
REVIEW ARTICLE

Kick-starting ovarian cyclicity by using dietary glucogenic precursors in 
post-partum dairy cows: a review
W. Kaewlamun a, B. Grimard b,c, C. Duvaux-Ponter d and A. A. Ponter b,c

aSchool of Agricultural Resources, Chulalongkorn University, Bangkok, Thailand; bBREED, Ecole Nationale Vétérinaire d’Alfort, Maisons- 
Alfort, France; cUVSQ, INRAE, BREED, Université Paris-Saclay, Jouy-en-Josas, France; dINRAE, AgroParisTech, UMR Modélisation Systémique 
Appliquée Aux Ruminants, Université Paris-Saclay, Paris, France

ABSTRACT
The objective of this review is to describe how dietary glucogenic precursors could stimulate 
ovarian activity in post-partum dairy cows and improve reproductive success. Although the 
nutrient requirements for the early resumption of ovarian cycles, and for follicle and embryo 
development are quantitatively small, reproductive success is deteriorated by post-partum 
negative energy balance. Since very little glucose is absorbed directly from the digestive tract 
of ruminants one of the targets for nutritional manipulation could be the glucogenic potential 
of the diet. This could be achieved by giving rumen-resistant starch or mono-propylene glycol. 
Both these adaptations increase glucose, insulin and insulin-like growth factor-1 plasma 
concentrations and stimulate ovarian follicle growth.
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1. Introduction

The objective of this review was to describe how 
dietary glucogenic precursors could stimulate ovar
ian activity in the post-partum (PP) dairy cow and 
improve reproductive success. As a result of increases 
in milk production obtained through advances in 
genetic selection and improved husbandry, repro
ductive efficiency in dairy cows has declined between 
1975–1982 and 1995–1998 from 55.6% to 39.7% [1]. 
Although this negative trend has recently bottomed 
out and reproduction has begun to improve due to 
the inclusion of fertility traits in selection pro
grammes [2], modern dairy cows still require an 
additional 30d to conceive when comparing results 
between 1999 and 2010 [3].

Feeding dairy cattle should always be optimized to 
cover requirements for milk production and main
tain good health but it also may be possible through 
the choice of certain feedstuffs to target a particular 
physiological function, such as reproduction. The 
idea of targeting certain aspects of metabolism to 
stimulate reproduction in dairy cows was first pro
posed nearly twenty years ago with the use of gluco
genic vs. lipogenic diets [4]. Further research has 
since been conducted.

The first section of this paper will outline the 
general metabolic context of the dairy cow PP. 
The second part will describe the rationale behind 
modifying the diet PP. The final section will 
describe how glucogenic supply can be increased 
to improve reproductive success.

2. Metabolism in the post-partum dairy cow

In the dairy cow, the negative energy balance (NEB) 
occurs PP [5] because the increase in feed intake after 
parturition, is not able to keep up with the rapid rise in 
energy requirements for milk production [6] even 
though the cows are fed ad libitum. The requirements 
for energy and protein of an average European dairy 
cow at peak milk production are multiplied by 3 to 5 
compared to late gestation [7] and the peak in nutrient 
requirements occurs earlier (at 1 to 2 months PP) 
compared to the peak in feed intake (at 3 to 4 months 
PP) therefore inducing NEB [7]. The problem is phy
siological in relation to a lag in feed intake compared 
to nutrient requirements.

NEB can also exist in beef cattle PP but the situation 
is different compared to dairy cows because beef cows 
are often managed in low input systems. Nutrient 
requirements are not as high PP but farmers often 
use low quality forages or limit cow access to good 
quality forages therefore inducing NEB [7]. The pro
blem is due to the farmer trying to reduce production 
costs by limiting nutrient intake compared to nutrient 
requirements.

As a result of NEB, insulin decreases and growth 
hormone (GH) increases during this period to pro
mote lipolysis [8]. Despite high circulating GH, there 
is a decrease in insulin-like growth factor-1 (IGF1) 
because insulin is low and is no longer able to stimu
late the expression of the GH receptor 1A. Without 
this receptor GH cannot stimulate IGF1 production. 
The somatotropic axis is said to become “uncoupled” 
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[9]. Concomitantly, PP non-esterified fatty acids 
(NEFA) increase and this can lead to ketosis [10] and 
hepatic steatosis [11] if NEFA are not completely 
oxidized or exported. Hepatic steatosis caused by tri
glyceride accumulation reduces the ability of hepato
cytes to synthesize glucose from propionate [12]. In 
conclusion, PP NEB results in low glucose, insulin and 
IGF1 and high GH, NEFA, β-hydroxybutyrate (BHB) 
and liver triglycerides [13].

Homeorhetic modifications occur PP to spare glu
cose and involve a decrease in insulin concentrations 
and tissue sensitivity to insulin [14]. Part of the 
mechanism is raised NEFA which reduce insulin sen
sitivity by provoking ceramide accumulation in 
plasma and liver [15,16]. When NEFA are mobilized 
palmitic acid increases [17] and it is a precursor of 
ceramides. Plasma ceramides were positively corre
lated with plasma NEFA and inversely correlated 
with insulin sensitivity in dairy cows in the peri- 
partum period [18].

Depending on the tissue, glucose uptake requires 
insulin (insulin-dependent tissues, adipose tissue, 
muscle, ovary, hypothalamus) or does not require 
insulin (non-insulin dependent tissues as brain, heart 
and udder [19]). Glucose supply is important for ovar
ian metabolism because insulin-sensitive glucose 
transporters, GLUT1 and GLUT4, are present in 
sheep granulosa and theca cells [20] and GLUT4 in 
cumulus oophorus cells [21] and glucose is taken up 
by the ovary during the oestrous cycle [22]. Glucose 
uptake by the ovary may become limited for some 
cows because insulin is low and insulin-sensitive tis
sues are less responsive to insulin’s action [23].

In conclusion, the NEB observed after calving acti
vates homeorhetic adjustments to metabolism to 
divert nutrients towards milk production and this in 
turn reduces the availability of glucose for reproduc
tive tissues.

3. Glucose precursors to improve 
reproductive efficiency

Changing the composition of the diet or adding 
mono-propylene glycol (MPG) can increase glucose 
precursors. The papers published on the effect of 
a glucogenic supplement (starch or MPG) on repro
ductive function are summarized in Tables 1–3.

3.1. Peri-partum period (ketosis and immunity)

A recent meta-analysis showed that the interval 
between calving-to-first-service was 8 d longer and 
calving-to-conception was 16 to 22d longer in cows 
with subclinical ketosis [24]. In periparturient dairy 
cows, MPG increased insulin and glucose while 
decreasing NEFA and BHB [25] and reduced the tria
cylglycerol content of the liver [26]. Therefore, MPG Ta
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reduces the risk of cows developing subclinical and 
clinical ketosis, and hepatic steatosis.

In addition, mastitis and endometritis can become 
a problem [27] because cows cannot fight oxidative 
stress and their immune system is depressed PP. 
Clinical mastitis delays ovarian activity [28], reduces 
conception rates [29] and increases embryonic losses 
[30]. In cases of infection, peripheral insulin sensitivity 
decreases, leading to decreased glucose uptake by 
insulin-dependent tissues such as skeletal muscle 
[31], adipose tissue [32] and probably the ovary in 
order to preserve glucose for the immune system. 
Indeed, it has been estimated that an activated 
immune system requires substantial quantities of glu
cose, 2 kg/day, in addition to lactation requirements 
[33]. Therefore, the immunologically challenged PP 
cow may benefit from a dietary supplement of glucose 
(starch or MPG).

3.2. Ovarian activity

3.2.1. Delayed resumption of ovarian cyclicity
Numerous growth factors (insulin and IGF1) and meta
bolites (glucose) influence gonadotropin-releasing hor
mone (GnRH) release from hypothalamic neurons [34] 
and both follicle-stimulating hormone (FSH) and lutei
nizing hormone (LH) are released from the anterior 
pituitary in response to GnRH [35]. FSH stimulates 
follicle recruitment and early follicle growth while pul
satile LH is required for continued growth and the 
development of the dominant ovulatory follicle. Butler 
[5] found that NEB is strongly associated with low levels 
of blood glucose, insulin and IGF1 and at the same time 
LH pulse frequency is reduced. Glucogenic precursors 
(starch supplement) did not influence FSH concentra
tions in non-grazing cows [4] and Butler et al. [36] 
showed that MPG in non-grazing cows had no effect 
on LH secretion characteristics. To our knowledge only 
one publication showed a positive effect of MPG on LH 
pulse frequency [37] and it was in grazing cows. 
Therefore, glucogenic precursors do not appear to 
modify FSH and LH secretion parameters. However, 
the pulsatile nature of their secretion may make studies 
difficult to undertake.

Britt [38] suggested that the negative effect of NEB 
on fertility could be explained by a carry-over effect 
of some metabolites on follicles during their devel
opment from inactive primordial follicles up to ovu
lation which takes between 60 to 80 days. Exogenous 
and endogenous lipogenic metabolites are acetate, 
butyrate and long-chain FA while glucogenic meta
bolites are propionate and starch. A glucogenic diet 
given between calving and 50 days PP increased 
plasma insulin and IGF1 compared with a lipogenic 
diet and this resulted in a greater proportion of cows 
ovulating by 50 days PP [4]. Rumen MPG fermenta
tion produces propionate and MPG drenches modify 

ovarian activity and hormones and metabolites [25]. 
Indeed, ovarian cycles started earlier in cows given 
MPG drenches PP compared with controls (38% 
acyclic vs. 58% acyclic at 90d PP) and IGF1 and 
cholesterol were higher while NEFA was lower 
although insulin was unaffected [39]. Butler et al. 
[36] were however unable to show an effect of MPG 
drenches on ovarian activity in the calving to 27d PP 
period. Other groups using grazing cows have also 
been unable to confirm the positive effect of MPG on 
reproduction [40].

Insulin stimulates follicle recruitment [41] as well as 
follicular growth and differentiation [42]. Moreover, 
insulin stimulates in vitro proliferation and function of 
granulosa [43] and thecal cells [44]. Starch addition to 
the diet of lactating dairy cows increased insulin con
centrations [45] and increased insulin in follicular fluid 
of preovulatory follicles in high producing dairy cat
tle [46].

3.2.2. Steroid production
A short luteal phase is often observed during the first 
oestrus cycle PP. This short luteal phase was prevented 
by giving MPG drenches which increased insulin and 
restored normal progesterone (P4) concentrations 
[25]. In addition, P4 is necessary for the uterine secre
tion of nutrients and growth factors that are essential 
for early embryonic development.

Circulating steroid hormone concentrations are 
affected by their rate of production and clearance 
(hepatic blood flow and catabolic enzyme activities). 
In goats, weekly administration of insulin prior to and 
during gestation increased circulating P4 [47]. Insulin 
may increase P4 production by stimulating cholesterol 
uptake across the ovary since there was a strong cor
relation between glucose and cholesterol uptake by the 
ovary in ruminants [48].

Moriel et al. [49] showed in ovariectomized cows 
given a P4 intra-vaginal implant that when dietary 
treatment increased insulin, P4 concentrations were 
also higher. P4 is inactivated in the liver by cyto
chrome P450 2 C (CYP2 C) or cytochrome P450 3A 
(CYP3A) [50,51]. Elevated insulin concentrations pro
duced by dietary manipulation (high starch vs. high 
fibre) decreased P4 clearance and prolonged P4 half- 
life in lactating dairy cows [52] without any changes in 
liver blood flow. CYP2 C activity was decreased and 
CYP2 C mRNA expression tended to be decreased, 
and CYP3A activity tended to be reduced and CYP3A 
mRNA expression was unaffected (starch vs. fibre 
[53]). Finally, Lemley et al. [54] demonstrated that 
MPG or insulin infusion decreased the abundance in 
liver biopsies of mRNA for enzymes responsible for 
hepatic P4 catabolism. In conclusion, insulin appears 
to increase circulating P4 concentrations by increasing 
cholesterol uptake by the ovary and by reducing hepa
tic steroid clearance.
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3.3. Oestrus expression

High producing cows have shorter oestrus periods and 
lower plasma oestradiol (E2) concentrations than 
those producing less milk [55]. These observations 
are partly explained by an increase in hepatic clearance 
since high milk production is associated with high feed 
intake [56]. In vivo Butler et al. [57] using 
a hyperinsulinaemic-euglycemic clamp in PP dairy 
cows showed that NEFA decreased and, IGF1 and E2 
increased. Further experiments have also confirmed 
the positive effect of insulin on E2 production in 
superovulated goats [58]. Therefore, insulin appears 
to have positive effects on E2 production and may 
improve the expression of oestrous.

3.4. Pregnancy rate

Although insulin has positive effects on follicle growth, 
it is important to reduce insulin levels during the inse
mination period. Indeed, high insulin induced by high 
starch diets during the insemination period had nega
tive effects on oocyte quality and blastocyst develop
ment rate [59] and pregnancy rate tended to be reduced 
[60]. Gamarra et al. [61] showed that MPG drenches 
during superovulation in heifers improved the produc
tion of grade 1 oocytes, expanded blastocysts and 
embryos after ovum pick-up (OPU), in vitro maturation 
(IVM), fertilization and culture. The collected oocytes 
were no longer under the influence of high insulin 
during fertilization and culture since they had been 
collected and placed in culture medium. Recently 
using a similar model, Dupras et al. [62] showed that 
MPG during superovulation and up to the first 4d after 
artificial insemination (AI) did not influence the num
ber of transferable embryos collected 6d after AI. This 
finding supports the conclusions of Fouladi-Nashta 
et al. [59] and Garnsworthy et al. [60].

In conclusion, increasing glucogenic nutrients in 
the early PP cow could stimulate follicle growth (via 
increased glucose, insulin and IGF1), limit lipolysis 
and ceramide production (via insulin) and support 
P4 concentrations.

3.5. Inconsistencies in results

Not all experiments have shown a positive effect of 
glucogenic precursors on reproductive success. Several 
factors are identified to explain theses discrepancies 
(Tables 1–3): sampling frequency, type of feeding sys
tem, the genetic background of the cows and a lot of 
the studies were under-powered. Infrequent sampling 
(weekly) often resulted in no visible effect of the glu
cogenic supplement on circulating hormones and 
metabolites while frequent sampling did. The feeding 
system modifies the glucogenic profile of the basal 
diets. Grazing would provide a more lipogenic profile 

(high sugar and fibre levels) compared with conserved 
forages (maize silage). Lastly, the genetic background 
of the cows was different in the studies: New Zealand 
Holstein and Jersey-Holstein crosses compared with 
North American Holstein cows. The latter have been 
shown to produce more milk and mobilize more body 
reserves. Part of the effect of an increase in milk 
production was attributed to a reduction in insulin 
sensitivity in North American cows compared with 
New Zealand cows [63].

4. Practical suggestions to manipulate insulin 
concentrations

4.1. Limit ketosis and steatosis

It has recently been estimated that the average cost of 
a case of clinical ketosis and a case of sub-clinical 
ketosis were respectively, €709 and €150 [64]. Mono- 
propylene glycol was first reported to be useful in the 
treatment of ketosis in the 1950’s [65]. McArt et al. [66] 
showed that oral drenching with MPG decreased 
hyperketonaemia in early lactation dairy cows. While 
Rukkwamsuk et al. [67] showed that drenching with 
400 mL MPG once daily from 7 days prior to expected 
calving until 7 days after calving reduced steatosis. 
Therefore, cows with a higher body condition score 
(BCS) than recommended prior to calving (≥3.5 on 
a 5 point scale) could be given (−1 to +2 weeks) MPG 
daily (300 mL/cow/d [66],) either mixed with the con
centrates of the diet or given as a drench. MPG will 
limit adipose tissue lipolysis and steatosis by stimulat
ing insulin secretion and promoting NEFA catabolism.

4.2. Encourage ovarian cyclic activity

The idea is to “kick-start” normal ovarian activity in 
the period +2 to +8 weeks prior to insemination to 
improve conception rate [68].

Firstly, increase dietary starch level. High rumen 
fermentable dietary starch is one of the risk factors for 
acidosis. Maize and sorghum are high in “rumen pro
tected” starch compared with wheat (195–215 g/kg DM 
vs. 65 g/kg DM [69]. Sauvant et al. [70] calculated that 
there was no risk of acidosis if dietary rumen digestible 
starch was below 25% of dry matter. Climate change, 
currently characterized by increased atmospheric CO2, 
rising temperatures and above all an alteration in the 
pattern of precipitation [71], may mean that growing 
sorghum is easier than maize to provide starch since 
sorghum is much more resilient to low rainfall than 
maize [72]. In addition to the choice of grain type, the 
preparation method [73] as well as maturity of grain at 
harvest are important [74]. Mature ground or rolled 
grain is recommended [75]. Rumen resistant starch 
may not be completely hydrolysed in the small intestine 
[76] due to starch increasing small intestine viscosity 
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[75]. Therefore, the total starch level of the diet should 
be lower than 35–40% to avoid acidosis and allow 
complete starch hydrolysis [77]. To ensure complete 
hydrolysis the quantity of starch reaching the small 
intestine should not exceed ≈2.5 kg/d [76].

Secondly MPG could be added to the diet. MPG 
does not cause acidosis. However, MPG is relatively 
un-palatable and may reduce feed intake if top-dressed 
on forage. The time course of MPG action is probably 
different from starch because its effects on glucose and 
insulin are relatively short-lived, 2–3 h, and of large 
amplitude. MPG can either be given as a drench or 
mixed with a concentrate in an automatic concentrate 
feeder such as in robotic milking systems. In conclu
sion, a supplement of ≈300 mL MPG/cow/d [66] can 
be given to stimulate reproductive function. Nielsen 
and Ingvartsen [65] concluded in their review that at 
levels of supplementation below 500 g/d unwanted 
side-effects should not be observed although indivi
dual cow responses were variable.

5. Conclusion

Glucogenic treatments have a dual role in the 
improvement of reproductive success. Firstly, through 
effects on metabolism and secondly, through direct 
effects on reproductive function.

Glucogenic treatments affect metabolism by redu
cing the risk of ketosis and steatosis by decreasing 
lipomobilisation and stimulating ketone oxidation. 
Limiting lipomobilisation reduces circulating palmitic 
acid and ceramide production. The latter can cause 
insulin-resistance and reduce the availability of glu
cose for the ovary therefore limiting ovarian function.

Glucogenic precursors appear to affect reproduc
tive function by a local (ovary) rather than central 
mechanisms since they do not influence FSH and LH 
secretory characteristics. At the local level glucogenic 
precursors increase follicle recruitment, growth and 
differentiation, increase E2 concentrations (through 
improved granulosa and theca cell proliferation and 
function) and P4 concentrations (increased secretion 
by the corpus luteum and reduced clearance by the 
liver) and generally improve oocyte quality. However, 
maintaining high insulin around insemination may 
decrease oocyte quality and embryo survival.
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