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Abstract: The diagnosis and treatment of non-melanoma skin cancer remain urgent problems. Histo-
logical examination of biopsy material—the gold standard of diagnosis—is an invasive procedure
that requires a certain amount of time to perform. The ability to detect abnormal cells using fluores-
cence spectroscopy (FS) has been shown in many studies. This technique is rapidly expanding due
to its safety, relative cost-effectiveness, and efficiency. However, skin lesion FS-based diagnosis is
challenging due to a number of single overlapping spectra emitted by fluorescent molecules, making
it difficult to distinguish changes in the overall spectrum and the molecular basis for it. We applied
deep learning (DL) algorithms to quantitatively assess the ability of FS to differentiate between
pathologies and normal skin. A total of 137 patients with various forms of primary and recurrent
basal cell carcinoma (BCC) were observed by a multispectral laser-based device with a built-in neural
network (NN) “DSL-1”. We measured the fluorescence spectra of suspected non-melanoma skin
cancers and compared them with “normal” skin spectra. These spectra were input into DL algorithms
to determine whether the skin is normal, pigmented normal, benign, or BCC. The preoperative
differential AI-driven fluorescence diagnosis method correctly predicted the BCC lesions. We ob-
tained an average sensitivity of 62% and average specificity of 83% in our experiments. Thus, the
presented “DSL-1” diagnostic device can be a viable tool for the real-time diagnosis and guidance of
non-melanoma skin cancer resection.

Keywords: non-melanoma skin cancer; basal cell carcinoma; fluorescence diagnostics; artificial
intelligence; neural network; deep learning; dense neural network

1. Introduction

Keratinocyte carcinomas (KC) or non-melanoma skin cancer is a group of malignant
skin neoplasms (MSN), which includes basal cell carcinoma (BCC), which occupy from
75.0% to 97.0% of all malignant epithelial neoplasms of the skin, squamous cell carcinoma
(SCC), which accounts for 5.0% up to 15.0%. Rare skin appendage carcinomas (sebaceous
and sweat glands, hair follicles) constitute less than 1.0% of all types of KC [1–3]. In the
structure of the incidence of malignant diseases, KC in recent decades occupies from first
to third place in most countries of the world [4]. Malvehy et al. note that KC accounts
for 80.0% and 20.0% of all types of MSN [5]. BCC is the most common skin neoplasia [6].
The incidence rates of BCC differ in regions, reaching extremely high in countries with
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hot climates. In Australia, in 2012, the incidence was 336.0 per 100,000 of the population
in men and 251.0 per 100,000 of the population in women [7–10]. According to the Skin
Cancer Foundation, the incidence of KC in the United States each year exceeds the total
rate of malignant tumors of the breast, prostate, lung, and large intestine [11]. KC can
cause significant local damage and can cause metastasis if left untreated. Thus, untreated
and neglected BCC leads to infiltrative changes. Due to the infiltration of deeper tissues
and blurred borders, the treatment of neglected BCC is quite tricky [1,6,11,12]. Leaving
even a small focal infiltration will result in the recurrence of the disease. However, there
is no tendency for metastases to occur in BCC, whereas SCC is associated with metastatic
risk and often turns out to be more aggressive and more challenging to treat [1–3,6,11,12].
The gold standard for diagnosis of skin lesions is biopsy and subsequent histopathologic
correlation. The procedure is both invasive and time consuming, which severely limits its
use, for example, intraoperatively. Moreover, the biopsy requires several highly qualified
specialists to collect tissue samples for histological examination and microscopic evaluation.
Thus, the human factor could also be attributed to the disadvantages. All of the above
suggests the need for additional and improved evaluation methods of patients with KC at
the preoperative stage.

Skin lesion screening is one solution for the early detection of KC. Nowadays, lasers
have become an essential tool for creating the next generation of innovative diagnostic
technologies. It offers new ways to prevent, diagnose, and monitor health complications.
The laser-based technique takes much less time to acquire high-quality spectral signals [13].
Fluorescence spectroscopy (FS) is an excellent tool for non-invasively obtaining valuable
biochemical information related to the metabolic properties and structural components of
the extracellular matrix in tissue [13,14]. This technique is rapidly expanding due to its
safety, relative cost-effectiveness, and efficiency [15–17]. Considering that FS was already
shown as an effective tool for skin cancer detection, there is still a significant challenge
with the technique, as it generates a lot of spectral and complex data related to the great
variety of benign and malignant forms of skin pathologies. Particularly, BCC lesions have
more than 15 subtypes, SCC lesions have about ten different subtypes, and all of them have
a variety of benign and dysplastic forms, which differ by morphology, appearance, and
metabolic statement, including by their optical properties, on the different stages on the
lesion growth [1,6,11].

Artificial intelligence (AI) and machine learning (ML) techniques have been widely
applied in the detection of skin cancer [18]. Deep Learning (DL) is the subset of ML to mimic
the human brain’s ability for data processing. It is considered the most difficult subcategory
of training related to the algorithms of artificial NN. DL is widely used in diagnostics
and currently has achieved diagnostic efficacy in classifying skin cancers with a level of
competence comparable to dermatologists [18–24]. The most common inputs for deep NN
are visual images from photos of the site or grayscale images of ultrasound inspection. The
only 3D input that could be treated by NN that will be real 3D is the magnetic resonance
imaging (MRI) or positron emission tomography (PET) images where each voxel (3D pixel)
is segmented into tissue type: “normal” or “not-normal” (pathological). Historically, the
first NN used for segmentation worked with a similar problem: segmentation of biomedical
images [25]. The classification and segmentation problem that can be solved by DL and
cannot be solved by dermatologists or clinical radiologists is the problem when perception
field cannot be perceived by human sense organs: vision, hearing, etc. Even researching
the invisible in vision wavelengths picture (X-Ray, MRI, PET) is being transformed into 2D
grayscale that could be easily perceived by clinical imaging professionals [20–22].

An input tensor for the DL may contain the broader range of wavelengths that could
be visually perceived and the broader dimensions, such as extinction wavelength and
extinction intensity. The picture of high dimensions could be perceived by humans, usually
in the projection form, when the 2D projections are provided. There are no limitations
both in the tensor width and in the tensor dimensions for the DL. The challenge for this
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multidimensional input is to ensure proper and accurate segmentation. At the moment,
this can be done by only performing a histological examination.

DSL-1 is a portable, non-invasive, laser-based skin cancer diagnostic device that
detects biochemical information of the skin using FS backed with a DL-based diagnostic
algorithm (Figure 1a). The primary objective of this work was to collect fluorescence spectra
of skin, benign lesions, BCC, and SCC to construct the database, validate the classifying
algorithm, and accurately predict the probability of BCC for individuals and patients. From
the diagnostic point of view, the described situation and setup are precisely related to
those multiple perceptions that would be difficult for humans to perceive but can easily be
perceived by DL. The ability of the diagnostic device to distinguish between benign and
malignant abnormalities was the main component of accuracy in a risk assessment process.
This task required improving vision both in terms of wavelengths and the various spectral
experimental installations of FS.
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Figure 1. Experimental setup of the DSL-1, where: (a) DSL-1 prototyped device; (b) Optical bundle of
the DSL-1 is placed in gentle contact with the under eyes skin lesion for fluorescence spectra recording.

2. Materials and Methods
2.1. Patients

The independent Ethics Committee of the Dermatology Clinic “Dermclinic LLC”
approved this study (protocol No. 3 on 8 September 2020). All patients provided informed
consent before the examination.

The study included 137 patients (74 males, 62 females) with various forms of primary and
recurrent BCCs (median age—56 years, range 30 to 70 years) and 287 (149 males, 138 females)
healthy volunteers (median age—51 years). The percentage of patients with more than one
BCC lesion was 34%. All of the BCC lesions were confirmed histopathologically.

2.2. Fluorescence Measurements and Data Preparation

The fluorescence spectra were recorded from BCC lesions and the surrounding skin
before biopsy and treatment. Five measurements were taken from different spots within the
lesion area. Another five measurements were taken from different spots of the surrounding
normal-appearing skin 2–4 cm away from the visible border of the tumor.

The fluorescence spectra were measured with a laser non-invasive diagnostic prototype
DSL-1 (Deep Smart Light Ltd., London, UK) (Figure 1). The DSL-1 consists of the light
collection module and the spectral analysis module. The light collection module comprises
4 different lasers (340–850 nm wavelengths range) and is equipped with a 2 mm optical
bundle. The bundle houses a combination of multiple optical fibers, each employed to
either deliver or detect light. The output power at the bundle-end is around 3 mW for each
light source, and the approximate diagnostic volume within tissue is about 2–3 mm3. When
the lasers were irradiated, the emission spectra of tissue were automatically generated
from the microspectrometer inside the device and simultaneously displayed on the DSL-1
monitor and stored in an in-built microcomputer with NN. This NN architecture has been



Diagnostics 2022, 12, 72 4 of 10

determined during our previous preclinical ex vivo and in vivo studies [26]. The trained
NN was uploaded into the device memory and allowed the automated classification of
the spectra in real time. For training purposes, the initial set of spectra was split into two
parts: training and validation. Then, the trained DL algorithm determined whether the skin
lesion was normal (intact, benign) or BCC based on the unique multispectral signature.

2.3. Dataset Preparation, Experimental Setup, the Architecture of the NN and Training Algorithm

The fundamental purpose of the DL solution was to make a decision on whether
these spectra correspond to cancer or normal tissue by using 4 fluorescence spectra. The
ML problem that is used to solve this problem is binary classifier (BC). As a result of the
high dimensions of the input data (88 × 4), the dense neural network (DNN) solution was
selected. Three dense layers (64, 64, 128 neurons) address the problem to be sufficient for
reproducing the non-linear functional dependencies, the sequence of activation functions—
Rectified Linear Unit, Sigmoid, and Hyperbolic Tangent—were selected to emulate the
series of physical signal processing: Filtering (ReLU), Compiling Non-Linear Signals (Sig-
moid), and Making Decision (Tanh). The Dropout Layers were put after second and third
dense to prevent overfitting. Due to the lack of the possibility of input augmentation, the
fit-generator method was not used. The classical converging method of stochastic gradient
decay with classifier-related improvements of momentum and step decay was used.

For BC, researchers widely use one output neuron and the corresponding loss of binary
cross-entropy. Due to the physical and clinical meaning of the decision, the classifier could
be naturally extended to a categorical classifier with a significant number of decisions. It
was the main reason for using two output neurons. Such output architecture allowed us
to solve two problems: firstly, the loss function became categorical cross-entropy, which
allowed DNN to learn more steadily, and secondly, it doubled the number of weights
in front of the last layer, which made it possible to increase the generalizing ability. The
DNN architecture, loss function, and fitting parameters are given below and represented in
Figure 2.
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DNN Layers Architecture:

1. Input (288 × 4)
2. Dense (64, activation = relu)
3. Dense (64, activation = sigmoid)
4. Dropout (0.4)
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5. Dense (128, activation = tanh)
6. Dropout (0.5)
7. Output Dense (2, activation = softmax).

Training Prerequisites:

1. loss: categorical_crossentropy
2. learning_rate: 1 × 10−6

3. learning rate decay: 1 × 10−6

4. momentum: 0.9
5. nesterov: True
6. epochs: 15,000
7. batch size: 32

early stopping:

- monitor: val_loss
- patience: 5000 epochs.

checkpoints:

- es: early stopping
- mc: Model Checkpoint, monitor: val_loss, save_best
- validation_data: X_test, Y_test.

There were 286 cases: 149 skin or “non-cancer” and 137 cancer cases. Each case
referred to a single patient and a single type of tissue/lesion. Bearing in mind the variation
in the sizes of lesions, sometimes, the case had several spectra (the potential skin cancer
site was measured several times from different angles). Therefore, the entire number of
“train + test + validation” samples was 804. To make the experimental setup more clear,
we never used the same case in the test, train, or validation set.

The pseudocode of the experiment was as follows:

- Run the 50 independent experiments of:
- Split the 286 cases randomly into 3 parts: train (229), test (29), and validation (28);
- Run training on the train set, using loss on the test set for early stopping;
- Evaluate sensitivity and specificity on the validation set by using the “best-by-accuracy-

on-test-set” model saved in the “mc-checkpoint”.

3. Results

An important part of the training process involved matching the skin tissue fluores-
cence spectra of patients with primary and recurrent BCCs and further refining the DL
algorithms and confirming the appropriate spectra for “normal skin” and “cancer”. We
implemented DNN, which was trained to differentiate healthy and cancerous lesions. For
the training of the DSL-1 DL algorithms, 692 spectra were provided: 418 “cancer” spectra
and 274 “normal” skin spectra. For validation, the separate asset of patients was used.
There were 112 spectra in the validation set: 68 “cancer” spectra and 44 “normal skin”
spectra. The training curves for BC are represented in Figure 3.

At the end of the DNN, two output neurons were presented (Figure 2). The outputs of
these neurons have been transformed using the softmax function. In this way, the output
values of the neurons could be treated as “probability”. If neuron “2” had a value ≥ 0.5, it
was classified as “cancer”. For example, if multiple spectra measurements (N) have been
made for a patient and more than N/2 spectra have been assigned the correct class, it is
assumed that all spectral data for that patient are correctly classified.
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To ensure stable numbers, we provided 50 cross-validation experiments. Each exper-
iment had separate sets of patients for training, testing, and validation. The DNN was
trained on a training set, the testing set was used for early stopping. The testing set was
not used in the training process, only to assess the values of sensitivity and specificity.
The statistics of the sensitivity and specificity values on the validation set are shown in
Table 1 below.

Table 1. Sensitivity and specificity statistics.

N Min Max Mean Median Std 25th Perc 75th Perc

Specificity 50 0.34 1 0.83 0.85 0.17 0.75 1
Sensitivity 50 0.16 1 0.62 0.64 0.23 0.5 0.8

4. Discussion

According to the literature data, FS is a rapidly emerging non-invasive technique that
can detect structural and chemical alteration in skin lesions [27]. Skin FS can give infor-
mation on the presence and quantity of a wide range of diagnostically relevant molecules,
including amino acids, lipids, metabolic cofactors, and heme precursors. Using laser
sources, molecules of interest can be specifically targeted and studied in tissues based on
the intrinsic excitation and emission properties. In previous human studies, we demon-
strated that collagen-related fluorescence intensity decreases in the BCC compared to the
normal intact tissue [28,29]. Other studies have also reported reduced fluorescence in-
tensities at the spectral emission peaks of NADH and FAD for BCC lesions compared
to healthy tissue [15–17,30–32]. Despite noticing differences in the fluorescence intensity
profiles, numerous authors reported low values for accuracy when differentiating between
healthy and BCC tissues [33,34]. Additionally, there is still a significant challenge with
implementing the FS technique into the routine clinical setting.

Since the FS technique generates plenty of images and large quantities of data, which
should be coded and displayed in a manner that specialists can easily extract relevant
information, AI algorithms can be trained to classify the skin lesions without being over-
whelmed by an excess of data. This trial presents the results obtained with the multiple
wavelength excitation of the endogenous fluorescence of benign and malignant skin lesions
using a fluorescence-based prototyped diagnostic device with integrated NN for skin cancer
classification. Spectral data were detected of lesions and the surrounding normal skin
fluorescence using different excitation wavelengths in the spectral range 340–850 nm. We
already have investigated more than 230 clinical cases to receive the spectral properties of
BCC and benign cutaneous lesions. The NN architecture, loaded into DSL-1 and described
in this study, had to meet and satisfy the problem setup, since it is a classification problem
{spectra} ≥ {solution class}. Here, we demonstrate the effectiveness of DNN, which was
trained end-to-end from fluorescence spectra directly, using only pixels and disease labels
as inputs in the classification of skin lesions. These results also highlight AI-aided fluo-
rescence diagnosis ability to determine the multispectral molecular signature and make a
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decision on whether these spectra correspond to cancer or normal tissue. For BC problem
(cancer/not cancer), the sensitivity/specificity values are the most related metrics to discuss
the performance of the method. For 286 cases and 692 different spectral sets, we ensured
the cross-validation technique. All cases were split into three groups: training, testing, and
validation. The training set was used for training, and the testing set was used for early
stopping whilst training. In this way, we deliberately reduced the training set size to gain
accurate numbers. In our experiments, we obtained an average sensitivity of 62% and an
average specificity of 83%. These values of sensitivity and specificity are quite similar to the
study reported by A. Dascalu and E. David [35]. The authors proposed a computer-assisted
diagnostics system that improves the diagnostic accuracy of a low-quality dermoscope.
They have analyzed 73 patients (biopsies) with skin cancer and achieved an accuracy of
detection of 81.4% (sensitivity 89.5%; specificity 57.8%).

If we use all the patients for the training and testing (not for the validation), the quality
of the method is definitely increased. As an example, Figure 4 shows a typical ROC curve
for one of 50 cross-validated experiments.
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Figure 4. An example of one of the ROC curves on the validation set: 30 spectral sets of the validation
set (seven patients, 10 cases). The area under the curve (AUC) is 0.88.

The inputs of the proposed DNN were intensities of fluorescent spectra on different
wavelengths on certain extinctions, so all the inputs were of the “same-nature”. Convolu-
tional NN is a common solution to the NN architecture for “same-nature” inputs [18,35–42].
Convolutional layers have two advantages over fully connected layers: a limited field
of view and a significantly reduced number of training parameters that prevent overfit-
ting [36,37]. However, it should be noted that the architecture of our solution was based
on fully connected layers, not convolutional. We had a strong motivation for that, which
comes from physics and understanding the nature of the fluorescence spectra. Intensities
on some particular wavelengths are not the same as those for the other wavelengths—they
represent the concentration and the corresponding fluorescence of certain substances. Our
method is an indirect probe of the concentration of specific metabolites and substances,
and their spectral “signature” cannot be translated onto some wavelength range. There-
fore, fully connected layers were our solution for the NN applied in this study. Locally
connected layers also would not work in our case, mainly because the fluorescence spectra
of certain substances appear in different wavelength ranges [43]. Since the NN was built
by fully connected layers, dropout layers were essential to prevent memorizing the train
spectra and, as a result, to dodge the overfitting. Accordingly, the dropout levels were
selected to be high enough (0.4, 0.5) for the entire decision-making system to be as robust
as possible. Our DNN classification results were successfully compared and confirmed by
histopathological analysis.
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5. Conclusions

The method described in this paper shows good statistical values: a specificity of 0.83
and sensitivity of 0.62. Due to the neat cross-validation technique, no overfitting has been
identified. The clinical research is currently under implementation; thus, it will become
possible in future work on a large dataset from more substantial patient numbers to gain
the best prediction and classification accuracy. By now, we have received a good correlation
between histopathological analysis of the skin lesions and DNN classification. With the
construction of the database with the spectral signatures of BCC, SCC, benign lesions, and
normal tissues using DSL-1 and validation of the classifying DL algorithm, we expect to
receive a target device for the detection and evaluation of skin lesion type.

6. Patents

The non-provisional patent application 16/798,001 “Non-invasive, multispectral-
fluorescence characterization of biological tissues with machine/deep learning” was filed
to the United States Patent and Trademark Office on 21 February 2020. International patent
application PCT/IB2021/050844 was filed to Patent Cooperation Treaty (PCT) in WIPO
member countries on 3 February 2021.
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