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Abstract
Breast cancer tumours among African Americans are usually more aggressive than those found in Caucasian

populations. African-American patients with breast cancer also have higher mortality rates than Caucasian

women. A better understanding of the disease aetiology of these breast cancers can help to improve and develop

new methods for cancer prevention, diagnosis and treatment. The main goal of this project was to identify genes

that help differentiate between oestrogen receptor-positive and -negative samples among a small group of

African-American patients with breast cancer. Breast cancer microarrays from one of the largest genomic consor-

tiums were analysed using 13 African-American and 201 Caucasian samples with oestrogen receptor status. We

used a shrinkage-based classification method to identify genes that were informative in discriminating between

oestrogen receptor-positive and -negative samples. Subset analysis and permutation were performed to obtain a

set of genes unique to the African-American population. We identified a set of 156 probe sets, which gave a mis-

classification rate of 0.16 in distinguishing between oestrogen receptor-positive and -negative patients. The bio-

logical relevance of our findings was explored through literature-mining techniques and pathway mapping. An

independent dataset was used to validate our findings and we found that the top ten genes mapped onto this

dataset gave a misclassification rate of 0.15. The described method allows us best to utilise the information avail-

able from small sample size microarray data in the context of ethnic minorities.
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Introduction

Breast cancer is the most commonly diagnosed

cancer in women of all ethnic groups in the United

States. It is also the second leading cause of cancer

deaths in women. The Surveillance, Epidemiology,

and End Results (SEER) database of the National

Cancer Institute shows that African-American

women, by comparison with Caucasian women,

have a higher mortality rate for breast cancer, despite

a lower incidence. Between 2000 and 2004, the

age-adjusted breast cancer incidence rates were 118.3

cases per 100,000 African-American women and

132.5 cases per 100,000 Caucasian women.1 By con-

trast, mortality rates were worse for African

Americans, with 33.8 deaths per 100,000 women

compared with 25.0 deaths per 100,000 Caucasian
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women.1 In addition, a greater proportion of

African-American women are diagnosed at a

younger age compared with Caucasian women. The

median age at breast cancer diagnosis is 57 years for

African-American women and 62 years for

Caucasian women.2 Between 1996 and 2004,

the five-year breast cancer survival rates were 77.1

per cent for African-American women and 89.9

per cent for Caucasian women.1

These statistics highlight the disproportionate

burden of breast cancer among African-American

women.3 One reason for this ethnic cancer dis-

parity may be due to lower socioeconomic status.

Roetzheim et al. mentioned that the lower percen-

tage of health insurance among African Americans

has led to late-stage diagnosis, which results in

higher mortality rates.4 In their review article,

Gerend and Pai suggested that in addition to socio-

economic status, cultural factors may also play a

role.5 Another potential reason may be the lack of

access to mammography.6 Smigal et al. also reported

that the rate mammography uptake varies among

ethnic groups.7 These previous reports collectively

suggest that disparities in breast cancer survival may

be attributed to lower socioeconomic status.

Multivariate modelling approaches show that ethnic

differences remain a significant independent risk

factor for survival, however, even after adjustments

for co-morbidity and socioeconomic variables.8–10

This indicates that socioeconomic variables are not

sufficient in capturing the survival disparity.

The variation may instead be explained by differ-

ences in the underlying ethnic-specific tumour

biology. For example, the incidence rate for oestrogen

receptor-negative (ER–) breast cancer is higher in

African-American women than in Caucasian women.

In the study by Joslyn, 39 per cent of African-

American women had ER– tumours compared with

23 per cent of Caucasian women.11 The fact that

women with ER– tumours usually have a worse

prognosis than those with oestrogen receptor-positive

(ERþ) tumours may serve as one avenue for explain-

ing the differences in breast cancer survival rates.12

In the era of public health genomics, and with

the lowering costs of high-throughput technologies

in recent years, research among ethnic minority

populations in this area is still lagging behind.

Moreover, there is a biological basis for ethnic

differences in breast cancer13,14 and a pressing need

to understand the biological mechanism of the

disease by utilising the widely available high-

throughput data and technologies. Gene expression

analyses have been used extensively to characterise

breast cancer subtypes;15,16 however, there has not

been any research looking specifically at classifying

ER status among African-American patients with

breast cancer. In this paper, we review data gathered

from one of the largest cancer genomics studies and

apply a recently developed discriminant method for

small sample size data to help to identify genes and

biomarkers of interest.

Materials and Methods

Data were obtained from the International

Genomics Consortium’s expression project

(GEO2109) for oncology, an ongoing project to

collect gene expression data with a clinically anno-

tated set of de-identified tumour samples. We

obtained over 300 samples of microarray data with

demographic and clinical information. The chipset

used for these gene expressions was based on

Affymetrix HG-U133 plus 2.0 with 54,613 probe

sets. We looked at the distribution of different

tumour types by ethnicity in the 1392 tumour

samples of the microarray data sets made publicly

available on or before 31st December 2008. A vali-

dation dataset with African-American breast

tumour gene expression samples and oestrogen

receptor status was obtained from the GEO

public repository (GSE5847) uploaded by Boersma

et al.17 This gene expression dataset was based on

an older Affymetrix HG-U133A with 22,215

probe sets.

For breast cancer, there were 310 and 20 female

samples for Caucasians and African Americans,

respectively. Roughly 65 per cent of both ethnici-

ties had pathological ERþ/ER– status, giving a

total of 201 Caucasian and 13 African-American

patients for our analysis. The validation dataset con-

sisted of 18 African-American samples with patho-

logical ERþ/ ER– status.
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Oestrogen receptor status

We chose to study breast cancer and ERþ/ER–

status because breast cancer has been studied exten-

sively in the literature. One of the earlier publications

that used ER status for classification was that of West

et al.18 They demonstrated the use of gene expression

data for determining clinically relevant phenotypes in

breast tumour samples. More recent publications

include the identification of prognostic gene

expression classifiers based on ERþ breast

cancer;19,20 an increased risk of ER-breast cancer

among Hispanic women with a family history of the

disease;21 and a gene expression profile of good prog-

nosis subtype in ER– breast cancer.22 ER status has

also been used to guide breast cancer therapy, predict

breast cancer survival rates and estimate the risk of

breast cancer.23–25 ERþ breast cancers are usually

treated with hormone therapy, whereas ER– breast

cancers are treated using chemotherapy. Not all breast

carcinomas are responsive to treatment, however.

Therefore, it is important to know the biological

mechanisms behind the disease to help identify thera-

peutic targets avoid develop novel agents.

Small sample size classification

In the microarray setting, classification is performed

on a matrix of n samples by p genes. Linear discri-

minant analysis (LDA) is a well-known method for

classification, a technique for distinguishing

between groups of samples. For the two-group

classification problem, it finds a projection for the

samples so that the two groups are well separated.

LDA has been extended to diagonal linear discrimi-

nant analysis (DLDA). The difference between

LDA and DLDA is that DLDA assumes no corre-

lation among genes. Only the diagonal of covari-

ance matrix is used in the classification rule, hence

the word ‘diagonal’ before LDA. DLDA is known

to be one of the best classifiers.26 The performance

of DLDA itself can be unsatisfactory, however, due

to the unreliable estimates of the commonly used

sample variances when the sample size of each

group is much smaller than the number of genes.

The dataset in this study is an illustrative example

of such a situation, in which the number of

African-American breast cancer samples is only 13

compared with the number of probe sets at 54,613.

In 2009, Pang et al. pointed out that regularisation

and shrinkage techniques could help to enhance and

improve the performance of the diagonal discrimi-

nant analysis.27 Specifically, they described two strat-

egies in their paper. First, they applied shrinkage to

DLDA, which, in essence, is a method for borrow-

ing information across genes to improve the esti-

mation of the gene-specific variances by shrinking

them toward a pooled variance. Secondly, they

applied regularisation to the shrinkage-based diag-

onal discriminant rules, which is essentially a

weighted version of the shrinkage-based DLDA and

shrinkage-based diagonal quadratic discriminant

analysis (DQDA). Combining shrinkage-based var-

iance in diagonal discriminant analysis and regularis-

ation resulted in a new classification scheme which

showed improvement over the original DLDA,

DQDA and other commonly used classifiers. This

new scheme was named regularised shrinkage-based

diagonal discriminant analysis (RSDDA). For more

details on this algorithm, see Appendix 1.

Given the seven ERþ and six ER–

African-American patients, we performed the

nested leave-pair-out cross-validation approach.

Specifically, one ERþ sample and one ER–

sample were left out of the training set, which was

used to build the classifier. The classifier was then

used on the test set that consisted of the left-out

pair of ERþ and ER– patients. Thereby, we con-

sidered 42 different combinations for this pro-

cedure. Error rates were checked to ensure that

results were not due to chance using permutation.

The permutation was performed by allocating three

samples of ERþ and three samples of ER– in one

group, with the remaining seven in another. This

procedure was repeated 100 times to obtain a per-

mutation p-value, which represented the counts of

the number of times that the misclassification rate

fell below the observed misclassification rate.

Gene selection

At each cross-validation run, probe sets were

selected using the ratio of between-group to
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within-group sums of squares. We selected the top

ten and 20 probe sets and performed the classifi-

cation. Despite a small number of top probe sets

chosen, ten probe sets had been shown to perform

well in practice.27 In addition, we standardised the

expression data; that is, the observations (arrays)

had mean 0 and variance 1 across probe sets.

Subset analysis

To refine our set of probe sets further, we looked at

the top ten probe sets from each cross-validation

run and identified a unique set that we referred to

as ‘uniqueAA’. We performed a subset analysis to

see how many of these probe sets would be selected

by chance for a similarly sized sample of

Caucasians. Seven ERþ and six ER– Caucasian

patients were randomly selected from a pool of 135

ERþ and 66 ER– samples by resampling 100

times. We counted and tabulated the number of

times that the selected probe sets belonged to the

‘uniqueAA’ set. To identify the probe sets that

could potentially be common targets for both

African Americans and Caucasians, we investigated

the probe sets that had high counts.

Identification of ethnic-specific probe sets

The top set of unique probe sets was further

refined to determine a list of probe sets that were

common in identifying both ethnic groups. Using

the probe set ‘uniqueAA’, we looked at how this

set predicted the Caucasian and the

African-American samples. Misclassification rates

were obtained to see how well the ‘uniqueAA’ set

performed in classification. Since there were a

larger number of Caucasian samples in the dataset,

we were able to perform this by subsetting the

dataset into 105 ERþ , 36 ER– for the training

set and 30 ERþ , 30 ER– for the test set. This

procedure was repeated 100 times.

To identify the probe sets that were unique to the

African-American patients, we took the bottom two

probe sets from each run of the 100 repetitions. A

unique set of these probe sets was obtained, which

we referred to as ‘uniqueAAbottomC’. This gave us

a set of probe sets that were good predictors of

African Americans’ ER status but were less valuable

for discrimination among Caucasians. Once again,

we performed classification to see if this set had any

predictive ability in the Caucasian samples. If what

we had expected were true, then this set should

have a misclassification rate of around 0.5; that is,

close to being classified as at random. Using

‘uniqueAAbottomC’, we re-ran the procedure using

the African-American data. At each run, the top

two probe sets from this set would be identified as

potential unique targets for African Americans in

this sample.

Validation

We validated our findings by taking ‘uniqueAA’

probe sets found from the procedure described

above and mapping these probe sets to the validation

dataset. Since the validation set contains only a

subset of the probe sets in our primary dataset, not

all probe sets are mapped. Of those that are mapped,

the top ten probe sets from the new dataset were

chosen. We then performed the leave-pair-out

cross-validation approach on the five ERþ and 13

ER– samples to obtain a misclassification rate.

Literature mining

We utilised PubMatrix to compare the discovered

gene lists from the previous section to keywords

such as ‘breast cancer’ and ‘oestrogen receptor’.

Moreover, we mapped the unique probe set

‘uniqueAA’ described in the previous section to

pathways from Kyoto Encyclopedia of Genes and

Genomes (KEGG)28 and BioCarta (http://www.

biocarta.com/) to see which pathway had the most

probe sets mapped onto it. Fisher’s Exact tests were

performed to assess the significance of mapping to

these pathways relative to the chipset as a whole.

Pathways were sets of genes that served a particular

biological or physiological function.

Results

Table 1 shows the number of different cancer

microarrays by gender and ethnicity. Only 20 of all
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the female breast cancer microarrays came from

African Americans, of which only 13 had oestro-

gen receptor clinical information. The percentage

of breast tumour samples from African-American

women was 5.7 per cent, while the percentage of

breast tumour samples from Caucasian women was

89.1 per cent. The proportion of breast cancer

samples was even smaller for other minority popu-

lations: 1.7 per cent, 0.8 per cent and 1.1 per cent

for American Indians, Asians and Hispanics,

respectively.

Small sample size African-American
microarrays

Table 2 shows the misclassification rates for the top

ten and 20 probe sets chosen from cross-validation

of different methods. All of the methods performed

better when ten probe sets were chosen. For the

top 20 probe sets chosen, the misclassification rate

was near 0.5. The results were similar when a

larger number of top probe sets were chosen.

RSDDA performed best for the top ten probe sets,

with a 0.32 misclassification rate. Five probe sets

Table 1. Number of cancer microarrays by gender and ethnicity. The percentages of tumour samples from African-American women

were 5.7 per cent, 5.3 per cent, 3.7 per cent, 1.8 per cent, 2.5 per cent and 2.2 per cent for breast, colon, kidney, lung, ovary and uterus,

respectively, while the percentages of tumour samples from Caucasian women were 89.1 per cent, 93.3 per cent, 90.8 per cent, 92.7

per cent, 94.5 per cent and 95.6 per cent for breast, colon, kidney, lung, ovary and uterus, respectively

Cancer Gender Caucasians African Americans American

Indians

Asians Hispanics Others Unknown Total

Breast Female 310 20 6 3 4 4 1 348

Male 5 0 0 0 0 0 0 5

Total 315 20 6 3 4 4 1 353

Colon Female 140 8 2 0 0 0 0 150

Male 125 11 4 1 0 0 0 141

Unknown 1 0 0 0 0 0 0 1

Total 266 19 6 1 0 0 0 292

Kidney Female 99 4 4 0 2 0 0 109

Male 157 5 3 1 6 0 0 172

Total 256 9 7 1 8 0 0 281

Lung Female 51 1 1 1 0 0 1 55

Male 74 0 1 1 1 0 0 77

Total 125 1 2 2 1 0 1 132

Ovary Female 188 5 0 4 1 0 1 199

Uterus Female 129 3 1 1 1 0 0 135

Table 2. Misclassification rates from cross-validation for four

methods and different number of top probe sets chosen

Top 10 Top 20

Diagonal linear discriminant

analysis

0.3810 0.4643

Support vector machine 0.3690 0.4643

k-nearest neighbour (k ¼ 3) 0.3690 0.5238

Regularised shrinkage-based

diagonal discriminant analysis

0.3214 0.4881
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were selected more than 30 per cent of the time in

the training sets and two of them, 1570001_at

(CASP8AP2) and 202653_s_at (MARCH7), were

selected over 75 per cent of the time. A permu-

tation, as described in the Methods section, was

performed to ensure that this was not due to

chance. Out of 100 permutations of ERþ and

ER– status, none of the misclassification rates fell

below 0.32, giving a permutation p-value of 0.

This p-value measures the number of times the

misclassification rates falls below the observed mis-

classification rate from the 100 permutations.

Subset analysis

From the small sample size classification, we ident-

ified a small group of 156 probe sets by keeping

unique probe sets that were identified as top ten

probe sets at each iteration during feature selection

in the training set. We called this set ‘uniqueAA’. A

subset analysis was performed to see whether these

probe sets would also be selected as top probe sets

for the Caucasian samples. Only two, 229578_at

and 243338_at, were selected once as the top ten

in the Caucasian samples and the remaining sets

were not selected at all for the top ten. When

increased to 156 probe sets, by lowering the

threshold, we found that 34 probe sets were

selected at least once, with three pairs of probes

selected at least twice and one selected five times.

A set of the top genes, with probes that were

mapped, can be found in Table 3.

To check for possible common targets, we used

the 156 ‘uniqueAA’ probe sets to investigate the

top probe sets chosen from the run using Caucasian

samples. Ten genes that are common targets were

mapped and each was selected at least once. Six of

these ten genes had literature evidence related to

‘breast cancer’ or ‘oestrogen receptor’ (see Table 4).

For example, the testis derived transcript gene

(TES) was found to be a tumour suppressor gene

related to breast cancer.29

Using the ‘uniqueAA’ set of 156 probe sets,

we again performed classification on the

African-American samples using RSDDA and

found that the misclassification rate had fallen

to 0.16 using a second nested leave-pair-out

cross-validation with the top 100 probe sets. By

comparison, when we performed the classification

on the Caucasian samples, we obtained a misclassifi-

cation rate of 0.23. This indicated that the 156

probe sets have much stronger discriminant power

in distinguishing between ERþ and ER– for

African Americans than for Caucasians.

Unique probe sets for African Americans

To refine our probe set further, to probe sets that

were unique to African-American patients, we

picked the bottom two probe sets from the run

using Caucasian samples. We ended up with a set

of 28 probe sets that gave a 0.51 misclassification

rate for Caucasian samples and a 0.17 misclassifi-

cation rate for African-American samples. Seven of

the 28 probe sets were mapped to genes, of which

four of the seven had literature evidence

relating them to ‘breast cancer’ or ‘oestrogen recep-

tor’ (see Table 4). For example, RAB31 was one

gene for which there was literature evidence

relating it to both breast cancer and the ER.30,31

Validation

We mapped the 156 probe sets ‘uniqueAA’ onto

the validation dataset. Since the validation dataset

came from an older Affymetrix chipset, 63

probe sets could be mapped. Using the top ten

probe sets, we obtained a misclassification rate of

0.15 in distinguishing between ERþ and ER– for

African-American breast tumour samples (see

Table 5).

Biological pathways

We mapped the 156 probe sets ‘uniqueAA’ onto

the KEGG and BioCarta pathways. The mitogen-

activated protein kinase (MAPK) signalling

pathway, the Wnt signalling pathway, purine

metabolism and oxidative phosphorylation were

found to have three, three, three and four mapped

probe sets, respectively. The p-values for corre-

sponding test of association between these pathways

compared with the whole chipset were, 0.44, 0.08,
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0.07 and 0.00015, for the MAPK signalling

pathway, the Wnt signalling pathway, purine

metabolism and oxidative phosphorylation, respect-

ively. In the literature, biological evidence suggests

that oxidative phosphorylation and mitochondrial

mutation may play a role in the development of

both breast and prostate cancers in African

Americans.32

Discussion

The goal of this paper was to help to identify poss-

ible novel biomarker targets for further investi-

gation. The percentage of breast cancer tumour

samples from African-American women in the

microarray data was only slightly over 5 percent and

did not reflect the age-adjusted incidence rate in

Table 3. Sixty-two probes with mapped gene symbols (out of 156 probe sets) and counts of occurrences in the top ten and top 156

using Caucasian dataset by resampling 100 times

Common targets Top

10

Top

156

TES 0 5

MPP6 0 4

IL18RAP 0 3

KIAA0984 0 2

TRIM2 0 1

USP10 0 1

CREBL1, TNXB 0 1

PCBP2 0 1

MYO10 0 1

DCLRE1C 0 1

WDR48 0 1

The genes below all have zero counts (ie genes unique to African Americans)

IPO7 BLMH MARCH7 ATP6V1C1 ATP6V1C1 GSTA4 0 0

KIAA0258 NDUFAF1 APOA1 RPS6KA5 RIMS3 HOXB7 0 0

(FTLL1, RNF24, PANK2) (TCF21, FLJ35700) ITIH2 CSNK2A1 0 0

PAX2 (NUDT4P1, NUDT4) THRB CENPF ROS1 0 0

P2RY6 RBM10 CLCN7 MALL CTNND2 TPO 0 0

MAPK9 EFS LEF1 CCKAR RIPK5 ATF2 0 0

(PDLIM5, TSSC1) BAT2 ZNF204 PCDHB17 LTB4R 0 0

(RAD23A, CALR, KLF1, FARSA, GCDH, MAST1, DNASE2) ZFX 0 0

(LOC93432, MGC138180, MGC138178) UPF3A LOC388335 LRRC51 0 0

SMARCA2 RAB31 (DSG1, GIN1) HAND2 MS4A5 ATP5O 0 0

(LOC90379, MGC99481) 0 0
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the population. This paper illustrates an example of

health disparities among ethnic minorities in the

genomics field and a possible solution to the lack of

available gene expression data with ethnic infor-

mation in public repositories. Moreover, by apply-

ing the regularised shrinkage-based discriminant

method, we were able best to utilise the infor-

mation from small sample size breast cancer micro-

array data for African Americans.

As seen in the Results section, RSDDA obtained

the lowest misclassification rate among the methods

compared. Since we had a small sample size, we per-

formed permutation analysis and subset analysis to

confirm the significance of our findings. When

using the 156 probe sets identified, we were able to

achieve a misclassification rate as low as 0.16 in dis-

tinguishing between ERþ and ER– among

African-American patients with breast cancer.

These findings were further validated using an

external dataset, which gave a misclassification error

of 0.15, close to what we found for the training set.

Furthermore, we showed potential biological rel-

evance of our findings using literature-mining

methods and mapping genes to biological pathways.

African-American breast cancer tumours are

usually more aggressive and are associated with

higher mortality rates than those found in

Caucasian populations.8,9,11,12,14 Although mor-

tality rates in both ethnic groups have declined over

the past decade, in a 2002 study, African-American

women still showed a 37 per cent higher mortality

rate than Caucasian women.7 Despite efforts to

eliminate this disparity, the African-American

population is still under-represented in clinical

research protocols. This is evident in the difference

in proportions between African-American and

Caucasian women in the number of breast cancer

samples collected, as noted in the Results section.

These numbers are disproportionate when com-

pared with the age-adjusted incidence rates of breast

cancer, as cited earlier.

Table 4. Literature evidence for identified genes; counts

represent number of literature citations with gene symbols

mentioned

Common

targets

Breast

cancer

Oestrogen

receptor

TES 11 0

MPP6 0 0

IL18RAP 1 0

TRIM2* 1 0

USP10 1 0

CREBL1 0 1

PCBP2 1 0

MYO10 0 0

DCLRE1C 0 0

WDR48 0 0

Unique to

African

Americans

Breast

cancer

Oestrogen

receptor

TCF21 0 0

ROS1 1 0

RBM10 3 1

RAD23A 1 0

KLF1 0 1

ATP5O 0 0

RAB31 1 1

*Genes-to-Systems Breast Cancer (G2SBC) database

Table 5. Gene symbols of the top ten probe sets that gave a 0.15

error rate in validation dataset

Genes

BLMH

TES

RIMS3

MPP6

CENPF

MALL

RIPK5

MYO10

LRRC51

(RAD23A, MAST1, FARSA, DNASE2, GCDH, CALR, KLF1)
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Although the ideal situation would be to have a

larger study, our approach may serve as a solution

to a situation in which only a small number of

microarrays is available. Additionally, the bio-

markers identified should be confirmed biologically

using real-time polymerase chain reaction. Another

way to tackle the small sample size problem would

be to perform meta-analyses. A meta-analysis can

be performed on high-throughput data by pooling

across different datasets and platforms to form a

larger sample. One such example can be found in

the paper by Ochs-Balcom et al., in which the

authors looked at the association of breast cancer

with a particular gene of interest.33 While such

efforts help to increase the power in discrimination,

attention needs to be paid to ensure that the results

are not due to batch effects.

Conclusions

Breast cancer tumours in African Americans are

known to be more aggressive in nature than in the

general population.8,9,14 Few studies have been

conducted to identify genes that are good at dis-

tinguishing ERþ and ER– patients among

African-American women. New strategies for tar-

geted screening and preventive measures can be

employed with the identification of biomarkers that

help to determine the risk associated with aggres-

sive breast cancer in African-American women.

Other factors, such as socioeconomic status or cul-

tural background, may also contribute to higher

mortality rates among African Americans, and

further research examining the impact of these

factors deserves attention.34 There have been efforts

to improve breast cancer screening, which can help

to diagnose patients at earlier stages, but a weaker

association of population screening rates with early

diagnosis has been seen in African Americans

compared with Caucasians.35 Researchers have also

suggested various strategies to improve patient partici-

pation in breast cancer clinical studies.36,37 Without

efforts to improve enrolment in cancer genetics regis-

tries and to provide high-quality prevention and

screening, the goal of eliminating ethnic disparities in

breast cancer cannot be achieved.38,39

In this paper, we have presented the use of ER

status as the binary outcome for classification. Like

ER status, progesterone receptor status and Her2/neu

status may also help to assess breast cancer risk and

determine treatment options for patients. Given

the heterogeneity of breast cancer, ethnic vari-

ations can, in part, be explained by differences in

molecular and genetic clues. A recent study pre-

sented illustrative examples of how genomics

could help to eliminate ethnic health disparities.40

For example, gene expression data have provided

us with new understanding of biological pathways

to help to address ethnic disparities and other

differences among breast cancer patients. To facili-

tate better use of these high-throughput data,

gene expression data uploaded to public reposi-

tories should contain corresponding ethnicity

information. Apart from gene expression data,

there is also a need to collect genotypic and phe-

notypic information better to understand and

assess the risk for African-American and

Caucasian patients with breast cancer in genetic

association studies.2 Answers to genetic differences

across ethnicities and other risk factors influencing

breast cancer incidence and survival may be eluci-

dated with large-scale data from research efforts

such as the Carolina Breast Cancer Study and the

Clinical Breast Care Project.15,41
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Appendix 1. Statistical appendix

Regularised shrinkage-based diagonal
discriminant analysis

We will first introduce diagonal discriminant analysis

DQDA and DLDA. And then wewill discuss the shrink-

age-based discriminant analyses, SDQDA and SDLDA,

which are combined to produce regularised shrinkage-

based diagonal discriminant analysis (RSDDA).

Diagonal discriminant analysis

For ease of notation, we present the discriminant

rules based on the two-class comparison only. The

results for the multi-class comparisons can be estab-

lished accordingly.

Let p denote the total number of genes, yi ¼ 1

denote subjects belonging to class 1, and yi ¼ 2

denote subjects belonging to class 2. We assume

that the observations are independently and identi-

cally distributed from the p-dimensional multi-

variate normal distribution:

x1;1; . . . ; x1;n1
� Npðm1;S1Þ; x2;1; . . . ; x2;n2

� Npðm2;S2Þ;

where n1, n2, m1, m2, S1 and S2 are the corre-

sponding sample size, mean vector and covariance

matrix for class 1 and class 2, respectively.

The maximum likelihood estimates (MLEs)

for the mean vectors for class 1 and class 2

are m̂1 ¼
1

n1

Xn1

i¼1
x1;i and m̂2 ¼

1

n2

Xn2

i¼1
x2;i,

respectively. The MLEs for the sample

covariance matrices for class 1 and class 2 are

Ŝ1 ¼
1

n1

Xn1

i¼1
ðx1;i � m̂1Þðx1;i � m̂1Þ

T
and Ŝ2 ¼

1

n2Pn2

i¼1ðx2;i � m̂2Þðx2;i � m̂2Þ
T

, respectively. The

MLE for the overall sample covariance matrix is

defined as Ŝ ¼ 1

n

X2

k¼1
nkŜk, where n ¼ n1 þ n2.

Dudoit et al.26 introduced two simplified discri-

minant rules, DQDA and DLDA, which assume

independence between genes and replace off-

diagonal elements of the sample covariance

matrices with zeros. The discriminant rule for

DQDA uses Ŝ1 ¼ diagðs2
11; . . . ;s2

1pÞ and

Ŝ2 ¼ diagðs2
21; . . . ;s2

2pÞ as the estimates of the

sample covariance matrices for the two classes. Let p1

and p2 denote the prior probabilities of observing a

member of class 1 and class 2, respectively. Common

estimates of p1 and p2 are the number of individuals

in each class over the total number of samples.

Specifically, p̂k ¼
nk

n
for k ¼ 1 and 2. The discri-

minant rule for DQDA is defined as

CðxÞ ¼ arg mink D̂
D

k ðxÞ for k ¼ 1,2, where

D̂
D

k ðxÞ ¼
Xp

j¼1

ðxj � m̂kjÞ
2=ŝ2

kj þ
Xp

j¼1

ln ŝ2
kj � 2 ln p̂k:

The DLDA is established when we assume a common

covariance matrix, i.e. S1 ¼ S2. Under this assump-

tion, the discriminant rule can be simplified to

CðxÞ ¼ argmink
Xp

j¼1

ðxj � m̂kjÞ
2=ŝ2

j � 2 ln p̂k

 !
:

Shrinkage-based diagonal discriminant analysis

Now to obtain shrinkage-based discriminant

rules, we replace ŝ2
kj and ŝ2

j by the

shrinkage estimators ~s2
kj and ~s2

j proposed by

Tong and Wang42, respectively. Denote n ¼ n� K ;
ŝ�2

j ¼ ðŝ2
jÞ
�1; ŝ�2

pool ¼
Qp

j¼1ðŝ2
j Þ
�1=p

and

hn;pðtÞ ¼
v

2

� ��1 Gðn=2Þ
Gðv=2� 1=pÞ

� �p

;

where G(.) is the gamma function. The following

represents a shrinkage estimator for ŝ�2
j ;

~s�2
j ðaÞ ¼ ðhv;pð�1Þŝ�2

poolÞ
aðhv;1ð�1Þŝ�2

j Þ
1�a:

Note that hv;1ð�1Þŝ�2
j is an unbiased estimator for

ŝ�2
j , and hv;pð�1Þŝ�2

pool is an unbiased estimator of

ŝ�2 when s2
j ¼ s2 for all j. Therefore, the

proposed shrinkage estimator has a very

simple structure as it shrinks each gene specific var-

iance toward a common pooled variance for all

genes, where a [ [0,1] controls the degree

of shrinkage. Specifically, the shrinkage-based

discriminant rule is CðxÞ ¼ arg mink
~d
�D

k ðxÞ,
where ~d

�D

k ðxÞ¼
Pp

j¼1ðxj� m̂kjÞ
2=~s�2

j ðâ�Þ �2lnp̂,

where ~s�2
j ðâ�Þ is the estimate of s�2

j with â� the

estimated shrinkage parameter under the Stein loss

function. This is shrinkage-based DLDA (SDLDA).

Analysing breast cancer microarrays from African Americans PRIMARY RESEARCH

# HENRY STEWART PUBLICATIONS 1479–7364. HUMAN GENOMICS. VOL 5. NO 1. 5–16 OCTOBER 2010 15



Similarly, shrinkage-based DQDA (SDQDA) is

defined as

arg min
k

Xp

j¼1

ðx j � m̂kjÞ
2=~s�2

kj ðâ�Þ
 

�
Xp

j¼1

ln ~s�2
kj ðâ�kÞ � 2 ln p̂

!

Regularised shrinkage-based diagonal discriminant

analysis

Regularisation techniques as in [44] give rise to

regularised discriminant analysis. To achieve this,

we replace ~s�2
j ðâÞ with a weighted version of

SDQDA and SDLDA. For more details regarding

this method, please refer to Pang et al.27 R code

for RSDDA is available from the authors upon

request.
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