, and 20,000 cells per well in 200 𝜇L of
DME/Ham’s F12 medium supplemented with 10% FBS, 100𝜇g/mL
streptomycin, and 0.5 𝜇g/mL amphotericin B. Either LPS (10 𝜇g/mL)
or vehicle (control) was added to each well. After 96 h of culture,
activin A in the medium was measured. Closed rectangles: LPS.
Open rectangles: control. The results from the quadruplicate assay
are shown as the mean ± SE (𝑛 = 4). a

𝑃 < 0.05 compared with
the control value at 1,250 cells/well. b

𝑃 < 0.01 compared with the
control value at 1,250 cells/well. ∗𝑃 < 0.01 comparedwith the control
value at each cell density.

200𝜇L of medium were seeded in each well of 96-well plates
and cultured in a humidified atmosphere containing 5%CO

2
-

95% air at 37∘C. These cells were used for measuring activin
A and cell proliferation.

2.3. Activin A ELISA. Activin A concentrations in culture
medium were measured by using an activin A assay kit
(Oxford Bio-Innovations, Oxfordshire, UK) according to the
manufacturer’s instructions. The samples, which were pre-
treated with sodium dodecylsulfate and hydrogen peroxide,
were added along with assay diluent to microwells coated
with a monoclonal antibody specific for the beta-A subunit
of activin. After 1 h of incubation, biotinylated monoclonal
antibody for the beta-A subunit of activin was added and
incubated overnight. The following day, wells were washed
and streptavidin-alkaline phosphatase solution was added.
After 1 h of incubation, the wells were washed and incubated
with substrate solution for 2 h. Then, amplifier solution was
added, and the absorbance at 490 nm was measured.
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Figure 2: Dose-dependent effects of LPS on activinA secretion in three independent experiments. Fetalmembraneswere obtained from three
patients, andAEC from each patient were cultured independently at a density of 20,000 cells per well inDME/Ham’s 12medium supplemented
with 10% FBS, 100𝜇g/mL streptomycin, 0.5 𝜇g/mL amphotericin B, and various concentrations of LPS for 96 h. Each independent result is
shown in panels (a), (b), and (c). The results are shown as the mean ± SE (𝑛 = 4). #𝑃 < 0.05 compared with the control (LPS; 0 ng/mL) value.
∗
𝑃 < 0.01 compared with the control (LPS; 0 ng/mL) value.

2.4. Cell Proliferation Assay. Cell proliferation was measured
by assessing 5-bromo-2󸀠-deoxyuridine (BrdU) incorporation
by using a Cell Proliferation ELISA, BrdU (colorimetric) kit
(Roche Diagnostics, Mannheim, Germany). The assay was
performed in accordance with the manufacturer’s instruc-
tions. Cells were seeded into 96-well microplates with or
without LPS. After a 96 h incubation, 20𝜇L of 100𝜇M
BrdU solution was added to each well containing 200𝜇L of
medium, and the cells were reincubated for another 24 h.
The culture medium was removed, the cells were fixed, and
the DNA was denatured. The cells were then incubated
with mouse anti-BrdU monoclonal antibody conjugated to
peroxidase at room temperature for 90min. After removal
of the antibody, the immune complexes were detected by
subsequent reaction with tetramethylbenzidine.The reaction
was stopped by the addition of sulfuric acid, and the product
was quantified by measuring the absorbance at 450 nm.

2.5. Statistics. The data from quadruplicate cultures are
presented as themean± SE. Comparison between groupswas
performed by using one-way ANOVA, and the significance
of the differences between the mean values was tested by
using Fisher’s PLSD test. Comparison between two groups
was performed by using the Student’s t-test. 𝑃 values < 0.05
were considered statistically significant.

3. Results

Variable densities of AECwere seeded into 96-well plates and
incubated. After 96 h of incubation, activin A concentrations

in the media were measured. Increased activin A concentra-
tions in themedia were observed inAECwithout LPS in a cell
density-dependent manner, and the activin A concentrations
were significantly higher at cell densities of 5,000 cells/well
or higher (𝑃 < 0.05) (Figure 1). LPS (10 𝜇g/mL) significantly
increased activin A concentrations at densities of 2,500
cells/well and greater (𝑃 < 0.01). Activin A concentrations of
cell lysates from either LPS-stimulated AEC or control AEC
were below assay sensitivity (data not shown). Therefore,
the increase of activin A concentrations in the medium
was equivalent to the increase of activin A production and
secretion in AEC.

The stimulatory effects of various concentrations of LPS
on activin A secretion in AEC were confirmed by three
independent studies of AEC from three patients. In each
experiment, a dose-dependent increase in activin A secretion
from AEC occurred after 96 h of culture with LPS (Figure 2).

The effects of LPS on AEC proliferation were also stud-
ied. LPS (10𝜇g/mL) suppressed cell proliferation at each
cell density (1,250–20,000 cells/well) (Figure 3(a)). A dose-
dependent inhibitory effect of LPS on AEC proliferation was
also shown by three independent studies that used AEC from
three patients (Figure 3(b)).

4. Discussion

AEC secreted activin A in a cell density-dependent manner
in cultures of AEC prepared from the trypsinization of
amnions from women with full-term pregnancies. This type
of AEC culture has been utilized in studies of the syntheses
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Figure 3: Effect of LPS on BrdU incorporation in AEC. (a) AEC were seeded in 96-well microplates at densities of 1,250, 2,500, 5,000,
10,000, and 20,000 cells per well in 200 𝜇L of DME/Ham’s F12 medium supplemented with 10% FBS, 100𝜇g/mL streptomycin, and 0.5 𝜇g/mL
amphotericin B. Either LPS (10 𝜇g/mL) or vehicle (control) was added to each well. After 96 h of culture, BrdU incorporation was studied.
The results from the quadruplicate assay are shown as the mean ± SE (𝑛 = 4). #𝑃 < 0.05 compared with the control value at each cell density.
∗
𝑃 < 0.01 comparedwith the control value at each cell density. (b) Fetalmembranes were obtained from three patients. AEC from each patient
were cultured independently in DME/Ham’s 12 medium supplemented with 10%FBS, 100𝜇g/mL streptomycin, 0.5 𝜇g/mL amphotericin B,
and various concentrations of LPS.After 96 hof culture, BrdU incorporationwas studied. Closed circles, closed rectangles, and closed triangles
show AEC from each patient. The absorbance at AEC cultured without LPS is shown as 100%. The results from the quadruplicate assay are
shown as the mean ± SE (𝑛 = 4). #𝑃 < 0.05 compared with the control (LPS; 0 ng/mL) value. ∗𝑃 < 0.01 compared with the control (LPS;
0 ng/mL) value.

and secretion of phospholipids and prostaglandins [20, 21],
matrix metalloproteinase-9 and extracellular matrix metal-
loproteinase inducer [22, 23], brain natriuretic peptide [24],
endothelin-1 [24, 25], fibronectin [26, 27], albumin and glyco-
gen [28], and cystic fibrosis transmembrane conductance
regulator [29]. Keelan et al. used this method to study activin
A production by AEC [16]. The cell density and incubation
time of our AEC cultures were comparable (although not
identical) to the conditions used by Keelan et al.

LPS enhanced the activin A secretion at each cell density
(2,500–20,000 cells/well). LPS also stimulated activin A
secretion dose dependently in three independent cultures
of AEC from three patients. Rosenberg et al. reported that
LPS stimulated activinA release from cultured amniochorion
explants but not from placental villous tissue [14]. Our study
has clearly shown that LPS stimulates activin A secretion
from AEC. On the other hand, Keelan et al. reported that
LPS did not affect activin A production in amnion explant
cultures [15]. The components of amniotic explants other
than AEC might inhibit the effects of LPS, or the LPS dose
used in their study (5 𝜇g/mL) might not be sufficient to
stimulate activin A secretion. In a mouse epithelial Sertoli

cell line, the secretion of activin A is enhanced through TLR4
by LPS stimulation [8]. Since functional TLR4 is expressed
in human AEC [18], future studies must determine if similar
mechanisms affect activin A secretion by LPS-stimulated
AEC.

LPS stimulated activin A secretion from AEC at doses
of 10 𝜇g/mL or higher. The endotoxin concentrations in
the amniotic fluid of women with premature rupture of
membranes were between several hundred pg/mL to several
𝜇g/mL, as determined by the Limulus amebocyte lysate
assay with E.coli LPS as the standard [30]. Compared to
the endotoxin concentrations in the amniotic fluid, the LPS
doses that stimulated activin A secretion from AEC were
higher. On the other hand, the LPS doses used in the present
study are comparable to the doses used in previous studies
of human gestational tissues and cells [31–35]. Local LPS
concentrations in the microenvironment of AEC must be
higher than the concentrations in amniotic fluid whenGram-
negative bacteria invade the amnion [36].

LPS suppressed cell proliferation. Therefore, the increase
of activin A secretion is caused by enhanced production
and secretion of activin A in AEC rather than an increased
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number of AEC. LPS induces apoptosis directly or indirectly
in several types of cells [37–41]. Apoptosis of AEC occurs in
fetal membranes from patients with chorioamnionitis [42].
The present results are in accordance with these findings.
The tensile strength of fetal membranes is provided by
collagens in the amnion, and the tensile strength is reduced
in chorioamnionitis by the degradation of collagens bymatrix
metalloproteinases [43]. LPS itself might weaken the strength
of membranes by suppressing AEC proliferation.

In conclusion, LPS stimulated activin A secretion from
human AEC, whichmay be a mechanism in the pathogenesis
of amnionitis.
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