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Abstract

A controversy surrounds the frequency of cancer stem cells (CSCs) in solid tumors. Initial studies indicated that these cells
had a frequency ranging from 0:0001 to 0:1% of the total cells. Recent studies have shown that this does not always seem to
be the case. Some of these studies have indicated a frequency of 40%. In this paper we propose a stochastic model that is
able to capture this potential variability in the frequency of CSCs among the various type of tumors. Considerations
regarding the heterogeneity of the tumor cells and its consequences are included. Possible effects on conventional
treatments in clinical practice are also described. The model results suggest that traditional attempts to combat cancer cells
with rapid cycling can be very stimulating for the cancer stem cell populations.
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Introduction

In recent years there has been increasing evidence for the Cancer

Stem Cell (CSC) hypothesis [1–4], according to which tumor

formation is a result of genetic and epigenetic changes in a subset

of stem-like cells, also known as tumor-forming or tumor-initiating cells

[5]. Cancer stem cells (CSCs) were first identified in leukemia and

more recently in several solid tumors such as brain, breast, cervix

and prostate tumors [4]. It has been suggested that these are the

cells responsible for initiating and maintaining tumor growth [6].

In this paper, we study a model for tumor growth assuming the

existence of cancer stem cells, or tumor initiating cells [6–8].

The conceptual starting point relevant to the CSC theory is

constructed from the known tumor heterogeneity. We now know

that cells in a tumor aren’t all identical copies of each other, but

that they display a striking array of characteristics [9–13]. The

CSC theory recognizes this fact and develops its consequences.

And one of the most immediate consequences for clinical practice

is that conventional treatments can attack the wrong cell type. The

appeal of the CSC idea can be described through the following

analogy: just as killing the queen bee will lead to the demise of the

hive, destroying cancer stem cells, should, in theory, stop the

tumor from renewing itself. Unfortunately, things are never that

simple. In the hive, workers react quickly to the death of queen by

replacing her with a new one. And there is some evidence [8,14]

suggesting that the same may occur in a tumor due to a

phenomenon known as cell plasticity, which allows differentiated

tumor cells to turn into cancer stem cells, should the situation call

for this. One goal of the present study is to evaluate the possible

effects of this plasticity. Analogies with super organisms such as bee

colonies are taken much more seriously in [15].

Stem cells in general (the same applies to CSCs) tend to be

found on specific areas of a tissue where one particular

microenvironment, called niche [16,17], promotes the maintenance

of their vital functions. Such a niche is specialized in providing

factors that prevent differentiation and thus maintain the stemness

of CSCs and, ultimately, the tumor’s survival. Stem cells and niche

cells interact with each other through adhesion molecules and

paracrine factors. This complex network of interactions exchanges

molecular signals and maintains the unique characteristics of stem

cells, namely, pluripotency and self-renewal.

In this paper, we are interested in investigating a controversy

related to the frequency in which CSCs appear in various tumors

[18–25]. In the initial version of the CSC theory, it was believed

that these cells were a tiny fraction of the total, ranging from

0.0001 to 0.1 % [26]. However, more recent studies have shown a

strong dependence of the number of CSCs present in the tumor

with the experimental xenograft model used. In explicit contrast to

what was previously thought, in [27] a proportion of CSCs of

approximately 25% was observed. Other studies have confirmed

this observation [26,28,29] with the possibility of a proportion of

up to 41% [30]. In [31] the authors provide evidence that this

discrepancy may be due to the possibility of phenotypic switching

between different tumor cells. Phenotypic switching is interpreted

as the possibility of a more differentiated cancer cell being able to,

under the appropriate conditions, dedifferentiate into cancer stem

cell. This is the cellular plasticity mentioned above.

In [32] it is suggested that inconsistencies in the numbers of

cancer stem cells reported in the literature can also be explained as

a consequence of the different definitions used by different

researchers. Different assays will give different numbers of cells,

which can be orders of magnitude away from each other. Articles

[31] and [32] provide different explanations for the discrepancy in
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the frequency of CSCs. Our arguments are consistent with the

results of [31].

Considering that the complexity of the cellular microenviron-

ment can be modeled by the insertion of a Gaussian noise into the

equation that describes the population dynamics, we show that a

noise-induced transition occurs. That corresponds to the emer-

gence of a bimodal stationary probability distribution. This

happens when the noise intensity s exceeds a critical limit value

scr:
In this paper we show that cell plasticity [14,33,34], combined

with a complex network of interactions modeled as noise, can

induce discrepant (too small or too large) stationary CSC

populations. Effects related to tumor heterogeneity and clinical

treatments will be discussed at the end, occasion in which the

model parameters possess the appropriate biological interpreta-

tions.

Methods

Model Assumptions
In the model used in this paper, cancer stem cells can perform

three types of divisions, according to [35]:

N symmetric self-renewal: cell division in which both

daughter cells have the characteristics of the mother stem cell,

resulting in an expanding population of stem cells;

N symmetric differentiation: a stem cell divides into two

progenitor cells;

N asymmetric self-renewal a cancer stem cell (denoted by C)

is generated and a progenitor cell (mature cancer cell, denoted

by P) is also produced;

We have developed a simple mathematical model for the

stochastic dynamics of CSCs in which the three division types

possess intrinsic replication rates, which are assumed to be time-

independent. We assume, therefore, that besides the three

described types of division, there is also the possibility of a

transformation in which a progenitor cell can acquire character-

istics of stem cells where, for all practical purposes, we may regard

it as having become a dedifferentiated CSC. This hypothesis has

experimental support [36]. These dedifferentiated cells do not

become cancer stem cells, but rather develop CSC like behavior

by re-activating a subset of genes highly expressed in normal

hematopoietic stem cells [14]. The biological mechanisms

underlying this transformation are described in [31], for example.

As mentioned previously, we refer to this process as cell plasticity.

Finally, we assume that cells are well mixed, so that we can ignore

spatial effects.

The model proposed is a natural extension of what is proposed

in [37]. We also incorporates the possibility of competition

between CSCs and between the progenitor cells in order to limit

the exponential growth of the linear model in [37]. This is

described in the next subsection.

The basic model
We assume that the dynamics of cancer stem cells (C) and

progenitor cells (P) are governed by the following reactions:

C '
k1

k’2=V2

CzC

P '
k3

k’4=V4

PzP

C I
k5

CzP

C I
k6

PzP

PI
k7

1

PI
k8

C ð1Þ

The first and second reactions, in the forward sense, models cell

proliferation, which occurs at a rate of k1 and k3, respectively. The

constants k’2 and k’4 are associated with the reverse process and

describe the intensity of competition between the CSCs and

progenitors cells, respectively, and prevents their unlimited

exponential growth. Many studies, experimental and theoretical,

justify this approach [38–47]. As long as no mechanical nor

nutritional restrictions apply, the tumor cells go on replicating with

a constant duplication time. After a while, however, several

constraints force the development of a necrotic core, and growth

slows down towards some asymptotic level of saturation. V2 and

V4 are constants related to the carrying capacity of the model. The

third reaction involving k5 originates from the asymmetric

transformation of CSCs in CSC daughter and progenitor cell

types. The reaction involving the k6 rate is related to a

symmetrical division of the stem cell, which gives rise to two

progenitor cells. The penultimate reaction is associated with the

progenitor cell’s death at rate k7: Finally, k8 is the rate of

dedifferentiation. All rates have dimension (time){1: The specific

time unit (months, quarters, years, etc.) will depend on the type

and aggressiveness of the tumor.

Using the law of mass action, we can write

dC

dt
~k1C{k2C2{k6Czk8P

dP

dt
~k3P{k4P2z(k5z2k6)C{(k7zk8)P

8>><
>>: ð2Þ

with k2:k2’=V2, k4:k4’=V4: Setting VC:k1=k2, VP:k3=k4,
k9:k5z2k6 and k10:k7zk8 and making the substitutions

C~VCx, P~VC

ffiffiffiffiffiffiffiffiffiffiffiffi
k9=k2

p
y and t~t=k6, equation (2) can be

written as (see Appendix S1)

dx

dt
~Ax(1{x){xzBy:f (x,y)

dy

dt
~Ey(1{Fy)zBx{Gy:g(x,y)

8>><
>>: ð3Þ

with
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A:
k1

k6

B:

ffiffiffiffiffiffiffiffiffi
k8k9

p

k6

E:
k3

k6

F:
VC

VP

ffiffiffiffiffi
k9

k8

s

G:
k10

k6

8>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>:

ð4Þ

As Lf =Ly~Lg=Lx~B, equation (3) represents a gradient system

[48] with potential V (x,y) given by (see Appendix S1)

V (x,y)~
1

6
(3{3Az2Ax)x2{Bxyz

1

6
(3G{3Ez2EFy)y2: ð5Þ

As a consequence [49]:

1. The eigenvalues of the linearization of equation (3) evaluated at

equilibrium point are real.

2. If (x0; y0) is an isolated minimum of V then (x0; y0) is an

asymptotically stable solution of (3).

3. If (x(t); y(t)) is a solution of (3) that is not an equilibrium point

then V (x(t),y(t)) is a strictly decreasing function and is

perpendicular to the level curves of V(x,y):

4. There are no periodic solutions of (3).

Sufficiently small F (VP&VC ) implies large differences in C and

P equilibrium populations. For parameters A~B~G~1, E~3
and F~0:01, (x0; y0)~(8:4; 70:6): If we set F~0:0001 keeping

the other parameters fixed, we have (x0; y0)~(82; 6710):

Adiabatic elimination
The proposed model in (1) is in fact a general model of stem

cells and does not carry any specific characteristic of cancer stem

cells. All properties considered, such as plasticity and changes in

the microenvironment conditions (to be included later), are also

found in normal, stem cell tissue systems. The features associated

with cancer stem cells are related to the large carrying capacity of

progenitor cells when compared with the carrying capacity of

CSCs. This fact is represented numerically by the choice of model

parameters made below and is important because it allows a

simplification using the adiabatic approximation.

We can write (2) as (see Appendix S1)

x’~A’x(1{x){xzB’y

y’~E’y(1{y)zF ’x{G’y

�
ð6Þ

with x’:
dx

dt’
, y’:

dy

dt’
, t’:t=k6 and

A’:
k1

k6

B’:
k2k3k8

k1k4k6

E’:
k3

k6

F ’:
k1k4k9

k2k3k6

G’:
k10

k6

8>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>:

ð7Þ

Figure (1) shows the numerical solutions of equations (6, Top) (the

rescaled equation) and (2, Bottom) for the parameter values shown

in table 1 (which correspond to A’~8, B’~5|10{4, E’~10,
F ’~0:6 and G’~1, and b is a general parameter with dimension

time{1 required for dimensional consistency in the following

analysis):

Considering the global rate b (we use b:1 throughout the text)

and assuming k5~r5b, k6~r6b, we make the usual assumption

Figure 1. Numerical solutions of differential equations. Top:
Numerical solution for reescaled equation (6). Horizontal axis is time t:
x(t) and y(t) represent the rescaled population of cancer stem cells and
progenitor cells, respectively. Bottom: Numerical solution for equation
(2). C(t) and P(t) represent he population of cancer stem cells and
progenitor cells, respectively. P? and C? represent the limits of C(t)
and P(t) when t??, respectively. Parameters values: k1~1{k5{k6,

k2~4|10{13, k3~1, k4~10{13, k5~0:1, k6~0:1, k7~0:1 and

k8~0:00001: P?~9:6|1012 and C?~1:8|1012: C?=P?~0:1875:
doi:10.1371/journal.pone.0069131.g001
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r1zr5zr6~1 [50] and write k1~r1b~(1{r5{r6)b~

b{k5{k6, where r1, r2, and r3 are probabilities. The values for

r5 and r6 are consistent with those estimated in [50]. For these

parameter values, VC:
k1

k2
~2|1012 and VP:

k3

k4
~1|1013 (see

Appendix S1). These are rescaled parameters in x and y variables,

respectively. Stationary values for P(t) and C(t) are

P?~9:6|1012 cells and C?~1:8|1012 cells, respectively.

Adjusting the k2 and k4 parameters, we can easily obtain more

suitable values for the CSC and progenitor cell equilibrium

populations, according to possible new experimental results.

Employing standard adiabatic elimination methods, we can

write equation (6) as

x’~A’ x(1{x){
x

A’
z

B’
A’

y

� �
Ey’~y(1{y)zEF ’x{G’y

8<
: ð8Þ

where :1=E’: If we consider %1 (this is equivalent to considering

the progenitor cell division rate sufficiently large) we can perform

adiabatic approximation [51,52] in (8) and, setting y’~0, we

obtain the following equation for x, expanding in Taylor series up

to first order in :

x’~x{mxzax(1{x) ð9Þ

where x:B’(1{G’)~
k8k2(k3{k10)

k1k4k6
, m:1{EB’F ’~1{

k8k9

k3k6

and a:A’~
k1

k6
: Note that x can be positive or negative

depending on the magnitude of k3 and k10:
If we set a small enough value for with respect to G’, B’ and F ’,

we can further simplify and write x~B’ and m~1: We observe

that the plasticity phenomenon (associated with k8) is crucial for

the existence of the constant term x: For this reason, from now on

we will consider the parameter x as representing the plasticity

phenomenon in the reduced equation (9).

The deterministic equation
For comparison with the stochastic study of the next section, we

will briefly review the deterministic analysis of the problem. An

analytic solution of Eq. (9) is possible. For the initial condition

x(0)~N0, one has

x(t)~
1

2a
d{

ffiffiffi
k
p

Tan
1

2
t
ffiffiffi
k
p

zArcTan
d{2N0affiffiffi

k
p

� �� �� �
ð10Þ

with d:a{m and k:{d2{4ax: The physically relevant stable

fixed point is

x�~
a{mz

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2{2amzm2z4ax

p
2a

: ð11Þ

The x scaled population size dynamics can be thought of as

analogous to the motion of a particle in a potential V0(x), seeking

its minimum point, with V0(x):{

ð
f(x)dx with

f(x)~xzdx{ax2 from (9). Thus, V0 is given by the cubic

polinomial,

V0(x)~
x3a

3
{

dx2

2
{xx:

We see from (11) that by increasing either x or d, the minimum

x� of V0 moves to the right in the potential, thus favoring CSCs

population. Such behavior, of course, is expected, since an

increase of x means an increase in frequency in which the induced

plasticity mechanism occurs, and an increase of d is an increase of

the symmetric renewal rate of cancer stem cells, both of which

increase the population.

Results

Noise in the CSCs niche
Environmental noise. In tumor tissue, the growth rate and

other parameters are influenced by many environmental factors,

e.g., degree of vascularization of tissues, supply of oxygen and

nutrients, immunological state of the host, chemical agents, gene

expression, protein synthesis, mechanical stress, temperature,

radiation, etc [50,53–55]. Given the many perturbations affecting

the CSC niche, we expect parameters such as growth rate to be

random, rather than fixed, to give a more reliable description. We

propose a simplification in the interaction mechanisms between

cancer stem cells and their niche by adding an external Gaussian

white noise in an attempt to capture the essential aspects of this

complexity in a mathematically tractable way.

It is worth noting that in conjunction with nonlinear interac-

tions, noise can induce many interesting phenomena, such as

stochastic resonance [56], noise-induced phase transitions [57],

noise-induced pattern formation, and noise-induced transport

[51,58].

Including external noise. To model the effect of external

noise, focusing initially on the CSCs proliferation rate (by making

a?azj(t), j(t) is the noise with the statistical properties

described below), we modify the deterministic equation (9) as

follows:

x’~x{mxz(azj)x 1{xð Þ~x{mxzax 1{xð Þzx 1{xð Þj, ð12Þ

where j:j(t’) is a Gaussian white noise with statistical properties

Sj(t’)T~0 and Sj(t’)j(t’’)T~s2d(t’{t’’), s2 is the variance of

j(t’): Furthermore, x is considered a constant related to the

plasticity phenomenon and a,m have interpretations similar to

those of equation (9), where a now represents the average

symmetric division rate. The noise term in equation (12) represents

fluctuations in parameter a, due to the complexity of the

microenvironment, as discussed above. We include noise in this

Table 1. Parameter Values.

Parameters k1 k2 k3 k4 k5 k6 k7 k8 b

Values b-k5-k6 4610213 1 10213 0.1 0.1 0.1 1025 1

doi:10.1371/journal.pone.0069131.t001
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term because it is more important in the CSCs population

dynamics, since it is this parameter that regulates symmetric

reproduction (C?CzC). Later on we will add yet another noise

in the plasticity constant.

We can write the Langevin equation (12) as a stochastic

differential equation (considerations concerning the interpretation

of the multiplicative term, i.e., if Itô or Stratonovich or other, will

be made below) in the form of

dxt~f(xt,t)dtzsD(xt,t)dBt

: x{mxtzaxt 1{xtð Þ½ �dtzsxt 1{xtð ÞdBt,
ð13Þ

where we define the drift f(xt,t) and diffusion D(xt,t) functions

and where dBt is the Wiener process increment [52,59,60]. The

stationary probability distribution Pst(x) of the stochastic process

defined by (13) is given by [52]

Pst(x)~N exp {2
V (x)

s2

� �
ð14Þ

where N is a normalization constant and V (x) is the stochastic

effective potential defined by

V (x)~{

ð
f(x)

D(x)2
dxzh

s2

2
ln½D(x)�: ð15Þ

Here h~1 refers to the Stratonovich interpretation of (13) and

h~2 to the Itô version. Substituting the drift and diffusion

functions, we get

V (x)~
xmzx{2xx

x{x2
z(a{mz2x) ln

x{1

x

� �
z

h

2
s2 ln½x(1{x)� ð16Þ

and

Pst(x)~Ne
{

2
xmzx{2xx

x{x2
z(a{mz2x) ln

x{1

x

� �
z

1

2
hs2 ln½x(1{x)�

� �
s2 : ð17Þ

The maximum xm of Pst, which corresponds to the minimum of

V (x), can be obtained from the following equation [61]:

f(xm){h
s2

2
D(xm)

d½D(xm)�
dxm

~0: ð18Þ

We see that for s~0, xm corresponds to the value given by x�

in eq. (11). From the drift and diffusion functions, we get:

{x3hs2{
1

2
x2 2a{3hs2
	 


z
1

2
x 2a{2m{hs2
	 


zx~0: ð19Þ

The condition for (19) possessing three real roots (corresponding

to the two extremes of Pst) is [62]:

1

16
2mzhs2{2a
	 
2

4a2z4h(a{4m)s2zh2s4
	 


z 2a{3hs2
	 


2a2z3h(a{3m)s2
	 


x{27h2s4x2
w0: ð20Þ

For example, for the parameters values h~2, a~8, m~1 and

x~0:00045, the critical value scr above which a transition is

induced in Pst is scr~2:68:
Figures (2) show, in Stratonovich interpretation (h~1), (the

results do not change qualitatively if we use Itô. For a discussion

quite enlightening about the controversial dilemma Itô/Stratono-

vich, see [63]) the effect of increasing the noise intensity in the

stochastic effective potential V (x) (Top) and in the stationary

probability distribution Pst(x) (Middle). Below is the x{s plane.

The shaded region corresponds to high values of s where Pst is

bimodal. Note that the presence of plasticity (represented by xw0)

implies the survival of cells populations regardless of noise

intensity. Inclusion of external noise can induces the appearance

of a bimodal stationary probability distribution, which leads to a

result quite different from the deterministic case: while the

population in the deterministic case will necessarily reach the

value x�, in the stochastic case the population is unlikely to reach

x� if s is above its critical value scr: It is much more likely to

possess a nonzero (if xw0), very small population (left peak of Pst)

or a very large one (right peak of Pst). This peak positioned to the

right is associated with a population near the maximum value

x&1 in the rescaled variable x~C=VC : It stands for the

possibility that the population of cancer stem cells possess a value

close to C~VCx�&2|1012: This represents a significant fraction

of the population of progenitor cells P, a fraction that depends

mainly on the equilibrium value x� of the deterministic equation

given by (11), never exceeding this threshold. When we insert noise

in the plasticity x this is no longer the case.

The inhibition of the host’s immune system, which can result in

a decrease of the microenvironmental complexity, is equivalent in

our model to a decrease of s: Therefore, a xenograft performed in

immunosuppressed mice may, over time, present significantly

large CSC populations. This may have been the case for the

experiments conducted in [27]. On the other hand, the left peak in

Pst may represent a tiny fraction of the CSCs population, as

commonly reported in the pioneering experiments mentioned in

the introduction, in which less immunosuppressed mice were used.

If x~0 and swscr, it is much more likely that the population

becomes extinct as shown in figure (3).

Figures (4) and (5) show five trajectories of the relevant

stochastic process, constructed using the Euler algorithm [64],

with initial condition x(0)~0:1, for svscr and swscr, respec-

tively. The black curve represents the solution for s~0: We see in

Figure (5) that for high values of s, some trajectories can exhibit

spontaneous regression of the CSCs. This seems plausible in light

of the supporting evidence from many clinical reports [65].

Figure (6) shows the effect of a on V (x) (Top) and Pst (Middle).

Sufficiently small values of a refer to unimodal distributions with

left asymmetry (blue curve/dot). Intermediate values correspond

to bimodal distributions (shaded area in the a{s plane, red

curve/dot). Sufficiently high levels of a correspond to unimodal

distributions with right asymmetry (black curve/dot).

We conclude in this section that the cell plasticity phenomenon

is necessary for the existence of a cancer stem cell population as a

small fraction of total tumor cells. Of course, microenvironmental

conditions consistent with high noise levels are also necessary.

Cancer Stem Cells Enjoy Noise
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Colorful background noise
We can ask ourselves what effects the variability induced by

noise in P cells produce in the C population. In equation (9),

reminiscences of the presence of P cells are manifested by the

presence of x: We can imagine this term as representing a source

of background noisy for C cells. The question that immediately

arises is: what are the effects of a noise on the proliferation rate a
combined with other noise related to the plasticity in constant x?

To answer this question, let’s add the noise j(t) and g(t) as

x?xzj(t) and a?azg(t) and write the equations

_xx~x{mxzax(1{x)zj(t)zg(t)x(1{x)

:h(x)zg1(x)j(t)zg2(x)g(t)
ð21Þ

Figure 2. Effects of noise intensity on V (x) and Pst(x): Effect of s on V (x) (on the top) and Pst(x) (in the middle) for parameters k1~1{k5{k6,

k2~4|10{13, k3~1, k4~10{13, k5~0:1, k6~0:1, k7~0:1 and k8~0:00001: Horizontal axis represents population size x: Blue, dashed curve:
s~1:5: Red, dotted: s~2:68: Black, thick: s~5:9: Below we also show the x{s plane with s in the horizontal axis.
doi:10.1371/journal.pone.0069131.g002

Figure 3. Effects of noise intensity on V (x) and Pst(x): Effect of s on V (x) (on the top) and Pst(x) (at bottom) for x~0: Horizontal axis
represents population size x: Blue, dashed curve: s~2: Red, dotted: s~3: Black, thick: s~3:74: Other parameters are as in figure (2). For sufficiently
high values of s, the CSCs population is extinguished.
doi:10.1371/journal.pone.0069131.g003
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_jj~{
1

t
jz

1

t
f(t) ð22Þ

where h(x):x{mxzax(1{x), g1(x):1 and g2(x):x(1{x)
and g(t) and f(t) are white noises with the following properties

Sf(t)T~Sg(t)T~0 ð23Þ

Sf(t)f(t’)T~2sd(t{t’) ð24Þ

Sg(t)g(t’)T~2Cd(t{t’) ð25Þ

Sf(t)g(t’)T~Sg(t)f(t’)T~2l
ffiffiffiffiffiffi
sC
p

d(t{t’), ð26Þ

where s and C are the noise intensity of f(t) and g(t) respectively,

and l is the correlation between noises. Equation (22) represents

the Ornstein-Uhlenbeck process that displays exponential corre-

lation function described in equation (27) below with correlation

time t: This stochastic process is called ‘‘colored noise’’.

The two dimensional Markovian process defined by equations

(21)–(26) is stochastically equivalent to the one-dimensional non-

Markovian process described by (21), (24) and (25), with Gaussian

colored noise j(t) [52]:

Sj(t)T~0, Sj(t)j(t’)T~
s

t
exp {

1

t
Dt{t’D

� �
: ð27Þ

We are considering the possibility of a colored noise in x (for

correlation time tw0). Thus we intend to capture the effects of

noise in the plasticity more realistically.

Following [66], the stationary probability distribution is given

by

Pst(x)~N
C(t,x)ffiffiffiffiffiffiffiffiffiffi

B(x)
p exp

ðx h(x’)C(t,x’)
B(x’)

dx’
� �

ð28Þ

where N is a normalization constant and B(x) and C(t,x) are

given by

B(x)~C½g1(x)�2z2l
ffiffiffiffiffiffiffi
Cs
p

g1(x)g2(x)zs½g2(x)�2

and

C(t,x)~1{t h’(x){
g’1(x)

g1(x)
h(x)

� �
:

In figure (7) we show the stationary probability distribution with

l~0:9, t~0, s~1|10{9, C~5 (blue), C~10 (red, dotted) and

C~15 (black, dashed). Now we see that even for very small s (the

background noise intensity due to x), extinction of CSCs is possible

for sufficiently high C (the noise due to a), which does not occur

when x is deterministic. For t=0 this statement becomes more

evident, as shown in figure (8) where we used the same parameter

values of previous figure with C~10 except that t~0:1 for blue

thick curve and t~0 for red dotted curve. The conclusion is that

the induction of fluctuations in the population of progenitor cells

(represented by the background noise due to x) can promote CSC

extinction.

Some remarks on the interpretation of s, C and l:
Before we continue the discussion about the effects of

background noise, we will make some considerations about the

interpretation that we assign to the parameters s, C and l:
About s : Given equation (9), we can interpret the system

formed by CSCs as an isolated system that exchanges ‘‘particles’’

(P cells) with the external environment and ‘‘feels’’ the

disturbances of the medium through the parameter x, the window

of communication with the outside. The intensity of these external

disturbances is represented by parameter s, and j(t) can therefore

be interpreted as an external noise, external to the system formed

by CSCs. When the body of the tumor is subjected to the effects of

clinical treatments such as radiotherapy, chemotherapy or

thermotherapy [67], the increase in the intensity of this parameter

can be considerable.

Figure 4. Some possible trajectories for the population
dynamics with weak noise. The rugged curves show four
realizations of stochastic process (13) with s~1:0: The black curve
shows the deterministic case, s~0:
doi:10.1371/journal.pone.0069131.g004

Figure 5. Some possible trajectories for the population
dynamics with strong noise. The rugged curves show four
realizations of stochastic process (13) with s~6:0: The black curve
shows the deterministic case, s~0: Some cases demonstrate the
possibility of spontaneous remission.
doi:10.1371/journal.pone.0069131.g005
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About C : The direct contact of CSCs with their immediate

microenvironment (their niche) is what enables exchange of

nutrients and complex biochemical interactions that allow for cell

life. Variability in this context represented by C, can be interpreted

as an internal noise (internal noise here is not related in any way to

the internal demographic noise as modeled by master equations).

This internal noise affects the cell proliferation rate a:

About l : A very important aspect about cancer, as mentioned

in the introduction, is that tumors contain heterogeneous

populations of cells, which may contribute differently in extent

and mechanism to the progression of malignancy [68]. Tumor

heterogeneity is possibly one of the most significant factors that

most treatment methods fail to address sufficiently. While a

particular drug may exhibit initial success, the eventual relapse

into tumor growth is due in many cases to subpopulations of

cancer cells that are either not affected by the drug mechanism,

possess or acquire a greater drug resistance, or have a localized

condition in their microenvironment that enables them to evade or

withstand the treatment. These various subpopulations may

include cancer stem cells, mutated clonal variants, and tumor-

associated stromal cells, in addition to cells experiencing a spatially

different condition such as hypoxia within a diffusion-limited

tumor region.

This important aspect is related to different forms in which the

various sub-populations respond to various types of internal and

external stimuli. Thus, we argue that the correlation coefficient l

Figure 6. Effect of a on V (x) (on the top) and Pst(x) (in the
middle) and the a{s plane at bottom (a on the vertical axis
and s on the horizontal axis). The parameters are: s~1:5 in all
figures. Blue-dashed: a~2:2: Red-dotted: a~2:6 and Black-thick: a~5:
doi:10.1371/journal.pone.0069131.g006

Figure 7. Stationary probability distribution for different
values of C: Pst(x) with parameters l~0:9, t~0, s~1|10{9, C~5
(blue), C~10 (red dotted) and C~15 (black, dashed). Horizontal axis
represents population size x: Fluctuations in the progenitor population
P can stimulate CSCs extinction.
doi:10.1371/journal.pone.0069131.g007

Figure 8. Dependence of Pst with t: Pst(x) with parameters l~0:9,

t~0 (red curve), t~0:1 (blue curve), s~1|10{9, C~10: Horizontal
axis represents population size x: High values of t facilitates CSCs
extinction.
doi:10.1371/journal.pone.0069131.g008
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between the noise acts as a measure of this heterogeneity between

the two populations we are considering. Since each noise is related

primarily to a specific cell type, we have that parameter l
‘‘measured’’ different responses of these cells to these stimuli. If the

different subpopulations behave more or less in the same manner

when subjected to various stimuli (low heterogeneity), l tends to

approach 1. If the behaviors are independent, l&0: If the

responses to the stimuli tend to be opposite (great heterogeneity), l
tends to approach 21.

Figure (9) (Top) shows the possible effect of changes in l in

stationary probability distribution for the parameters values shown

in the description. The results for t=0 are analogous. Below is the

l{s diagram. In the yellow region the stationary probability

distribution is bimodal. We see that negative values of l favor the

survival of cancer stem cells. This result is no surprise, since it is

known that the heterogeneity of the tumor provides the

phenotypic variation required for natural selection to act to

increase the robustness (a property that allows a system to mantain

its function despite internal and external perturbations) of the

tumor [10].

Possible effect of conventional treatments
The proposed model in this paper is idealized and highly

simplified. In addition, it does not rely on biological data for some

Figure 9. Effect of l on Pst(x) (top) with parameters s~10, l~0:5 (Blue, thick line), s~10, l~{0:5 (Red, dotted line), s~20, l~{0:5

(Black, dashed line), t~0, C~10{1, m~1, a~8, x~0:00045: Horizontal axis represents population size x: Bottom: l{s plane with s in the
horizontal axis.
doi:10.1371/journal.pone.0069131.g009
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values of the k parameters. Therefore, the conclusions we can get

from it in this section are merely theoretical speculations. Having

said this, let’s try to estimate the effects that conventional

treatments may have on the CSC population.

In the proposed model we imagine that such treatments work

directly on progenitor cells, since such treatments are designed to

act mainly in cells that reproduce faster [69]. Thus, the effect on

CSCs is indirect via background noise in a manner that is

analogous to what was discussed above. Now we have the

possibility of noise intensity s being much larger. Treatments act

to eliminate progenitor cells and the tendency, therefore, is for

parameter x to approach zero. Since this is the parameter that

connects the ‘‘underlying world’’ of cancer stem cells to the world

of progenitor cells, we could imagine that the contact between the

worlds is lost. This is no problem, however, because now we think

of the background noise as an additive noise that arises as a result

of external perturbations to the CSCs. Thus, we can consider

equation (21) with x~0 and think about the noise j(t) as is

commonly understood when you introduce an additive noise in

the equations ‘‘phenomenologically’’ or ‘‘by hand’’.

For large values of s, the parameter of greater relevance is t:
Figure (10) shows the effect on the stationary probability

distribution: Positive values, even small ones, help cancer stem

cells considerably not going extinct. The most important, however,

is another fact, which is explicitly shown in this figure: The main

consequence of exploring the possibility of an intense additive

noise is that the population of cancer stem cells may be

considerably greater than the maximum population of the

deterministic model C?~VCx�: This means that the effects of

conventional treatments that act primarily in the fast cycling cells,

here represented by progenitor cells, can be extremely exciting for

CSC proliferation. Cancer stem cells enjoy noise.

Discussion

The importance of cellular plasticity in the conclusions we have

drawn so far, is evident. In [32] the authors point out potential

conceptual difficulties associated with the phenotypic switching

hypothesis. They argue that if cancer cells can turn into cancer

stem cells, then the very notion of CSC becomes blurred, since in

this way the cancer cells could dedifferentiate at any time and

acquire the potential immortality of CSCs. In the authors words,

‘‘the distinction between phenotypic switching and the original

conventional model, run the risk of becoming purely semantic.’’

From a clinical perspective, this means that the existence or not of

the CSCs is irrelevant, since we must try to kill all tumor cells and

not just focus on tumor initiating cells. However, the fact that we

have to kill the greatest possible amount of tumor cells does not

mean that we have to try to do it in the same way for all of them.

In [70], a near-twofold reduction in the density of brain tumors in

mice was observed when authors combined standard anticancer

drugs with the selective killing of CSCs, if compared with standard

agents alone. With regard to the phenotypic switching property,

selectively killing a population of CSCs can make room for

progenitor cells to dedifferentiate and occupy this vacant niche

space. Trying to limit ‘‘stemness’’ instead, by changing conditions

of the niche that supports the life of CSCs, may be a more

promising therapeutic strategy. This idea is in line with what is

thought to be necessary for major mass extinctions [71].

Until now the properties of cancer stem cells were tested only in

transplantation assays and their very existence have been

questioned several times [6–8]. In [72], the authors use a lineage

tracing technique that allows permanent, in vivo fluorescent marking

of stem cells and their progeny, trying to put an end to the

controversy of the existence of cancer stem cells in solid tumors.

They unraveled the in vivo mode of tumor growth in its native

environment and found that the majority of labeled tumor cells in

benign skin tumors have only limited proliferative potential,

whereas a fraction has the capacity to persist in the long term,

giving rise to progeny that occupies a significant part of the tumor.

Progression to cancer in benign skin tumors was associated with

expansion of the CSC population and a decrease in the production

of non-stem cells. This suggests that tumor evolution enriches the

CSC population. Designing therapies that prevent increases in

stemness may be a means to restrict tumor progression into cancer.

Conclusion

We propose a model to describe the population dynamics of

cancer cells, using the theory of cancer stem cells (CSCs). Our

analysis allows us to address a controversy related to the frequency

of such cells in tumors. Initially it was thought that these cells were

relatively rare, comprising at most *1% of the cancer cell

population. More recent experiments, however, suggest that the

CSC population need not be small. Taking into account the

cellular plasticity property, which permits more mature cells to

dedifferentiate into cells with characteristics of stem cells, we show

that the discrepancy observed in the frequency of these cells is

entirely consistent with the original hypothesis of the existence of

cancer stem cells, as long as favorable conditions related to the

complexity of the microenvironment are met. We assume that

these conditions can be described by the inclusion of noise in the

rate of tumor growth or in the rate at which the plasticity

phenomenon occurs.

In the model where we take into account only the noise in the

rate of CSC proliferation, we conclude that there is the possibility

of the stationary probability distribution being bimodal. In the

model that also incorporates noise in parameter x associated to the

cellular plasticity phenomenon, the possibility of extinction arises

and the fraction of CSCs in the tumor can assume quite high

values, exceeding the threshold C?: The ‘‘color’’ of this noise

stimulates the CSC population. The correlation coefficient

between noises is interpreted as a measure of heterogeneity

between progenitor cells and cancer stem cells, since different cells

respond to stimuli in different ways. This heterogeneity also excites

the CSC population.

Figure 10. Effect of t on Pst(x) with parameters t~0:0 (Blue,
thick line), t~0:05 (Red, dotted line), t~0:1 (Black, dashed line),
C~10, s~10, l~{0:5 m~1, a~8, x~0:0: Horizontal axis represents
population size x:
doi:10.1371/journal.pone.0069131.g010
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In future work we plan to extend the model to include spatial

distribution. We will also investigate the possibility of a model

based on a master equation to investigate the effects of

demographic stochasticity.

Supporting Information

Appendix S1 Appendix to a possible explanation for the
variable frequencies of cancer stem cells in tumors.
(PDF)
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46. Castorina P, Zappalà D (2006) Tumor gompertzian growth by cellular energetic
balance. Physica A: Statistical Mechanics and its Applications 365: 473–480.

47. Von Bertalanffy L (1957) Quantitative laws in metabolism and growth. The

quarterly review of biology 32: 217–231.

48. Perko L (2000) Differential Equations and Dynamical Systems. Texts in Applied

Mathematics. Springer.

49. Hirsch M, Smale S, Devaney R (2004) Differential Equations, Dynamical

Systems, and an Introduction to Chaos. Pure and Applied Mathematics.
Academic Press.

50. Tomasetti C, Levy D (2010) Role of symmetric and asymmetric division of stem
cells in developing drug resistance. Proceedings of the National Academy of

Sciences 107: 16766–16771.

51. Berglund N, Gentz B (2006) Noise-induced phenomena in slow-fast dynamical

systems: a samplepaths approach. Probability and its applications. Springer.

52. Gardiner C (2009) Stochastic methods: a handbook for the natural and social

sciences. Springer series in synergetics. Springer.

53. Burness M, Sipkins D (2010) The stem cell niche in health and malignancy. In:

Seminars in cancer biology. Elsevier, volume 20, 107–115.

54. Whiteside T (2008) The tumor microenvironment and its role in promoting
tumor growth. Oncogene 27: 5904–5912.

55. Maffini M, Soto A, Calabro J, Ucci A, Sonnenschein C (2004) The stroma as a
crucial target in rat mammary gland carcinogenesis. Journal of cell science 117:

1495–1502.

56. Gammaitoni L, Hänggi P, Jung P, Marchesoni F (1998) Stochastic resonance.

Reviews of Modern Physics 70: 223.

57. Van den Broeck C, Parrondo J, Toral R, Kawai R (1997) Nonequilibrium phase

transitions induced by multiplicative noise. Physical Review E 55: 4084.

58. Ridolfi L, D’Odorico P, Laio F (2011) Noise-Induced Phenomena in the

Environmental Sciences. Cambridge University Press.

59. Oksendal B (2003) Stochastic differential equations: an introduction with
applications. Universitext (1979). Springer.

Cancer Stem Cells Enjoy Noise

PLOS ONE | www.plosone.org 12 August 2013 | Volume 8 | Issue 8 | e69131



60. Karlin S, Taylor H (2000) A second course in stochastic processes. Academic

Press.
61. Horsthemke W, Lefever R (1984) Noise-induced transitions: theory and

applications in physics, chemistry, and biology. Springer series in synergetics.

Springer.
62. Kavinoky R, Thoo J (2008) The number of real roots of a cubic equation. The

AMATYC Review 29: 3–8.
63. Braumann CA (2007) Harvesting in a random environment: It or stratonovich

calculus? Journal of Theoretical Biology 244: 424–432.

64. Kloeden P, Platen E (1992) Numerical solution of stochastic differential
equations. Applications of mathematics. Springer-Verlag.

65. Kalialis L, Drzewiecki K, Klyver H (2009) Spontaneous regression of metastases
from melanoma: review of the literature. Melanoma research 19: 275.

66. Da-jinW, Li C, Sheng-zhi K (1994) Bistable kinetic model driven by correlated
noises: Steady-state analysis. Phys Rev E 50: 2496–2502.

67. Atkinson R, Zhang M, Diagaradjane P, Peddibhotla S, Contreras A, et al. (2010)

Thermal enhancement with optically activated gold nanoshells sensitizes breast
cancer stem cells to radiation therapy. Science translational medicine 2: 55ra79–

55ra79.

68. Pietras A (2011) Cancer stem cells in tumor heterogeneity. Advances in Cancer
Research 112: 256.

69. Chow E (2012) Implication of cancer stem cells in cancer drug development and
drug delivery. Journal of Laboratory Automation.

70. Chen J, Li Y, Yu TS, McKay RM, Burns DK, et al. (2012) A restricted cell

population propagates glioblastoma growth after chemotherapy. Nature 488:
522–526.

71. Arens N, West I (2008) Press-pulse: a general theory of mass extinction?
Paleobiology 34: 456–471.

72. Driessens G, Beck B, Caauwe A, Simons BD, Blanpain C (2012) Defining the
mode of tumour growth by clonal analysis. Nature 488: 527–530.

Cancer Stem Cells Enjoy Noise

PLOS ONE | www.plosone.org 13 August 2013 | Volume 8 | Issue 8 | e69131


