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Development of novel technologies for the discovery of human monoclonal antibodies has
proven invaluable in the fight against infectious diseases. Among the diverse antibody
repertoires elicited by infection or vaccination, often only rare antibodies targeting specific
epitopes of interest are of potential therapeutic value. Current antibody discovery efforts
are capable of identifying B cells specific for a given antigen; however, epitope specificity
information is usually only obtained after subsequent monoclonal antibody production and
characterization. Here we describe LIBRA-seq with epitope mapping, a next-generation
sequencing technology that enables residue-level epitope determination for thousands of
single B cells simultaneously. By utilizing an antigen panel of point mutants within the HIV-
1 Env glycoprotein, we identified and confirmed antibodies targeting multiple sites of
vulnerability on Env, including the CD4-binding site and the V3-glycan site. LIBRA-seq
with epitope mapping is an efficient tool for high-throughput identification of antibodies
against epitopes of interest on a given antigen target.

Keywords: single cell, epitope, monoclonal antibody, HIV, next generation sequencing (NGS)
INTRODUCTION

Due to their high target specificity and relatively low incidence of adverse effects, monoclonal
antibody therapeutics have become a mainstay in treatment options for a variety of human diseases
such as infection, cancer, autoimmunity, and a multitude of others (1–3). For the last several
decades antibodies have been used effectively in the clinic to treat patients and one area where
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considerable effort has gone into developing antibodies for
treatment and prevention of infection is HIV-1 (4–12).
Although there has been considerable progress made in drugs
used to treat infection such as anti-retrovirals (ART), the lack of
a licensed HIV-1 vaccine and the emergence of resistance to
current ART regimes emphasize the need for novel treatment
options (13–17). Antibodies represent an attractive therapeutic
option in this context, and as such, multiple antibodies are
currently being investigated in clinical trials (18–30). All
antibodies being tested in the clinic target the HIV-1 envelope
glycoprotein (Env), the sole target for neutralizing antibodies
(31, 32). There are multiple antigenic regions on Env that have
been shown to be important epitopes targeted by neutralizing
antibody responses, including the CD4-binding site (CD4bs),
glycan-dependent epitopes (V1V2 and V3), membrane-proximal
external region (MPER), gp120-gp41 interface, and others
(33–44).

Technologies to discover and develop new antibody
therapeutics such as hybridoma generation, antigen-specific B
cell sorting, phage or yeast display, and single-cell B cell
sequencing, have made the process generally quicker and more
efficient (45–50). An underlying goal of antibody discovery
technologies is to identify paired heavy and light chain B cell
receptor (BCR) sequences from antigen-specific B cells. This is
then followed up by subsequent antibody production and
characterization. However, only limited information about
antigen and epitope specificity is obtained during initial B cell
or antibody screening steps, often requiring the profiling of tens
to hundreds of antibodies to identify the few with epitopes or
functions of interest. In order to overcome these obstacles, we
recently developed LIBRA-seq, a next-generation single-cell
sequencing technology for simultaneous recovery of BCR
sequence and antigen specificity by utilizing DNA-barcoded
antigens (51). LIBRA-seq has successfully been applied to
identify antibodies against infectious agents such as HIV-1,
influenza, and a number of coronaviruses (51–53).

Here, we aimed to increase the power and utility of LIBRA-
seq to include simultaneous recovery of B cell receptor sequence
and paired antigen epitope specificity at the level of individual
epitope residues. To this end, we developed a panel of DNA-
barcoded HIV-1 Env epitope-specific variants, to distinguish
epitope-specific B cells, and allowing for residue-level epitope
binding information to be transformed into a sequence-able
event. We applied LIBRA-seq with epitope mapping to
samples from chronically-infected HIV-1 donors, leading to
the discovery of antibodies specific to multiple different Env
epitope regions, including the CD4bs and V3-glycan sites. In
addition, we utilized an antigen panel of pre-fusion stabilized
Env gp140 trimers along with monomeric gp120 proteins to
identify conformation-dependent B cells, allowing domain-level
epitope binding information to be transformed into a sequence-
able event. LIBRA-seq with epitope mapping is a high-
throughput antibody discovery platform that enables the
identification of residue-level epitope information through
next-generation sequencing, therefore reducing the burden of
epitope-specific antibody discovery away from the costly and
Frontiers in Immunology | www.frontiersin.org 2
laborious subsequent steps of antibody production
and characterization.
MATERIALS AND METHODS

Human Subjects
HIV-1 infected donors were enrolled in investigational review
board approved clinical protocols at the National Institutes of
Allergy and Infectious Diseases (NIAID). Peripheral blood
mononuclear cells (PBMCs) were collected from donors
NIAID26 (N26), NIAID27 (N27), NIAID55 (N55), NIAID76
(N76) and NIAID16 (N16). Collection dates were as follows: 9/
30/2009, 6/16/2006, 11/6/2008, 12/12/2007 and 7/2/2007. All
donors were chronically infected at the time of sample collection.
It is likely all patients were infected with clade B strain of HIV-1.

Antigen Production
In total, four LIBRA-seq experiments were performed. In one
experiment, seven HIV-1 gp140 BG505.SOSIP variants were used:
single-chain BG505sc.SOSIP.T332N (backbone sequence for all
BG505.SOSIP variants), BG505sc.SOSIP.N332T, BG505sc.
SOSIP.N279K, BG505sc.SOSIP.D368R/N279K, BG505sc.
SOSIP.N160K, BG505sc.SOSIP.K169E, BG505sc.SOSIP.D368R,
and one Influenza hemagglutinin variant A/New Caledonia/20/99
H1N1 (NC99) (54–56). These antigens were used to identify
antigen-positive B cells from peripheral blood mononuclear
cells (PBMCs) from donors N16 and N76. In experiment 2,
the antigen panel from experiment 1 was used, with the
fo l l ow ing mod ifi ca t i ons : BG505 .6R .SOS IP .T332N
replaced BG505sc.SOSIP.T332N, seven HIV-1 gp140 CZA97.
SOSIP variants were added (CZA97sc.SOSIP.N332T,
CZA97 s c . SOS IP .N160K , CZA97 s c . SOS IP .K16 9E ,
CZA97sc.SOSIP.N279K, CZA97sc.SOSIP.D368R/N279K,
CZA97sc.SOSIP.D368R, CZA97.6R.SOSIP.T332N (backbone
sequence for all CZA97.SOSIP variants) (57), and hepatitis C
antigen JFH-1 E2c was also added. These antigens were used to
sort antigen positive B cells from PBMCs from donor N55. In the
final two LIBRA-seq experiments, HIV-1 gp140 SOSIP antigens
CZA97, ZM197 and CNE55 were utilized along with HIV-1 gp120
proteins, A244 and ConC, and influenza hemagglutinin variants, A/
Michigan/45/2015 H1N1, A/Indonesia/5/2005 H5N1, A/Anhui/1/
2013 H7N9, H9 Hong Kong 2009 HA, and H10 Jiangxi-Donghu
2013 HA. These antigens were used to sort antigen positive B cells
from donors N26 and N27.

Recombinant HIV-1 trimer and HCV proteins were
expressed in Expi 293F mammalian cells (Thermo Fisher) with
PEI transfection reagent and cultured for 5-7 days in FreeStyle
F17 expression Medium supplemented (Thermo Fisher) with
10% Pluronic acid and 20% glutamine. Cells were maintained at
37°C with 8% CO2 saturation while shaking. After 5-7 days cells
were spun down and supernatant was harvested. Supernatant
was run over an affinity column of agarose-bound Galanthus
nivalis lectin (GNA, Snowdrop). The column was washed with
1X PBS and bound protein was eluted with 1M methyl-a-D-
mannopyranoside. Protein elute was then buffer exchanged into
March 2022 | Volume 13 | Article 855772
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1X PBS and further purified by size exclusion chromatography
with a Superdex 200 Increase 10/300 GL Sizing column on the
AKTA FPLC system (GE Life Sciences). Purified protein was
analyzed by SDS-PAGE and characterized by ELISA.

Recombinant ConC gp120 and A244 gp120 with an Avi-tag
at the C-terminus were expressed in HEK 293 F cells using PEI-
max (Polysciences) for 72h. Culture supernatant was harvested
and centrifuged to remove cells and cell debris. The cleared
supernatant was filtered through 0.22 stericup filters (Millipore)
and the soluble gp120 proteins were then purified by affinity
chromatography by passing the supernatant through a column of
agarose bound Glanathus nivalus lectin (Sigma). The column was
then washed with 1x PBS and proteins were eluted with 1 M
methyl a-D-mannopyranoside (Sigma). The eluted proteins
were concentrated using a 30 KDa cut-off vivaspin filters and
further purified by ion exchange chromatography on a HiPrep™

Q HP 16/10 anion exchange column. The gp120 fraction was
then collected and buffer exchanged and the proteins
concentrated using a 30 Kda cut-off vivaspin filter. The
purified proteins were tested for antigenicity by ELISA and the
purity was checked by SDS-PAGE.

Recombinant HA proteins (A/New Caledonia/20/99 H1N1
GenBank ACF41878 (NC99), A/Michigan/45/2015 H1N1
GenBank AMA11475, A/Indonesia/5/2005 H5N1 GenBank
ABP51969, A/Anhui/1/2013 H7N9 GISAID EPI439507, A/
Hong Kong/33982/2009 H9N2 GISAID EPI470900, and A/
Jaingxi-Donghu/246/2013 H10N8 GISAID EPI497477) all
contained the HA ectodomain with a point mutation at the
sialic acid-binding site (Y98F), T4 fibritin foldon trimerization
domain, AviTag, and hexahistidine-tag, and were expressed in
Expi 293F mammalian cells using Expifectamine 293
transfection reagent (Thermo Fisher Scientific) and cultured
for 4-5 days. Culture supernatant was harvested and cleared as
above, and then adjusted pH and NaCl concentration by adding
1M Tris-HCl (pH 7.5) and 5M NaCl to 50 mM and 500 mM,
respectively. Ni Sepharose excel resin (GE Healthcare) was added
to the supernatant to capture hexahistidine tag. Resin was
separated on a column by gravity and captured HA protein
was eluted by a Tris-NaCl (pH 7.5) buffer containing 300 mM
imidazole. The elute was further purified by a size exclusion
chromatography with a HiLoad 16/60 Superdex 200 column (GE
Healthcare). Fractions containing HA were concentrated,
analyzed by SDS-PAGE and tested for antigenicity by ELISA
with known antibodies. Proteins were frozen at -80C until use.

AviTagged antigens were biotinylated using BirA biotin ligase
(Avidity LLC).

DNA-Barcoding of Antigens
We used oligos that possess 15 bp antigen barcode, a sequence
capable of annealing to the template switch oligo that is part of
the 10X bead-delivered oligos and contain truncated TruSeq
small RNA read 1 sequences in the following structure: 5’-
CCTTGGCACCCGAGAATTCCANNNNNNNNNN
NNNCCCATATAAGA*A*A-3’, where Ns represent the antigen
barcode. For each antigen, a unique DNA barcode was directly
conjugated to the antigen itself. In particular, 5’amino-
oligonucleotides were conjugated directly to each antigen
Frontiers in Immunology | www.frontiersin.org 3
using the Solulink Protein-Oligonucleotide Conjugation Kit
(TriLink cat no. S-9011) according to manufacturer’s
instructions. Briefly, the oligo and protein were desalted, and
then the amino-oligo was modified with the 4FB crosslinker, and
the biotinylated antigen protein was modified with S-HyNic.
Then, the 4FB-oligo and the HyNic-antigen were mixed together.
This causes a stable bond to form between the protein and the
oligonucleotide. The concentration of the antigen-oligo
conjugates was determined by a BCA assay, and the HyNic
molar substitution ratio of the antigen-oligo conjugates
was analyzed using the NanoDrop according to the Solulink
protocol guidelines. AKTA FPLC was used to remove
excess oligonucleotide from the protein-oligo conjugates, which
were also verified using SDS-PAGE with a silver stain.
Antigen-oligo conjugates were also used in flow cytometry
titration experiments. The following barcodes were used for
the donors N16 and N76 experiments: ATTCGCCTT
ACGCAA (BG505sc.SOSIP.T332N), AACCCACCGTTGTTA
(BG505sc.SOSIP.N332T), GGTAGCCCTAGAGTA (BG505sc.
SOSIP.N279K), CAGTAAGTTCGGGAC (BG505sc.SOSIP.
DKO), CTTCACTCTGTCAGG (BG505sc.SOSIP.N160K),
TACGCCTATAACTTG (BG505 s c . SOS IP .K169E ) ,
AGACTAATAGCTGAC (BG505sc.SOSIP.D368R), and
GCTCCTTTACACGTA [A/New Caledonia/20/99 H1N1
(NC99)]. The following barcodes were used for the donor N55
experiment: GCAGCGTATAAGTCA (BG505sc.SOSIP.T332N),
GCTCCTTTACACGTA (BG505sc.SOSIP.N332T), CTTCACT
CTGTCAGG (BG505sc.SOSIP.N279K), TGGTAACGAC
AGTCC (BG505sc.SOSIP.DKO), TGTGTATTCCCTTGT
(BG505sc.SOSIP.N160K), TACGCCTATAACTTG (BG505sc.
SOSIP.K169E), GTGTGTTGTCCTATG (BG505sc.SOSIP.
D368R), AACCCACCGTTGTTA [A/New Caledonia/20/99
H1N1 (NC99)]; CAGTAAGTTCGGGAC, GTAAGACG
CCTATGC, TTTCAACGCCCTTTC, CCGTCCTGATAGATG,
TCATTTCCTCCGATT, GGTAGCCCTAGAGTA, AGACTA
ATAGCTGAC (CZA97 antigens). The following barcodes
were used for the donors N26 and N27 experiments:
CAGCCCACTGCAATA (CZA97), ATCGTCGAGAGCTAG
(ZM197), TCACAGTTCCTTGGA (CNE55), CAGATGATCC
ACCAT (A244), GACCTCATTGTGAAT (ConC), TGACC
TTCCTCTCCT (A/Michigan/45/2015 H1N1), CAGGTCCCTT
ATTTC (A/Indonesia/5/2005 H5N1), ACAATTTGTCTGCGA
(A/Anhui/1/2013 H7N9), AACCTTCCGTCTAAG (H9 Hong
Kong 2009 HA), AATCACGGTCCTTGT (H10 Jiangxi-Donghu
2013 HA).

Antigen-Specific B Cell Sorting
For each sample, PBMCs were mixed with DNA-barcoded
fluorescently labeled antigens, stained with fluorescent cell
markers and single cell sorted using fluorescence-activated cell
sorting (FACS). Briefly, cells were thawed and washed twice with
DPBS 0.1% BSA. For donors NIAID16 and NIAID76 cells were
stained with antibodies against cell markers including viability
dye (Ghost Red 780), CD14-APC-Cy7, IgM-APC-Cy7, CD3-
FITC, CD19-BV711, and IgG-PE-Cy5. For donor NIAID55 cells
were stained with antibodies against cell markers including:
CD3-APC-Cy7, IgG-FITC, CD19-BV711, and CD14-V500.
March 2022 | Volume 13 | Article 855772
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For donors NIAID26 and NIAID27 cells were stained with
antibodies against cell markers including viability dye (Ghost
Red 780), CD14-APC-Cy7, CD3-FITC, CD19-BV711, and IgG-
PE-Cy5. The cell-antigen mixture was incubated in the dark for
15-30 minutes. The cells were then washed twice with DPBS
0.1% BSA and stained with Streptavidin-PE (1:1000) for 15-30
minutes in the dark. The cells were washed again twice with
DPBS 0.1% BSA and taken to the Flow Cytometry core for single
cell sorting by FACS. Antigen positive cells were collected and
delivered to the sequencing core VANTAGE for single-cell
processing and sequencing.

Sample Preparation, Library Preparation,
and Sequencing
Single-cell suspensions were loaded onto the Chrommium
microfluidics device (10X Genomics) and processed using the B-
cell VDJ solution according to manufacturer’s suggestions.
Minor modifications were made in order to separate the
antigen and cellular mRNA barcode libraries as previously
described (51).

Sequence Processing and
Bioinformatics Analysis
Paired-end FASTQ files of oligo libraries were used as input and
processed using a previously described pipeline (52). Reads for cell
barcode, UMI and antigen barcodes were used to generate a cell
barcode-antigen barcode UMI count matrix. BCR contigs were
processed using Cell Ranger (10X Genomics) using GRCh38 as
reference. Antigen barcode libraries were also processed using Cell
Ranger (10X Genomics). The overlapping cell barcodes between
the two libraries were used as the basis of the subsequent analysis.
We removed cell barcodes that had only non-functional heavy
chain sequences as well as cells with multiple functional heavy
chain sequences and/or multiple functional light chain sequences.
Additionally, we aligned the BCR contigs (filtered_contigs.fasta file
output by Cell Ranger, 10X Genomics) to IMGT reference genes
using HighV-Quest. The output of HighV-Quest was parsed using
ChangeO andmerged with an antigen barcode UMI count matrix.
In experiments utilizing the panel of DNA-barcoded HIV-1 Env
epitope-specific variants, the LIBRA-seq score was determined as
in (58). In experiments utilizing stabilized Env trimers ZM197,
CNE55, CZA97, along with monomeric gp120 proteins from
strains A244 and ConC, the LIBRA-seq score was determined as
in (51). Next, to prioritize BCR sequences for recombinant
antibody production and characterization, further filtering steps
were applied; cells with UMI scores for negative control antigens
> 20 and cells for which the max antigen UMI ≤ 10 were not
considered for further analysis. Due to consistently poor UMI
signal for the CZA97.SOSIP backbone across cells, the data for
CZA97.SOSIP variants for donor N55 was not included in
further analysis.

Antibody Expression and Purification
For each antibody, variable gene sequences were inserted into
custom plasmids encoding the heavy chain IgG1 constant region
and the corresponding lamda or kappa light chain region
Frontiers in Immunology | www.frontiersin.org 4
(pTwist 314 CMV BetaGlobin WPRE Neo vector, Twist
Bioscience). Antibodies were expressed in Expi293F
mammalian cells (Thermo Fisher) with PEI transfection
reagent and cultured for 5-7 days in FreeStyle F17 expression
Medium supplemented with 10% Pluronic acid and 20%
glutamine. Cells were maintained at 37°C with 8% CO2
saturation while shaking. After 5-7 days cells were spun down
and supernatant was harvested. Supernatant was run over a
protein A affinity column. The column was washed with 1X PBS
and the protein was eluted with 100 mM Glycine HCl at 2.7 pH
directly into a 1:10 volume of 1M Tris-HCl pH 8.0. Eluted
antibodies were buffer exchanged using Amicon Ultra-
centrifugal filter units into 1X PBS and stored for future use.

ELISA
To assess antibody binding, soluble protein was plated on
Immulon 2HB plates at 2 mg/mL overnight at 4°C. In cases
where capture ELISA was used, plates were pre-incubated
overnight at 4°C with 2mg/ml anti-AviTag (GenScript) and
washed 3X with PBS+ 0.05% Tween-20 (PBS-T) before antigen
plating for 2hr at room temperature (RT). Plates were washed
three times with PBS supplemented with PBS-T and coated with
5% milk powder in PBS-T. Plates were incubated for one hour at
RT. Plates were washed three times with PBS-T. Primary
antibodies were diluted in 1% milk in PBS-T, starting at
10 mg/mL with a serial 1:10 dilution and then added to the
plate. The plates were incubated at RT for one hour and then
washed three times in PBS-T. The secondary antibody, goat anti-
human IgG conjugated to peroxidase (Thermo Fisher), was added
at 1:10,000 dilution in 1% milk in PBS-T to the plates, which were
incubated for one hour at RT. Plates were washed three times with
PBS-T and then developed by adding TMB substrate (Thermo
Fisher) to each well. The plates were incubated at room
temperature for ten minutes, and then 1N sulfuric acid was
added to stop the reaction. Plates were read at 450 nm. Data are
represented as either mean ± SEM for one ELISA experiment or %
AUC normalized to BG505.SOSIP.backbone. ELISAs were
repeated 2 or more times. The area under the curve (AUC) was
calculated using Prism software version 8.0.0 (GraphPad).

CD4 Binding Inhibition Assay
96-well plates were coated with 2 mg/mL purified recombinant
BG505sc.backbone at 4°C overnight. The next day, plates were
washed three times with PBS-T and coated with 5% milk powder
in PBS-T. Plates were incubated for one hour at RT and then
washed three times with PBS-T. Purified antibodies were diluted
in blocking buffer at 50 mg/mL in duplicate, added to the wells,
and incubated at RT. Without washing, biotinylated
recombinant human CD4-Fc tag protein (Sino Biological) was
added to wells for a final 20 mg/mL concentration of CD4-Fc and
incubated for 30 minutes at RT. Plates were washed three times
with PBS-T, and bound CD4-Fc was detected using Streptavidin-
HRP (Thermo Fisher) and TMB substrate. The plates were
incubated at room temperature for ten minutes, and then 1N
sulfuric acid was added to stop the reaction. Plates were read at
450nm. CD4-Fc binding without antibody served as a control.
March 2022 | Volume 13 | Article 855772
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Experiments were done in biological replicate and
technical duplicate.

Competition ELISA
Competition ELISA experiments were performed as above with
minor modifications. After coating with antigen and blocking,
non-biotinylated competitor antibody was added to each well at
20 mg/ml and incubated at RT for 30mins. After washing,
biotinylated antibody (final concentration of 2 mg/ml) was
added and incubated for 30mins at RT. After washing three
times with PBS-T, streptavidin-HRP was added at 1:10,000
dilution in 1% milk powder in PBS-T and incubated for 1 hour
at room temperature. Plates were washed and substrate and
sulfuric acid were added as described above.
RESULTS

Targeted Identification of CD4 Binding
Site and V3 Glycan Site Directed
Antibodies Using LIBRA-Seq
TodemonstratethefeasibilityoftheLIBRA-seqwithepitopemapping
technology, we sought to identify HIV-1 Env epitope-specific
antibodies fromchronically infectedHIV-1 donors. In two separate
experiments,wescreenedforantigen-positiveBcellsusingapanelof
pre-fusion stabilized, soluble Env variants that contained point
mutations in distinct antigenic regions on the HIV-1 Env protein
(Clade A/BG505) (54–56). Each antigen was labeled with a unique
DNA barcode and a fluorescent tag for fluorescence-activated cell
sorting(FACS).Inthescreeninglibraries,weincludedabackboneEnv
strain (BG505.SOSIP.T332N), three CD4bs mutants (BG505.
SOSIP.D368R, BG505.SOSIP.N279K, and BG505.SOSIP.D368R/
N279K [referred to as double knockout (DKO)]; two V2 loop
mutants (BG505.SOSIP.K169E, and BG505.SOSIP.N160K), and
one V3-glycan site mutant (BG505.SOSIP.N332T) (Figure 1A).
Together, these two experiments resulted in the identification of
2,442B cellswith antigen specificity andBCRsequence information
(SupplementaryFigure1).

Next, we prioritized the recombinant expression of a set of B cell
receptors based on the criteria that the cells displayed a distinct
epitope signature across the different Env variants, such as a low
LIBRA-seq score for a given epitope and high LIBRA-seq scores for
the respective backbone and other epitope variants. Among the
candidate B cells, we identified and selected for validation several
cells with CD4bs epitope specificity signal by LIBRA-seq
(Figures 1B, C). Specifically, we selected two lineages with two
clonally related antibody members in each lineage, and two
additional antibodies that did not belong to either clonal lineage.
These antibodies, 6420-35, 6420-48.1, 6420-48.2, 6420-233.1, 6420-
233.2 and 4591-2, displayed low LIBRA-seq scores for the
BG505.SOSIP CD4bs variants and high LIBRA-seq scores for
the backbone, V2 and V3-glycan BG505.SOSIP variants
(Figures 1B, C). Five of the antibodies utilized the IGHV3-48
heavy chain variable gene and one antibody utilized the IGHV4-34
heavy chain variable gene. The antibodies displayed moderate to
high levels of heavy chain somatic hypermutation (6-12%) and
Frontiers in Immunology | www.frontiersin.org 5
CDRH3 lengths of 12-19 amino acids (Figure 1C). The antibodies
utilized several different light chain germline genes (IGLV7-46,
IGKV1-39, IGLV3-21 and IGKV1-9). In addition to the predicted
CD4bs antibodies, we selected for validation an additional antibody
with a predicted V3-glycan epitope specificity. This antibody, 4591-
1, displayed a low LIBRA-seq score for the BG505.SOSIP V3-
glycan variant N332T and high LIBRA-seq scores for the
BG505.SOSIP.backbone, V2 and CD4bs variants (Figure 1B, C).
This antibody utilized variable heavy chain gene IGHV4-39 and
displayed a high level of somatic hypermutation (20%) and a
CDRH3 length of 22 amino acids (Figure 1C).

To confirm the epitope specificity predicted by LIBRA-seq for
the selected antibodies, we tested them for binding by ELISA to
BG505.SOSIP. Notably, all six antibodies exhibited binding to this
antigen, confirming the HIV-1 Env specificity of all of these
antibodies (Supplementary Figure 2A). Next, we tested these
antibodies against the different epitope-specific BG505.SOSIP Env
variants (Figure 2A). The binding of antibodies 6420-35, 6420-48.1,
6420-48.2, 6420-233.1, 6420-233.2 and 4591-2 to BG505.SOSIP Env
was associated with a >2-fold decrease in binding for one or more of
the CD4bs variants, but not for the V2 or V3-glycan variants
(Figure 2A and Supplementary Figure 2A). Further, the antibodies
were tested for their ability to bind YU2 gp120 core protein, which
lacks variable regions V1, V2 and V3, and its respective CD4bs
mutant D368R (59). Binding to YU2 gp120 D368R was affected to a
different extent for the six antibodies, suggesting that sensitivity to
this specific CD4bs mutation may be context-specific
(Supplementary Figure 2B). Finally, we tested the ability of these
six antibodies to block the interaction between HIV-1 Env and its
cognate receptor CD4, using a soluble, Fc-tagged CD4. The
antibodies showed different levels of CD4-blocking ability by
ELISA (Figure 2B). Together, these results suggest that these six
antibodies target the CD4bs epitope on HIV-1 Env, as predicted by
LIBRA-seq.

Next, we investigated the epitope specificity of antibody 4591-1,
and found that antibody binding to Env was inhibited by the
BG505.SOSIP V3-glycan mutation N332T, but not by mutations in
the V2 or CD4bs regions, as predicted by LIBRA-seq (Figure 2A
and Supplementary Figure 2A). To further confirm the 4591-1
epitope, we tested the ability of this antibody to compete for binding
to BG505.SOSIP.backbone Env with known V3-glycan antibodies
PGT121, 3074, 2G12 and 10-1074 (60–63). We found 4591-1
competed with antibodies PGT121, 2G12 and 10-1074, but did
not compete with V3-crown specific antibody 3074 or CD4bs
antibody VRC01 (Figure 2C). Together, these results suggest that
antibody 4591-1 targets the V3-glycan epitope on HIV-1 Env, as
predicted by LIBRA-seq.

Overall, these data indicate that the LIBRA-seq technology
can be successfully applied to identify antibodies against specific
epitopes of interest on a target antigen.

Targeted Identification of Monomer-
and Trimer-Specific Antibodies
Using LIBRA-Seq
In addition to the ability of LIBRA-seq to screen antibody
candidates for residue-level epitope specificity, we sought to apply
March 2022 | Volume 13 | Article 855772
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this technology toward identifying antibody candidates that
specifically recognize different conformational states of the target
antigen. HIV-1 Env represents an appropriate target for such an
experiment since antigen variants in different conformational states
are available (64). In order to determine the ability of LIBRA-seq to
identify trimeric vs monomeric anti-Env antibodies, we utilized an
Frontiers in Immunology | www.frontiersin.org 6
antigen panel of pre-fusion stabilized Env gp140 trimers from
multiple clade C strains (ZM197, CNE55, CZA97), along with
monomeric gp120 proteins from clades AE and C (AE/A244 and C/
ConC). (Figure 3A). These two experiments together resulted in the
identification of 3,843 cells with available antigen specificity and
BCR sequence information (Supplementary Figure 3). In
A

B

C

FIGURE 1 | Identification of CD4bs and V3-glycan site specific antibodies from HIV-1 infected subjects. (A) Schematic of DNA barcoded antigens used in LIBRA-seq
with epitope mapping assays. (B) Cells (dots) from experiments 1 (left, donors N16 and N76) and 2 (right, N55) are shown. For a given cell, the minimum LIBRA-seq
score among all antigen variants for a given epitope (CD4bs, V3-glycan, V2) was computed, and the lowest (x-axis) and second-lowest (y-axis) epitope scores are
plotted. Each dot is colored by the LIBRA-seq score for BG505sc.SOSIP (backbone), from lowest (blue) to highest (red). Antibodies selected for validation are shown
in black outline. (C) Sequence characteristics and LIBRA-seq score information for candidate antibodies. Percent identity was calculated at the nucleotide level, and
CDR3 length and sequences are displayed at the amino acid level. LIBRA-seq scores for each antigen are displayed on a scale of light yellow(low)-white-purple(high).
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particular, we observed patterns of trimer-only reactivity,
monomer-only reactivity, or both monomer and trimer reactivity
for a variety of B cells (Figure 3B and Supplementary Figure 3).
We then prioritized two sets of B cells for recombinant monoclonal
antibody production and characterization. Set one (antibodies 4513-
15, 4513-16 and 4513-17) displayed positive LIBRA-seq scores for at
least one trimer and at least one monomer (Figure 3C). Set two
(antibodies 4513-11, 4513-14, 4513-12, 4487-1, 4487-2, 4487-3,
4487-4, and 4487-5) displayed positive LIBRA-seq scores for at
least one trimer and low LIBRA-seq scores for the two monomers
(Figure 3C). Interestingly, four out of the eleven antibodies, 4513-
17, 4513-14, 4513-11 and 4487-5 utilized the variable heavy chain
gene IGHV1-69, which has been shown to be commonly utilized
during viral infections including HIV-1 (65–70), although all
appeared to be from different B cell lineages (Supplementary
Figure 4A). Overall, the eleven antibodies exhibited diverse
sequence features, including the utilization of multiple heavy and
light chain germline genes, a range of CDRH3 lengths, and diverse
somatic mutation levels for both the heavy and light chains
(Supplementary Figure 4A).

To confirm the conformational specificity predicted by LIBRA-
seq for the selected antibodies, we tested them for binding by ELISA
Frontiers in Immunology | www.frontiersin.org 7
to the same panel of HIV-1 Env gp140 trimer and gp120 monomer
antigens as used in the LIBRA-seq library (Figure 3C). Binding to at
least one of the antigens was observed for seven of the 11 antibodies,
confirming the HIV-1 Env specificity for these antibodies, as
predicted by LIBRA-seq (Figure 3C). As suggested by the
LIBRA-seq scores, antibodies 4513-16 and 4513-17 displayed
binding to both monomer and trimer antigens (Figure 3C and
Supplementary Figure 4B). In contrast and also as suggested by the
LIBRA-seq scores, antibodies 4513-11, 4513-12, 4513-14, 4487-4
and 4487-5 displayed binding to trimeric Env protein >3 times that
to monomeric Env protein, suggesting these antibodies
preferentially recognize Env in its trimeric conformation state
(Figure 3C and Supplementary Figure 4B). Together, these
results confirm that LIBRA-seq with epitope mapping can be
applied to successfully identify conformation-specific antibodies.
DISCUSSION

Here, we describe the application of LIBRA-seq with epitope
mapping to identify novel monoclonal antibodies that target
diverse sites of vulnerability on the HIV-1 Env glycoprotein.
A B

C

FIGURE 2 | Validation and characterization of CD4bs and V3-glycan specific antibodies discovered through LIBRA-seq. (A) A heat map of ELISA AUC values for
binding to BG505.SOSIP variant proteins are shown for each antibody. AUC values for each variant were normalized to BG505.SOSIP.backbone for each antibody.
ELISA binding curves are located in the supplement. (B) HIV-1 Env/CD4 inhibition ELISA data is shown for all antibodies. CD4bs antibody VRC01 was used as a
positive control and outer domain glycan specific antibody 2G12 was used as a negative control. Data is shown as % CD4 blocking by each antibody. (C) Competition
ELISA of 4591-1 with antibodies PGT121, 3074, 2G12, and 10-1074. Antibody VRC01 was used as a negative control. Data is shown as % inhibition of binding by
the reference antibody. White indicates <25% inhibition, grey indicates 25-75% inhibition and black represents >75% inhibition. All ELISAs were performed in technical
duplicate with 2 biological duplicates; data represented as mean ± SEM.
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A

B

C

FIGURE 3 | Identification of confirmational specific antibodies from LIBRA-seq with epitope mapping. (A) Schematic of DNA barcoded antigens used in LIBRA-seq
with epitope mapping assays. (B) Upset plot for all B cells with LIBRA-seq score ≥1 against different HIV-1 antigen combinations. On the X-axis, each column represents
a different combination of antigens (rows), showing which antigens are part of a given combination (displayed by filled circles), with the bar height corresponding to
the number of B cells identified to be reactive with the given antigen combination. Each combination is mutually exclusive. The total number of B cells predictive to
be reactive with each individual antigen is indicated as a horizontal bar at the bottom left of each subpanel. Isotype for each antibody is depicted by different colors.
(C) LIBRA-seq scores and ELISA AUC values for each antibody binding to HIV-1 trimer and monomer antigens. Scores are represented by heatmaps, with the
lowest scores displayed as light yellow and the highest as purple. ELISA data are representative of at least two different experiments. LIBRA-seq score data shown
for H9 Hong Kong 2009 HA and ELISA AUC data shown for A/New Caledonia/20/99 H1N1 (NC99) HA. ELISA binding curves are located in the supplement.
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Through high-throughput sequencing experiments, we
discovered and validated the specificity for several antibodies
targeting the CD4bs of Env, an antibody targeting the V3-glycan
site of Env, and conformation-dependent antibodies that
recognize trimeric Env protein over monomeric forms of the
protein. While standard epitope mapping technologies (46, 71–
79) can shed light onto the epitopes targeted by antigen-specific
antibodies, this is typically done either through bulk serum
analysis, or for a small set of individual antibodies. In contrast,
by including antigen variants with epitope-knockout mutations
in the screening library, LIBRA-seq enables high-throughput,
high-dimensional, single-cell epitope analysis. Further, with the
generation of the paired heavy-light chain sequence information
for each given antibody, LIBRA-seq analysis can also be applied
to explore potential associations between antibody sequence and
epitope specificity.

Despite the promising results presented here in this study, we
observed certain limitations, representing opportunities for
further technology improvements. In particular, consistent
epitope signatures across all antigens in the panel could not be
identified for a subset of the isolated antigen-specific cells. For a
subset of the tested antibodies, the LIBRA-seq-predicted antigen
specificity could not be confirmed, suggesting that additional
optimization, such as incorporating redundancy in the antigen
barcoding process, could be important to further improve the
sensitivity of the technology. In addition, LIBRA-seq scores for
some antigens were generally low across all cells – for example,
the CZA97.SOSIP backbone used in the donor N55 sort, and as a
result, epitope information for this antigen was not taken into
account for subsequent analysis. These limitations could be
attributed to a variety of technical factors, such as potential
variations in the antigen labeling process. We also note that
LIBRA-seq with epitope mapping is geared toward well
characterized antigen targets where immunogenic regions of
interest have been determined, and may be more challenging
to adapt for studies of less well characterized pathogenic
organisms or antigen targets that are associated with
promiscuous B cell cross-reactivity or non-specific binding.
Despite these limitations, LIBRA-seq with epitope mapping
nevertheless provides an efficient strategy for the identification
of epitope-specific antibodies.

Advances in antibody sequencing technologies have
contributed to the increase in therapeutic antibodies available
to treat patients. LIBRA-seq with epitope mapping provides
critical advantages in the antibody discovery pipeline through
high-resolution data generation earlier in the process. The results
presented here underscore the potential of including epitope
specificity as part of the sequencing readout. Prioritizing
antibody candidates based on predicted epitope specificity
information obtained during the initial sequencing stage can
significantly decrease the burden posed by the subsequent
production and validation of hundreds to thousands of
potential leads for epitope-specific antibody discovery. More
broadly, LIBRA-seq with epitope mapping can be applied to
other disease settings where the discovery of epitope specific
antibodies is the main priority or to the evaluation of vaccine
Frontiers in Immunology | www.frontiersin.org 9
candidates where understanding what types of antibodies are
elicited is critical.
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