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Abstract

Background: Accumulating evidences have demonstrated that mesenchymal stem cells (MSC) could be recruited
to the tumor microenvironment. Umbilical cord mesenchymal stem cells (UCMSC) were attractive vehicles for
delivering therapeutic agents against cancer. Nevertheless, the safety of UCMSC in the treatment of tumors
including hepatocellular carcinoma (HCC) was still undetermined.

Methods: In this study, an in vitro co-culture system was established to evaluate the effect of UCMSC on the cell
growth, cancer stem cell (CSC) characteristics, drug resistance, metastasis of 3D-cultured HCC cells, and the

underlying mechanism was also investigated.

Results: It was found that after co-cultured with UCMSC, the metastatic ability of 3D-cultured HCC cells was
significantly enhanced as indicated by up-regulation of matrix metalloproteinase (MMP), epithelial-mesenchymal
transition (EMT)-related genes, and migration ability. However, cell growth, drug resistance and CSC-related gene
expression of HCC cells were not affected by UCMSC. Moreover, EMT was reversed, MMP-2 expression was
down-regulated, and migration ability of HCC cell was significantly inhibited when TGF-3 receptor inhibitor

SB431542 was added into the co-culture system.

Conclusions: Therefore, these data indicated that UCMSC could significantly enhance the tumor cell metastasis,

which was due to the EMT of HCC cells induced by TGF-3.

Keywords: Three-dimensional cell culture, Umbilical cord mensenchymal stem cells, Hepatocellular carcinoma,

Metastasis, TGF-3

Background

Mesenchymal stem cells (MSC) are typically character-
ized by their ability to differentiate into a variety of
mesenchymal cells. In recent years, MSCs have aroused
a lot of interests due to their ability to give rise to bone,
cartilage, fat, and muscle cells, which could be exten-
sively used in regenerative medicine [1]. MSC reside in
many adult organs or tissues, such as bone marrow (BM),
adipose, fetal liver, lung, and umbilical cord (UC). UCMSC
were attractive seed cells due to the least invasive source
and their characteristics similar to those of BMMSC [2]. In
addition, they have unique properties compared with other
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stem cells, such as high proliferation rate and hypoimmu-
nogenicity [3].

There was growing evidence that MSC could be
recruited to the injured sites in many pathological con-
ditions, such as inflammation, tissue repair and tumor
[4—6]. The migrating ability to tumor makes them useful
as anti-tumor gene or drug carriers. The recent sugg-
estion that MSC can be recruited by tumors has trig-
gered a series of studies that aimed at examining their
potential role in cancer progression. However, the effect
of MSC on the tumor progression can be pro- [7-9] as
well as anti-tumorigenic [10, 11] due to the different
source of MSC and the tumor models used [5].

Besides, the role UCMSC played in tumor progression
was also controversial. A few studies suggested UCMSC
could inhibit tumor growth [12-14]. Ayuzawa et al.
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found UCMSC attenuated breast cancer growth by
attenuation of Erk-1/2 and PI3K/AKT signaling pathway
[12]. Ohta et al. showed FST over-expressing human
UCMSC significantly reduced the growth of breast
cancer cells [13]. The results of Chao et al. showed that
when co-cultured with UCMSC, breast cancer cell number
decreased significantly, which was caused by the tumori-
genesis suppressing ability of UCMSC. They found that
UCMSC induced the apoptosis of breast cancer cells by
direct cell contact or by cell-in-cell phenomenon after
internalization [14]. Nevertheless, UCMSC have been also
reported to promote esophageal carcinoma cancer growth
and metastasis both in vivo and in vitro [15]. The results
concerning the effect of UCMSC on tumor growth were
still mixed, and most of the in vitro studies were carried
out under two-dimensional (2D) culture conditions.

Currently, HCC was the third most deadly and fifth
most common cancer worldwide [16]. A few studies
showed that BMMSC could inhibit cell division of HCC
cells and potentiate their death [17-19]. Still there were
some studies found that BMMSC in the inflammatory
microenvironment of HCC promoted the development
of chemoresistance and metastasis of HCC cells [20, 21].
The paradoxical effect of BMMSC in HCC progression
was currently poorly understood, as the in vitro investi-
gation was mostly performed in 2D culture system. In
those studies, HCC cells were directly co-cultured with
MSC, or treated with conditioned medium of MSC as
indirect co-culture, both of which failed to mimic the
interaction between HCC cells and MSCs in HCC mic-
roenvironment in vivo. In addition, as promising vehicles
for delivering therapeutic agents, the safety of UCMSC in
HCC treatment remains to be determined.

In our previous study, we established a three-dimensional
(3D) culture system with alginate gel (ALG) beads. In this
3D culture system, adhesion (intergrin p1, ICAM 1), and
ECM-related (typeland type IV collagen) gene expression in
HCC cells were up-regulated compared with 2D culture
and close to those in liver cancer tissue, which represented
a in vivo-like HCC cell culture model [22].

So in this study, HCC cells were cultured in ALG
beads, and then co-cultured with UCMSC. The aim of
this study was to evaluate the effect of UCMSC on the
growth, CSC characteristics, drug resistance and metas-
tasis of human HCC cells and investigate the underlying
mechanisms to figure out the role that UCMSC play in
HCC progression.

Methods
Materials
All chemicals were purchased from Sigma-Aldrich (St.
Louis, MO, USA) unless otherwise specified. SB-431542
was added to cells at a concentration of 20 uM. The
sodium alginate (MW: 500 kDa, G/M ratio was 33:67)
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was purified by removing protein and endotoxin accord-
ing to the protocol used in our laboratory.

Cell culture and encapsulation
HCC cell line, HCCLM3, was kindly provided by the
Liver Cancer Institute, Zhongshan Hospital, Fudan Univer-
sity. HCCLM3 cells were maintained in high glucose
Dulbecco’s Modified Eagle’s Medium (high glucose
DMEM, Invitrogen, San Diego, CA) supplemented with
10 % fetal bovine serum (FBS) (HyClone, Logan, UT). Cells
were encapsulated within ALG beads and cultured accord-
ing to the previous study [23]. Cells were harvested from
ALG beads by treatment with 55 mM sodium citrate.
Images were taken using an inverted phase contrast
microscope (Eclipse, Nikon, Tokyo, Japan) every other day.
Human UCMSC cells and the culture medium were
kindly provided by Zhongyuan Union Stem Cell Bioengin-
eering Corporation (Tianjin, China). Primary UCMSC
were isolated according to the standard operating proced-
ure of UC blood bank. Medium was changed every 3 days
and cell passage was performed when 90 % confluence
was reached.

Co-culture of UCMSC and 3D-cultured HCCLM3

After 15-day culture in ALG beads, 3D cultured
HCCLM3 cells (8 x10*/cm?) were co-cultured with
UCMSC (1.6 x 10*/cm?) for 5 days with or without
SB431542 (20 uM) in flasks.

Cell proliferation

Cell counting kit-8 (CCK8) (Dojindo Laboratories,
Kumamoto, Japan) assay was use to detect cell prolifera-
tion according to the manufacturer’s instructions. The
absorbance was recorded using a microplate reader
(Well Scan MK3, Labsystems Dragon, Finland).

Live/dead staining

ALG beads with HCCLM3 cells were collected and incu-
bated with live/dead staining working solution composed
of 2 pM calcein AM and 4 pM ethidium homodimer-1
(ED-1) at 37 °C for 2 h. After washing with normal saline,
HCCLM3 cells were observed using a confocal laser
scanning microscopy (CLSM) (SP2, Leica, Heidelberger,
Germany).

Quantitative real time RT-PCR

Real-time PCR was carried out with the SYBR Premix
Ex Taq™ (Perfect Real Time) (Takara) method. Total
RNA was isolated using RNAiso Plus (TaKaRa, Shiga,
Japan) according to the manufacturer’s instruction.
Reverse transcription was performed with the Prime-
Script™ RT reagent kit (TaKaRa). PCR amplification and
fluorescence detection were performed using the
Mx3000P Real-Time Cycler (Agilent Technologies, Santa
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Clara, CA, USA). Primers (listed in Additional file 1:
Table S1) were designed by Takara Biotechnology (Dalian)
Co., Ltd. (Dalian, China). Each sample was tested in tripli-
cate, and B-actin was used as an internal control. The re-
sults obtained from three independent experiments were
presented as the calculated comparative expression ratios

of target sample to 2D cell by using C method (27*2).

Drug resistance test

HCCLMS3 cells cultured under different conditions were
treated with cisplatin (5 pg/ml) for 48 h. The viability of
surviving cells was measured by CCK8 assay.

Zymography

Enzymatic activity of MMP2 and MMP9 was tested by
gelatin zymography [22]. After incubation for 24 h, con-
ditioned medium was collected and equal amounts of
protein from each sample was loaded. MMP2 and
MMP9 were differentiated according to their molecular
weight, 72 kDa and 92 kDa, respectively.

In vitro invasion assay

The invasiveness of HCCLM3 cells cultured under
different conditions was evaluated by Matrigel invasion
assay according to the previous study [24]. The transwell
chambers (8 um pore size) (Corning, Tewksbury, MA,
USA) were coated with matrigel (BD, San Jose, CA,
USA) according to the manufacturer’s instructions.
HCCLMS3 cells (10° cells per insert) were seeded on the
top of matrigel with serum-free DMEM. The lower
chamber was filled with DMEM/10 % EBS. After incu-
bated at 37 °C for 48 h, HCCLMS3 cells migrated through
the membrane were stained with crystal violet and
counted under microscopic observation. The data were
shown as the means + SD of three independent assays.

Statistical analysis

All experiments were performed three times independ-
ently as individual experiments. Data were expressed as
means + SD. Student’s z-test was used to determine the
statistical significance between two groups. One-way
ANOVA was used to specify differences between groups
when more than two experimental groups were evaluated.
Differences were considered to be significant for p < 0.05.

Results

Effect of UCMSC on the proliferation of 3D-cultured
HCCLM3 cells

Before co-cultured with UCMSC, the HCCLM3 cells
were cultured in ALG beads for 15 days to form spher-
oids. The morphology (Day 0 and Day 5) during co-
culture was shown in Fig. la-b. The results of live/dead
staining suggested no obvious viability change during co-
culture process (Fig. 1c-d). Cell proliferation assay showed
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a slight increase of cell viability during 5 days of co-
culture, especially on Day 3, while no significant difference
was found between these two groups (Fig. le). All of the
above results indicated that the co-culture with UCMSC
did not affect the cell viability and proliferation of 3D-
cultured HCCLM3.

Effect of UCMSC on CSC characteristics of 3D-cultured
HCCLMS3 cells

CSCs were reported to be the main culprit of cancer
progression and metastasis [25]. Recently, it has been
found that BMMSC can increase breast CSC population
through cytokine loops in vivo [26]. To ascertain whether
the co-culture with UCMSC had effect on CSC character-
istics of HCC cells, the expression of stem cell marker in
co-cultured HCC cells was investigated by real-time PCR
analysis. No significant difference between co-culture
group and control group in the expression of self-renew
related genes, including Oct3/4 and Nanog, and HCC
CSC surface marker CD133 (Fig. 2). These results indi-
cated that UCMSC had no significant effect on the CSC
enrichment of HCC cells.

Effect of UCMSC on chemoresistance and metastatic
properties of 3D-cultured HCCLM3 cells

Development of resistance to chemotherapy and meta-
static ability are major obstacles for lasting effective
treatment of cancer. MSC in tumor microenvironment
were reported to be closely related to drug resistance
and metastasis of cancer [27-30]. In the following study,
we assessed the chemoresistance and metastatic proper-
ties of HCCLM3 cells co-cultured with or without
UCMSC. It showed that after treated with cisplatin, the
percentage of surviving cells in control and co-culture
group were significantly higher than 2D cultured cells
(Fig. 3). In addition, although the percentage in co-culture
group was higher than that in control group (68.43 % VS
62.85 %), no significant difference was found (Fig. 3).

To better characterize the effect of UCMSC on the
metastatic ability of 3D-cultured HCC cells, real-time
PCR, zymography and in vitro invasion assay were per-
formed. Significantly higher gene expression of MMP2,
MMP7, and MMP14 were detected in co-cultured HCC
cells compared with the control group (Fig. 4a). Further-
more, we also detected significantly higher expression of
secreted active MMP2 protein in co-culture group com-
pared with the control group (Fig. 4b). Although the
relative mRNA expression of MMP9 in co-culture group
was higher compared to the control, no significant
different was detected (P=0.062) (Fig. 4a). The active
MMP9 in both co-culture and control group were at
undetectable level (Fig. 4a), which was in accordance
with our previous study [22]. Secretion of MMP2
promoted tumor cell invading through the matrigel layer
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which served as a reconstituted basement membrane in
vitro [31]. Compared with the control group, the number
of cells migrated through matrigel-coated membranes was
increased by 1.89-fold in co-culture group (Fig. 5).

Expression profile of EMT-related genes in co-cultured
HCCLM3 cells

During tumor progression, EMT contributed consider-
ably to the malignant characteristics of tumors, such as
local invasion and distant metastasis [32, 33]. In order to
find out whether the enhancement of HCCLM3 metas-
tasis was induced by EMT, we assessed the expression of
EMT-related genes in different groups. The expression of
N-cadherin and vimentin was significantly up-regulated
in co-culture group with 1.25+0.15-fold and 57.67 £
40.63-fold separately, while E-cadherin was down-
regulated with 0.23 + 0.05-fold compared with that in the
control group (Fig. 6a).

Decreased metastatic ability of 3D-cultured HCCLM3 cells

by inhibition of TGF-f in co-culture system

In this study, there was no direct interaction between
3D-cultured HCCLM3 cells and UCMSC, so the soluble
factors in co-culture system might be responsible for the
enhanced metastatic ability of HCC cells. It is confirmed
that TGF-p can be secreted by both UCMSCs [34] and
HCC cells [35]. In addition, several lines of evidence
suggested increased TGF-p signaling as a key effector of
EMT in HCC metastasis [36, 37]. Hence we tried to
investigate the role that TGF-f played in the co-culture
system. When TGF-f} receptor antagonist SB431542 was

added, increased E-cadherin, decreased N-cadherin and
Vimentin expression were found compared with the
control group (Fig. 6b), which suggested a reversed EMT
process by inhibition of TGF-f in co-culture system. In
addition, active MMP2 expression was inhibited (Fig. 7),
and cell migration through matrigel-coated membrane
was decreased (data not shown) when SB431542 was
added. These results indicated that TGF-$ was the key
regulator of EMT and involved in the regulation of tumor
cell metastasis by UCMSC.

Discussion

For the less invasive source and lack of ethical concerns,
UCMSC might be easily used as anti-tumor reagent
delivery vehicle [38]. Nevertheless, the effect of UCMSC
on tumor progression is still controversial, so the safety
of UCMSC for cytotherapy was still undetermined.
Almost all the in vitro studies on investigating the role
of UCMSC in tumor development were performed
under 2D cell culture conditions. As is well known, 3D-
cultured tumor cells might more resemble the in vivo
tumor tissue. So in this study, a co-culture system was
used to evaluate the effect of UCMSC on the prolifera-
tion, CSC characteristics, drug resistance and metastatic
ability of 3D-cultured HCCLM3 cells. And we found
that HCC cell metastasis was significantly enhanced by
UCMSC through TGEF-p.

Jing et al. pretreated 2D-cultured BMMSC with IFNy
and TNFa to mimic the inflammation condition in tumor,
and they found that the conditioned medium of MSC
could promote the metastasis of HCC cell line SMMC-
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7721 and HeP-3B though the elevated expression of TGF-
B, which induced the EMT of HCC cells [29]. In this
study, our results supported their findings. However, Li et
al. reported BMMSC inhibited the metastasis of HCC cell
line MHCC97-H both in vitro and in vivo [11]. They
found that the conditioned medium of 2D-cultured
BMMSC enhanced in vitro proliferation, but suppressed
the invasive ability of HCC cells through down-regulating
TGF-p expression of HCC cells. These controversial
findings might be attributed to the different cell lines and
different co-culture methods. Cell lines originated from
different stages of tumor development had distinct
migration ability and might lead to the distinct reaction to
the soluble factors in MSC conditioned medium. In
addition, MSC cultured under normal and inflammation
condition might secret different kinds of factors due to
the different microenvironment where they resided.
Therefore, further research should be performed to clarify
the mechanism of BMMSC or UCMSC on tumor cell
metastasis in different culture conditions.

ALG beads used in this work provided a 3D environ-
ment for HCCLM3 cells. After 15 days of culture, HCC
cells formed tumor spheroids, which created a more in
vivo-like tumor microenvironment. So we assumed that
the secreted soluble factors of UCMSC would be more
similar to that in vivo. Moreover, in this study, it was
found that after co-cultured with UCMSC, TGF-p gene
expression in HCCLM3 cells was almost the same as the
control group (data not shown), which suggested that

UCMSC didn't affect the TGEF-B expression of HCC
cells. In addition, there was no direct contact between
HCCLMS3 cells and UCMSC in this study, so the secreted
TGE-B in co-culture system would be the main culprit for
the elevated metastatic ability of HCC cells.

Our results indicated that UCMSC would favor the
metastasis of HCC cells, however, in vivo study should
be performed to confirm it. Nevertheless, it should be
cautious when using UCMSC as therapeutic vehicles, at
least under hepatocellular carcinoma condition.

Conclusions

In this study, a co-culture system was established to
investigate the effect of UCMSC on 3D-cultured HCC
cells. It was found that UCMSC could significantly
enhance the metastasis of HCC cells by the induction of
EMT which was regulated by TGF-p.
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