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ABSTRACT Chemosynthetic symbioses occur worldwide in marine habitats, but
comprehensive physiological studies of chemoautotrophic bacteria thriving on ani-
mals are scarce. Stilbonematinae are coated by thiotrophic Gammaproteobacteria. As
these nematodes migrate through the redox zone, their ectosymbionts experience
varying oxygen concentrations. However, nothing is known about how these varia-
tions affect their physiology. Here, by applying omics, Raman microspectroscopy,
and stable isotope labeling, we investigated the effect of oxygen on “Candidatus
Thiosymbion oneisti.” Unexpectedly, sulfur oxidation genes were upregulated in
anoxic relative to oxic conditions, but carbon fixation genes and incorporation of
13C-labeled bicarbonate were not. Instead, several genes involved in carbon fixation
were upregulated under oxic conditions, together with genes involved in organic
carbon assimilation, polyhydroxyalkanoate (PHA) biosynthesis, nitrogen fixation, and
urea utilization. Furthermore, in the presence of oxygen, stress-related genes were
upregulated together with vitamin biosynthesis genes likely necessary to withstand
oxidative stress, and the symbiont appeared to proliferate less. Based on its physio-
logical response to oxygen, we propose that “Ca. T. oneisti” may exploit anaerobic
sulfur oxidation coupled to denitrification to proliferate in anoxic sand. However, the
ectosymbiont would still profit from the oxygen available in superficial sand, as the
energy-efficient aerobic respiration would facilitate carbon and nitrogen assimilation.

IMPORTANCE Chemoautotrophic endosymbionts are famous for exploiting sulfur oxidiza-
tion to feed marine organisms with fixed carbon. However, the physiology of thiotrophic
bacteria thriving on the surface of animals (ectosymbionts) is less understood. One long-
standing hypothesis posits that attachment to animals that migrate between reduced
and oxic environments would boost sulfur oxidation, as the ectosymbionts would alter-
natively access sulfide and oxygen, the most favorable electron acceptor. Here, we inves-
tigated the effect of oxygen on the physiology of “Candidatus Thiosymbion oneisti,” a
gammaproteobacterium which lives attached to marine nematodes inhabiting shallow-
water sand. Surprisingly, sulfur oxidation genes were upregulated under anoxic relative
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to oxic conditions. Furthermore, under anoxia, the ectosymbiont appeared to be
less stressed and to proliferate more. We propose that animal-mediated access to oxy-
gen, rather than enhancing sulfur oxidation, would facilitate assimilation of carbon and
nitrogen by the ectosymbiont.

KEYWORDS Gammaproteobacteria, Thiosymbion, anoxia, chemosynthesis, sulfur
oxidation, symbiosis, thiotrophic bacteria

At least six animal phyla and numerous lineages of bacterial symbionts belonging
to Alphaproteobacteria, Gammaproteobacteria, and Campylobacteria (formerly

Epsilonproteobacteria) (1) engage in chemosynthetic symbioses, rendering the evolu-
tionary success of these associations incontestable (2, 3). Many of these mutualistic
associations rely on sulfur-oxidizing (thiotrophic), chemoautotrophic bacterial sym-
bionts that oxidize reduced sulfur compounds for energy generation in order to fix
inorganic carbon (CO2) for biomass buildup. Particularly in binary symbioses involving
thiotrophic endosymbionts, it is generally accepted that the bacterial chemosynthetic
metabolism serves to provide organic carbon for feeding the animal host (reviewed in
references 2 to 4). In addition, some chemosynthetic symbionts have been found capa-
ble of fixing atmospheric nitrogen, albeit symbiont-to-host transfer of fixed nitrogen
remains unproven (5, 6). As for the rarer chemosynthetic bacterial-animal associations
in which symbionts colonize exterior surfaces (ectosymbioses), fixation of inorganic
carbon and transfer of organic carbon to the host have been unequivocally shown
only for the microbial community colonizing the gill chamber of the hydrothermal
vent shrimp Rimicaris exoculata (7).

The majority of thioautotrophic symbioses have been described to rely on reduced
sulfur compounds as electron donors and on oxygen as terminal electron acceptor (3,
4). However, given that sulfidic and oxic zones are often spatially separated, also owing
to abiotic sulfide oxidation (8, 9), chemosynthetic symbioses (i) are typically found
where sulfide and oxygen occur in close proximity (e.g., hydrothermal vents, shallow-
water sediments) and/or (ii) exhibit host behavioral, physiological, and anatomical
adaptations enabling the symbionts to access both substrates. Among the former
adaptations, host-mediated migration across oxygen and sulfide gradients was pro-
posed for shallow-water interstitial invertebrates and Kentrophoros ciliates (reviewed in
references 2 and 3). The ectosymbionts of Stilbonematinae, a free-living nematode
subfamily of the Desmodoridae that inhabit marine sediments (2, 10), have also long
been hypothesized to associate with their motile hosts to maximize sulfur oxidation-
fueled chemosynthesis, by alternatively accessing oxygen in upper sand layers and sul-
fide in deeper, anoxic sand. This hypothesis was based upon the distribution pattern of
Stilbonematinae in sediment cores together with their migration patterns observed in
agar columns (10–12). However, several chemosynthetic symbionts were subsequently
shown to use nitrate as an alternative electron acceptor, and nitrate respiration was
stimulated by sulfide, suggesting that some may gain energy by respiring nitrate in
addition to oxygen (13–17). Furthermore, although physiological studies on chemosyn-
thetic symbioses are available (e.g., references 18 to 21), the impact of oxygen on the
symbionts’ central metabolism has not been investigated (remarkably, not even in
those symbionts that cover their hosts and are, therefore, directly exposed to fluctuat-
ing concentrations of oxygen).

Here, to understand how oxygen affects symbiont physiology, we focused on
“Candidatus Thiosymbion oneisti,” a gammaproteobacterium belonging to the basal
family of Chromatiaceae (also known as purple sulfur bacteria), which colonizes the sur-
face of the marine nematode Laxus oneistus (Stilbonematinae). This group of free-living
roundworms represents the only known animals engaging in monospecific ectosym-
bioses, i.e., a given nematode species is typically ensheathed by a single “Ca.
Thiosymbion” phylotype, and in the case of “Ca. T. oneisti,” the bacteria form a single
layer on the cuticle of their host (22–25). Moreover, the rod-shaped representatives of
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this bacterial genus, including “Ca. T. oneisti,” divide by FtsZ-based longitudinal fission,
a unique reproductive strategy which ensures continuous and transgenerational host
attachment (26–28).

Like other chemosynthetic symbionts, “Ca. Thiosymbion” bacteria have been con-
sidered chemoautotrophic sulfur oxidizers based on several lines of evidence: stable
carbon isotope ratios of symbiotic nematodes are comparable to those found in other
chemosynthetic symbioses (12); the key enzyme for carbon fixation via the Calvin-
Benson-Bassham (CBB) cycle (RuBisCO) along with elemental sulfur and enzymes
involved in sulfur oxidation have been detected (29–31); reduced sulfur compounds
(sulfide, thiosulfate) have been shown to be taken up from the environment by the
ectosymbionts, to be used as energy source, and to be responsible for the white
appearance of the symbiotic nematodes (11, 15, 31); and the animals often occur in
the sulfidic zone of marine shallow-water sands (10). More recently, the phylogenetic
placement and genetic repertoire of “Ca. Thiosymbion” species have equally been sup-
porting the chemosynthetic nature of the symbiosis (6, 25).

In this study, we incubated nematodes associated with “Ca. T. oneisti” under condi-
tions resembling those encountered in their natural environment and subsequently
examined the ectosymbiont transcriptional responses via RNA sequencing (RNA-Seq).
In combination with complementary methods such as stable isotope labeling, proteo-
mics, Raman microspectroscopy and lipidomics, we show that the ectosymbiont exhib-
its specific metabolic responses to oxygen. Most strikingly, sulfur oxidation but not car-
bon fixation was upregulated in anoxia. Such a response in their natural environment
would challenge the current opinion that sulfur oxidation requires oxygen and drives
carbon fixation in chemosynthetic symbioses. We finally present a metabolic scheme
of a thiotrophic ectosymbiont experiencing ever-changing oxygen concentrations, in
which anaerobic sulfur oxidation coupled to denitrification may represent the pre-
ferred metabolism for growth.

RESULTS
Hypoxic and oxic conditions induce similar expression profiles. To understand

how the movement of the animal host across the chemocline affects symbiont physiology,
we exposed symbiotic worms to sulfide (thereafter used for

P
H2S) and oxygen concentra-

tions resembling the ones encountered by “Ca. T. oneisti” in its natural habitat. Previous stud-
ies showed that Stilbonematinae live predominantly in highly reduced sediment zones with
sulfide concentrations below 50mM or up to 250mM (10). To assess the sulfide concentra-
tion preferred by Laxus oneistus (i.e., the host of “Ca. T. oneisti”) at our collection site
(Carrie Bow Cay Marine Field Station, Belize), we determined the nematode abundance
relative to the sampling depth and sulfide concentration. We found the nematode abun-
dance to be the highest between 12 and 24 cm below the seabed. Moreover, we found
all L. oneistus individuals in pore water containing#25mM sulfide. Only 1.3% of them
inhabited nonsulfidic (0mM sulfide) surface layers (Fig. 1A; see also Table S1 in the supple-
mental material). Therefore, we chose anoxic seawater supplemented with#25mM sul-
fide as the incubation medium (AS condition) most resembling the natural habitat of
“Ca. T. oneisti.” To assess the effect of oxygen on symbiont physiology, we additionally
incubated the nematodes in hypoxic (H;,60mM oxygen after 24 h) and oxic (Ox;.100mM
after 24 h) seawater (Fig. 1B). Nitrate, nitrite, ammonium, and dissolved organic carbon
(DOC) could be detected throughout the sediment core including the surface layer
(Table S1).

Differential gene expression analysis comparing H and Ox incubations revealed that
only 2.9% of all expressed protein-coding genes differed significantly in their expres-
sion (Fig. 1C and D). Crucially, this gene set comprised several hypothetical proteins
but did not show any significantly enriched metabolic pathways, processes, or protein
families (Table S3B and Data Set S1). Because the presence of oxygen, irrespective of
its concentration, resulted in a similar gene expression profile, we treated the samples
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FIG 1 Natural and experimental conditions, transcriptome sample similarity, and differential gene expression. (A) Laxus
oneistus total counts per 6-cm core subsection from 8 sandbars (horizontal beige bars) and corresponding mean
sulfide (RH2S) concentrations (mM, gray line). Error bars represent the standard error of the mean (Table S1). (B)
Experimental setup of incubations for RNA-Seq, EA-IRMS, and Raman microspectroscopy. Batches of 50 L. oneistus
worms were incubated under different oxygen concentrations: AS (0mM O2, #25mM sodium sulfide added), A (0mM
O2), H (,60mM O2 after 24 h), and Ox (.100mM O2 after 24 h). The box around the anoxic incubation vials indicates
that these incubations were carried out in a polyethylene isolation chamber. All incubations were performed in 0.2-
mm-filtered seawater and in at least biological triplicates (see Table S2). (C) Similarity between transcriptome samples
based on Euclidean distances between expression values (log2TPMs), visualized by means of multidimensional scaling.
Most of the follow-up RNA-Seq analyses were conducted comparing the anoxic-sulfidic conditions (AS, red circle) to all
conditions under which oxygen was present (O, blue circle). Samples 1 to 3 were collected in July 2017, whereas
samples 4 to 6 were collected in March 2019. (D) Differential gene expression (DE) analysis between H and Ox samples
revealed that the number of DE genes was low (2.9% of all expressed genes), and thus, H and Ox samples were
treated as biological replicates. Of all expressed genes, 20.7% were differentially expressed between AS and O
conditions. Genes were considered differentially expressed if their expression changed 2-fold with a false-discovery rate
(FDR) of #0.05.
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derived from H and Ox incubations as biological replicates, and we will hereafter refer
to them as the O condition.

Gene expression analysis between the AS and O conditions revealed that 20.7% of
all expressed protein-coding genes exhibited significantly different expression
(Fig. 1D), as we will present in detail below.

Sulfur oxidation genes are upregulated in anoxia. “Ca. T. oneisti” genes encoding
a sulfur oxidation pathway similar to that of the related but free-living purple sulfur
bacterium Allochromatium vinosum (Fig. 2) (32) were highly expressed under both AS
and O conditions compared with other central metabolic processes, albeit median
gene expression was significantly higher under the AS condition (Fig. 3). Consistently,
24 out of the 26 differentially expressed genes involved in sulfur oxidation were upreg-
ulated under AS (Fig. 4A). These mostly included genes involved in the cytoplasmic
branch of sulfur oxidation, i.e., genes associated with sulfur transfer from sulfur storage
globules (rhd, tusA, dsrE2), genes encoding the reverse-acting dsr (dissimilatory sulfite
reductase) system involved in the oxidation of stored elemental sulfur (S0) to sulfite,
and finally, also the genes required for further oxidation of sulfite to sulfate in the cyto-
plasm by two sets of adenylylsulfate (APS) reductase (aprAB) along with their mem-
brane anchor (aprM) and sulfate adenylyltransferase (sat) (33, 34). Genes encoding a
quinone-interacting membrane-bound oxidoreductase (qmoABC) exhibited the same
expression pattern. This is noteworthy, as AprM and QmoABC are hypothesized

FIG 2 Schematic representation of central metabolic pathways present in the “Ca. T. oneisti” genome. All gene names (or locus tags for unidentified gene
names) can be found in Data Set S1. The aerobic respiratory chain (O2 resp, blue) includes NADH dehydrogenase (nuo genes, complex I), succinate
dehydrogenase (sdh genes, complex II), the cytochrome bc1 complex (pet genes, complex III), and an aa3-type cytochrome c oxidase (cta genes, complex
IV). The electron transfer reactions in the S oxidation pathways are based on the work of Dahl et al. (32). Electron transfers in the denitrification pathway
(N metabolism) are not illustrated but involve complexes I and III and cytochrome c (35). Pathways for glycogen, trehalose, and PHA degradation, as well
as overall reaction stoichiometry, are not depicted. Organic carbon compounds (Corg) such as acetate, lactate, propionate, and glycerol 3-phosphate
(glycerol-3P) could be host derived. Enzymes are shown in gray, transporters are brown, storage compounds are orange, and pilus and secretion system
are depicted in green. AA, L-amino acids; Anchor, putative membrane anchor for the Qmo complex (TONNANOP_v1_730022); Asp, aspartate; Biotin carrier-
protein, a [biotin carboxyl-carrier-protein dimer]-N6-biotinyl-L-lysine; C, carbon; CBB, Calvin-Benson-Bassham cycle; Co, cobalt; CoA, coenzyme A; DAG,
diacylglycerol; FA, fatty acids; Fe, iron; Glu, glutamate; GSH, glutathione; Mo, molybdate; N, nitrogen; OXA, oxaloacetate; PE, phosphatidylethanolamine; PEP,
phosphoenolpyruvate; PG, phosphatidylglycerol; PHA, polyhydroxyalkanoate; Poly-P, polyphosphate; PS, phosphatidylserine; Red, reduced; RQ,
rhodoquinone; S, sulfur; Ser, serine; TCA, tricarboxylic acid cycle; TONNANOP_v1_890019, Alvin_2107 homolog (32); T6SS, type VI secretion system; Zn, zinc;
3-HPBmod, modified 3-hydroxypropionate cycle according to the work of Kleiner et al. (50); 3-PDG, 3-phospho-D-glycerate; a-KG, 2-oxoglutarate.
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to have an analogous function, and their cooccurrence is rare among sulfur-oxidizing
bacteria (33).

Concerning genes involved in the periplasmic branch of sulfur oxidation, such as
the two types of sulfide-quinone reductases (sqrA, sqrF; oxidation of sulfide) and the
Sox system (soxKAXB, soxYZ) and the thiosulfate dehydrogenase (tsdA) both involved in
the oxidation of thiosulfate, transcript levels were unchanged between the two condi-
tions (Data Set S1). Only the flavoprotein subunit of the periplasmic flavocytochrome c
sulfide dehydrogenase (fccB), as well as a cytochrome c family protein (tsdB) thought
to cooperate with TsdA, was downregulated in the absence of oxygen (Fig. 4A).

To assess whether the upregulation of sulfur oxidation genes under anoxia was due
to the absence of oxygen (and not to the presence of supplemented sulfide in the me-
dium), we performed an additional anoxic incubation where sulfide was not provided
(A condition). Differential expression analysis between the anoxic conditions with and
without sulfide revealed that transcript levels of 6.3% of all expressed protein-coding
genes differed significantly between the two anoxic treatments (Fig. 1D). Among them,
we found eight genes involved in sulfur oxidation to be upregulated in the presence of
sulfide (Data Set S1). Importantly, however, irrespective of sulfide supplementation, most
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sulfur oxidation genes were similarly upregulated in the anoxic (AS or A) relative to the O
incubation (Fig. S1A, Table S3B, and Data Set S1). In addition, proteome data derived from
incubations with and without oxygen, but no added sulfide, showed that one copy of
AprA and one of AprM were among the top expressed proteins under anoxia (Data Set S1,
column “mean %cOrgNSAF,” and Text S1). Raman microspectroscopy revealed that levels
of elemental stored sulfur (S0) were highest under AS and H conditions and low or below
detection limit under Ox conditions and A conditions at the end of the incubations
(Fig. S1B and Text S1).

Collectively, sulfur oxidation genes were upregulated under both anoxic conditions
(A and AS) irrespective of sulfur storage content and, conversely, were downregulated
under hypoxic conditions even though elemental sulfur was detected in most of these
symbiont cells.

Upregulation of anaerobic respiratory enzymes under AS conditions. Given that
sulfur oxidation was upregulated under AS conditions, we expected this process to be
coupled to the reduction of anaerobic electron acceptors, and nitrate respiration has
been shown for symbiotic L. oneistus (15). Consistently, genes encoding components
of the four specific enzyme complexes active in denitrification (nap, nir, nor, nos), as
well as two subunits of the respiratory chain complex III (petA and petB of the cyto-
chrome bc1 complex, which is known for being involved in denitrification and in the
aerobic respiratory chain [35]) were upregulated under AS conditions (Fig. 4A, Fig. S1A,
and Data Set S1).

Besides nitrate respiration, “Ca. T. oneisti” may also utilize polysulfide or thiosulfate
as a terminal electron acceptor under AS conditions, since we observed an upregula-
tion of all genes encoding either a respiratory polysulfide reductase or a thiosulfate re-
ductase (psrA/phsA, psrB/phsB, prsC/phsC; dimethyl sulfoxide [DMSO] reductase family,
classification based on reference 36). Concerning other anaerobic electron acceptors,
the symbiont has the genetic potential to carry out fumarate reduction (frdABCD
genes; Fig. 2 and Data Set S1), and the fumarate reductase flavoprotein subunit (frdA)
was indeed upregulated under AS conditions (Data Set S1). We also identified a gene
potentially responsible for the biosynthesis of rhodoquinone (rquA; Fig. 2 and Data Set
S1), which acts as an electron carrier in anaerobic respiration in a few other prokaryotic
and eukaryotic organisms (37, 38) and could thus replace the missing menaquinone
during anaerobic respiration in “Ca. T. oneisti.”

Intriguingly, lipid profiles of the symbiont revealed a change in lipid composition,
as well as significantly higher relative abundances of several lysophospholipids under
anoxia (Fig. S2A and Text S1), possibly resulting in altered uptake behavior and higher
membrane permeability for electron donors and acceptors (39–42). Notably, we also
detected lysophosphatidylcholine to be significantly more abundant in anoxia
(Fig. S2B). As the symbiont does not possess any known genes for biosynthesis of this
lipid, it may be host derived. Incorporation of host lipids into symbiont membranes
was indeed reported previously (43, 44).

Furthermore, upregulation of the respiratory enzyme glycerol 3-phosphate (G3P)
dehydrogenase gene (glpD; Data Set S1), as well as the substrate-binding subunit of a
putative G3P transporter gene (ugpABCD genes; Data Set S1), suggests that host lipid-
derived G3P may serve as carbon and energy source for the symbiont under anoxia.

Taken together, our data indicate that under AS conditions, the ectosymbiont gains
energy by coupling sulfur oxidation to the complete reduction of nitrate to dinitrogen
gas. Moreover, the symbiont appears to exploit oxygen-depleted environments for
energy generation by utilizing G3P as an additional electron donor and nitrate, polysul-
fide or thiosulfate, and fumarate as electron acceptors.

Upregulation of sulfur oxidation genes is not accompanied by increased
expression of carbon fixation genes. Several thioautotrophic symbionts have been
shown to use the energy generated by sulfur oxidation for the fixation of inorganic car-
bon (7, 19, 20, 45–47). Previous studies strongly support that “Ca. T. oneisti” is capable
of fixing carbon via an energy-efficient Calvin-Benson-Bassham (CBB) cycle (6, 11, 12,
30, 48) (Fig. 2). In this study, bulk isotope ratio mass spectrometry (IRMS) conducted
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with symbiotic nematodes confirmed that they incorporate isotopically labeled inor-
ganic carbon, and we detected no significant difference in incorporation between any
two incubations in the course of 24 h (Fig. 4B). To localize the sites of carbon incorpo-
ration, we subjected symbiotic nematodes incubated with [13C]bicarbonate to nano-
scale secondary ion mass spectrometry (NanoSIMS) and detected 13C enrichment pre-
dominantly within the ectosymbiont (Fig. S3 and Text S1).

Consistent with the evidence for carbon fixation by the ectosymbiont, all genes
related to the CBB cycle were detected, on both the transcriptome and the proteome
level, with high transcript levels under both AS and O conditions (Fig. 3 and Data Set
S1). However, the upregulation of sulfur oxidation genes observed under AS did not
coincide with an upregulation of carbon fixation genes. On the contrary, the median
expression level of all CBB cycle genes was significantly higher in the presence of
oxygen (Fig. 3). In particular, the transcripts encoding the small subunit of the key
autotrophic carbon fixation enzyme ribulose-1,5-bisphosphate carboxylase/oxygenase
(RuBisCO) (cbbS) together with the transcripts encoding its activases (cbbQ and cbbO)
(49), the PPi-dependent 6-phosphofructokinase (PPi-PFK) (50, 51), and the neighboring
PPi-energized proton pump (hppA) thought to be involved in energy conservation dur-
ing autotrophic carbon fixation (50, 51) were upregulated under O conditions (Fig. 4A).
The large subunit of the RuBisCO protein (CbbL; type I-A group according to Fig. S4)
was among the top expressed proteins irrespective of the presence of oxygen (Data
Set S1, column “mean %cOrgNSAF”).

In conclusion, (i) upregulation of carbon fixation genes occurred in the presence of oxy-
gen when sulfur oxidation genes were downregulated, while (ii) incorporation of inorganic
carbon was detected to a similar extent in the presence and absence of oxygen.

Genes involved in the utilization of organic carbon and polyhydroxyalkanoate
(PHA) storage buildup are upregulated in the presence of oxygen. As anticipated,
the nematode ectosymbiont may exploit additional reduced compounds besides sul-
fide for energy generation. Indeed, “Ca. T. oneisti” possesses the genomic potential to
assimilate glyoxylate, acetate, and propionate via the partial 3-hydroxypropionate
cycle (like the closely related Olavius algarvensis g1-symbiont [50]) and furthermore
contains genes for utilizing additional small organic carbon compounds such as G3P,
glycolate, ethanol, and lactate (Fig. 2 and Data Set S1). With the exception of G3P utili-
zation genes (see above), the expression of genes involved in the assimilation of or-
ganic carbon including their putative transporters was significantly higher under O
conditions (Fig. 3). Among the upregulated genes were lutB (involved in the oxidation
of lactate to pyruvate [52]), propionyl coenzyme A (CoA) synthetase (prpE, propionate
assimilation [53]), and two components of a TRAP transporter which most commonly
transports carboxylates (54) (Data Set S1).

These gene expression data imply that the nematode ectosymbiont uses organic
carbon compounds in addition to CO2 under O conditions, thereby increasing the sup-
ply of carbon. Consistent with high carbon availability, genes necessary to synthesize
storage compounds such as polyhydroxyalkanoates (PHAs), glycogen, and trehalose
showed an overall higher median transcript level under O conditions (Fig. 3). In particular,
two key genes involved in the biosynthesis of the PHA compound polyhydroxybutyrate
(PHB)—acetyl-CoA acetyltransferase (phaA) and a class III PHA synthase subunit (phaC-2)—
were upregulated in the presence of oxygen. Conversely, we observed upregulation of both
PHB depolymerases involved in PHB degradation under AS, and Raman microspectroscopy
showed that the median PHA content was slightly lower in symbiont cells under AS than
under both oxic conditions after the incubation period (Fig. S5).

We propose that in the presence of oxygen, enhanced mixotrophy (i.e., simultaneous
assimilation of inorganic and organic carbon) would result in higher carbon availability
reflected by PHA storage buildup and facilitating facultative chemolithoautotrophic synthe-
sis of ATP via the aerobic respiratory chain.

Upregulation of nitrogen assimilation in the presence of oxygen. It has been
shown that high carbon availability is accompanied by high nitrogen assimilation (55–57).
Indeed, despite the sensitivity of nitrogenase toward oxygen (58), its key catalytic MoFe
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enzymes (nifD, nifK) (59) and several other genes involved in nitrogen fixation were drasti-
cally upregulated in the presence of oxygen (Fig. 3 and 5A). Moreover, in accordance with a
recent study showing the importance of sulfur assimilation for nitrogen fixation (60), genes
involved in the assimilation of sulfate, i.e., the sulfate transporters sulP and cysZ, as well as
genes encoding two enzymes responsible for cysteine biosynthesis (cysM, cysE) were also
upregulated in the presence of oxygen (Data Set S1).

Besides nitrogen fixation, genes involved in urea uptake (transporters, urtCBDE) and
utilization (urease, ureF and ureG) were also transcribed significantly more highly under
O conditions (Fig. 3 and 5A).
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FIG 5 Nitrogen fixation and urea utilization genes as well as stress response and vitamin biosynthesis genes are
upregulated, and fewer symbiont cells divide in the presence of oxygen. (A) Heatmap showing transcript levels of
differentially expressed genes involved in nitrogen assimilation. Cofactor synt., cofactor biosynthesis; Urease acc. proteins,
urease accessory proteins. (B) Heatmaps displaying transcript levels of differentially expressed genes involved in stress
response as well as in the biosynthesis of vitamins and cofactors. Heavy metal resist., heavy metal resistance. Both panel A
and panel B show genes that were differentially expressed between anoxic sulfidic (AS) and oxygenated (O) conditions
after 24 h of incubation (2-fold change, FDR# 0.05). Expression levels are visualized by displaying mean-centered
log2TPMs (transcripts per kilobase million). Upregulation is indicated in red, and downregulation is in blue. Genes are
ordered by function in the respective metabolic pathways. (C) Bars show the percentage of dividing “Ca. T. oneisti” cells
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In conclusion, genes involved in nitrogen assimilation (from N2 or urea) were consis-
tently upregulated in the presence of oxygen, when (i) carbon assimilation was likely
higher and when (ii) higher demand for nitrogen is expected due to stress-induced
synthesis of vitamins (see section below).

Upregulation of biosynthesis of cofactors and vitamins and global stress
response in the presence of oxygen. Multiple transcripts and proteins associated
with diverse bacterial stress responses were among the most highly expressed in the
presence of oxygen (Fig. 3 and Data Set S1). More specifically, heat shock proteins
Hsp70 and Hsp90 were highly abundant (Data Set S1, column “mean %cOrgNSAF”),
and transcripts of heat shock proteins (Hsp15, Hsp20, Hsp40, and Hsp90) were upregu-
lated (Fig. 5B). Besides chaperones, we also detected upregulation of a transcription
factor which induces synthesis of Fe-S clusters under oxidative stress (iscR) (61) along
with several other genes involved in Fe-S cluster formation (Fig. 5B) (62) and regulators
for redox homeostasis, like thioredoxins, glutaredoxins, and peroxiredoxins (63).
Furthermore, we observed upregulation of protease genes (lon, ftsH, rseP, htpX, hspQ)
(64–68), genes required for repair of double-strand DNA breaks (such as radA, recB,
mutSY, and mfd) (69–71), and relA, known to initiate the stringent response when cells
are starved for amino acids (72) (Fig. 5B). Amino acid starvation could be caused by a
high demand for stress-related proteins under O conditions and could also explain the
upregulation of amino acid biosynthesis pathways under O conditions (73) (Fig. 3).

SspA, shown to be important for survival under various stress conditions (74–76),
was the only stress-related gene upregulated under AS (Fig. 5B).

We hypothesized that the drastic upregulation of stress-related genes observed
under O conditions would require an increase in the biosynthesis of vitamins (77–79).
Indeed, genes involved in biosynthesis of vitamins such as vitamins B2, B6, B9, and B12

were upregulated in the presence of oxygen (Fig. 3 and 5B). Notably, the proposed up-
regulation of nitrogen fixation and urea utilization (see above section) would support
the synthesis of these nitrogen-rich molecules.

The upregulation of stress-related genes under O conditions was accompanied by
significantly fewer dividing symbiont cells, i.e., 18.1% and 21.4% (under H and Ox conditions,
respectively) versus 30.1% (under AS conditions) (Fig. 5C), and downregulation of both early
(ftsE, ftsX) and late (damX, ftsN) cell division genes (80) (Fig. 3 and Data Set S1). Oxygen may
therefore elicit a stress response that hampers symbiont proliferation.

DISCUSSION

This is the first study reporting on the global transcriptional response to oxygen of
a thiotrophic animal ectosymbiont, “Ca. T. oneisti.” Here, we detected a strong tran-
scriptional response of “Ca. T. oneisti” key metabolic processes to oxygen, as well as
shifts in protein abundance and lipid composition. Although ongoing comparative
host transcriptomics suggests that also the nematode host responds to oxygen (L.
König and G. F. Paredes, unpublished data), and although the host response likely
affects that of “Ca. T. oneisti,” this study exclusively focused on the effect of oxygen on
symbiont physiology.

Experimental design. The concentrations of oxygen and sulfide to which symbiotic
nematodes were exposed in our study were chosen based on the distribution of L.
oneistus and measured sulfide concentrations in their natural environment, that is,
shallow-water marine sediment containing up to 25mM sulfide (Fig. 1A), with oxidized
layers rapidly transitioning to reduced, anoxic sediments (10). Given that in low-sulfide
sediments, oxygen and sulfide rarely cooccur (81, 82), nematodes were not supple-
mented with sulfide when incubated in the presence of oxygen. Moreover, we omitted
pre-experimental acclimation to study the symbiont in its close-to-natural state, i.e.,
replete with intracellular sulfur stores as indicated by the nematode whiteness (15, 31).
Indeed, the similar gene expression observed between AS and A, and between H and O,
conditions is consistent with the assumption that during the incubations, “Ca. T. oneisti”
relied on stored sulfur, and its metabolism responded to the presence or absence of oxygen,
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irrespective of sulfide supplementation (Fig. 1D and Fig. 4A and see Fig. S1 in the supple-
mental material).

Although at the beginning of all the incubations “Ca. T. oneisti” was likely not
depleted of stored sulfur, after 24 h of incubation, the lack of sulfide supplementation
resulted in depleted sulfur stores under both the A and Ox conditions. Curiously, sulfur
stores were higher following H than following Ox incubations (Fig. S1B). This cannot be
explained by transcriptomics, as only a single gene involved in sulfur oxidation (a puta-
tive sulfur globule gene, spgD [Data Set S1]) was differentially expressed between H
and Ox conditions.

Ideally, all the worms should have been subjected to the four different conditions
at the same time. Although we did randomly split the worms into replicates, we were
able to test a maximum of two conditions (150 nematodes per condition) per day, due
to the time needed to manually extract each single nematode from the sand (see
Materials and Methods). In spite of this technical limitation, replicates from the same
treatment on different dates (e.g., three Ox replicates in July 2017 and three Ox repli-
cates in March 2019) clustered with each other in their gene expression profiles
(Fig. 1C).

Another potential source of variability under the conditions experienced by differ-
ent nematode batches could be the fact that the A and AS conditions were tested in
closed vials whereas the H and Ox ones were tested in open vials. Although in this
study we measured only oxygen, sulfide, and nitrate, and we cannot, therefore, rule
out whether the concentrations of other substrates differed between closed and open
vials, the fact that transcriptomes of symbionts incubated in H (on the bench) and Ox
(in an aquarium) samples clustered together suggests that differences in unmeasured
substrates were negligible (Fig. 1C).

Overall, distinct (treatment-specific) and coherent transcriptional profiles irrespec-
tive of sampling date and experimental setup (Fig. 1C) suggest that oxygen is the main
factor affecting the symbiont transcriptomes.

Anaerobic sulfur oxidation. Genes involved in sulfur oxidation showed high over-
all expression compared to other central metabolic processes, indicating that thiotro-
phy is the predominant energy-generating process for “Ca. T. oneisti” under both Ox
and anoxic conditions (Fig. 6). Thus, our data strongly support previous observations of
Stilbonematinae ectosymbionts performing aerobic and anaerobic sulfur oxidation (11,
15). As the majority of genes involved in denitrification were upregulated under AS
conditions (Fig. 4A), nitrate likely serves as terminal electron acceptor for anaerobic sul-
fur oxidation. Importantly, we detected nitrate in the incubation medium, as well as in
all sediment layers (Table S1), at concentrations typical of oligotrophic sediment, in
which also the O. algarvensis g3-symbiont is predicted to couple sulfur oxidation to
denitrification (50).

Sulfur oxidation in chemosynthetic symbioses is commonly described as an aerobic
process required for host survival (3). However, many of these symbiotic organisms
likely experience periods of oxygen depletion as would be expected from life at the
interface of oxidized and reduced marine environments. Together with previous
reports demonstrating nitrate reduction (13, 14, 16) and studies showing the genomic
potential for using nitrate as terminal electron acceptor (6, 50, 83–85), this study sub-
stantiates that nitrate respiration during temporary anoxia could represent an impor-
tant strategy for energy conservation among thiotrophic symbionts.

While upregulation of sulfur oxidation and denitrification genes in anoxia repre-
sents no proof for preferential anaerobic sulfur oxidation, we hypothesize that oxida-
tion of reduced sulfur compounds to sulfate is more pronounced when oxygen is
absent. Among the upregulated sulfur oxidation genes, we identified aprM and the
qmoABC complex, both of which are thought to act as electron-accepting units for APS
reductase and therefore rarely cooccur in thiotrophic bacteria (33). The presence and
expression of the QmoABC complex could provide a substantial energetic advantage
to the ectosymbiont by mediating electron bifurcation (33), in which the additional
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reduction of a low-potential electron acceptor (e.g., ferredoxin, NAD1) could result in
optimized energy conservation under anoxic conditions. The maximization of sulfur ox-
idation under anoxia might even represent a temporary advantage for the host.
Indeed, this would be shielded from sulfide poisoning while crawling in a sediment
which is free of predators but rich in decomposed organic matter (detritus) (15, 86–88).
Due to the dispensability of oxygen for sulfur oxidation, the ectosymbiont may not
need to be shuttled to superficial sand by its nematode hosts to oxidize sulfur. Host
migration into upper zones of the sediment may therefore primarily reflect the oxygen
dependence of the animal host.

In addition to anaerobic sulfur oxidation, the nematode ectosymbiont’s phyloge-
netic affiliation with facultative anaerobic, anoxygenic phototrophic sulfur oxidizers
such as Allochromatium vinosum (6, 32) and the presence and expression of yet other
anaerobic respiratory complexes (DMSO reductase family enzyme and fumarate reduc-
tase) collectively suggest that “Ca. T. oneisti” might be well adapted to anoxic sulfidic
sediment zones.

Symbiont proliferation in anoxia. Although a few studies shed light on the molec-
ular cell biology of “Ca. T. oneisti” reproduction (26, 28, 89), up to this study, we did
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not know how this is influenced by environmental changes. Here, we observed signifi-
cantly higher numbers of dividing cells under AS conditions (Fig. 5C), and therefore,
sulfur oxidation coupled to denitrification might represent the ectosymbiont’s pre-
ferred strategy to generate energy for growth. We hypothesize that aside from sulfur
oxidation, the mobilization of PHA could represent an additional source of ATP (and
carbon) supporting symbiont proliferation under AS (Fig. S5 and Fig. 6). Of note, PHA
mobilization in anoxia was also shown for Beggiatoa spp. (90). On the other hand, sev-
eral lines of research have shown that stress—experienced by “Ca. T. oneisti” in the
presence of oxygen (Fig. 5B)—can inhibit bacterial growth (91–97). Importantly,
increased proliferation of a thiotroph which uses an anaerobic electron acceptor (such
as nitrate) instead of oxygen has not been reported yet (98–101).

Loose coupling of sulfur oxidation and carbon fixation. Reduced sulfur com-
pounds stimulate carbon fixation in thioautotrophic symbionts (7, 11, 19, 20, 45–47,
102, 103). Our bulk isotope ratio mass spectrometry (EA-IRMS) analysis indicates that,
even though expression of the sulfur oxidation pathway was stimulated, fixation of
[13C]bicarbonate-derived carbon was not the highest under AS conditions (Fig. 3 and
4). Instead, carbon fixation appeared unaffected by oxygen.

Even though, based on EA-IRMS, oxygen did not affect carbon fixation, CBB cycle
transcripts in general, and RuBisCO-associated transcripts in particular, were signifi-
cantly more abundant when oxygen was present (Fig. 3 and 4). Upregulation of these
genes could be a mechanism to counteract an increased oxygenase activity of
RuBisCO in the presence of oxygen, as competition between its two substrates (CO2

and O2) has been reported to constrain the carbon fixation efficiency of the enzyme
(104, 105). Phylogenetic analysis of the ectosymbiont RuBisCO large subunit protein
(CbbL) placed it within the type I-A group (Fig. S4), whose characterized representa-
tives are adapted to oxic environments (105, 106). The discrepancy between carbon
incorporation and transcriptome data could thus reflect a tradeoff between the carbox-
ylase and oxygenase activity of RuBisCO. Of note, fixation of CO2 by other carboxylat-
ing enzymes may not significantly contribute to inorganic carbon incorporation.
Indeed, acetyl-CoA carboxylase (acc genes) is predicted to act only as a biosynthetic
carboxylase, whereas the constitutively expressed propionyl-CoA carboxylase (pccB)
takes part in the partial 3-hydroxypropionate cycle thought to mainly function in
assimilation of organic substrates in some thiotrophic symbionts (48, 50, 107). No other
known carboxylases are found in the symbiont genome.

Altogether, both lines of evidence point toward a loose coupling between sulfur ox-
idation and autotrophic carbon fixation. Notably, sulfide oxidation without matching
CO2 fixation has been described before for the symbiont of Riftia pachyptila (108, 109),
and an example of extreme decoupling of sulfur oxidation and carbon fixation was
recently reported for Kentrophoros ectosymbionts. Strikingly, these lack genes for auto-
trophic carbon fixation altogether and thus represent the first heterotrophic sulfur-oxi-
dizing symbionts (48).

Oxic mixotrophy. Several chemosynthetic symbionts may engage in mixotrophy
(6, 20, 50, 51, 110), and also the nematode ectosymbiont possesses genes for transport
of small organic carbon compounds, their assimilation, and further metabolization (tri-
carboxylic acid [TCA] cycle, glyoxylate shunt). Some of the organic carbon compounds
represent typical host waste products (acetate, lactate, propionate) and could there-
fore be host-derived (50).

The expression of genes involved in transport and assimilation pathways was signif-
icantly more pronounced under O than under AS conditions (Fig. 3). In addition to
assimilating inorganic carbon autotrophically, the ectosymbiont may thus assimilate
more organic carbon in the presence of oxygen and, consequently, may experience
higher carbon availability (Fig. 6).

While repression of RuBisCO biosynthesis by organic carbon has been demonstrated
(111, 112), simultaneous incorporation of organic and inorganic carbon has been described
for several facultative autotrophic bacteria (113–119). Concomitant mixotrophy is thought to
be an advantage in oligotrophic environments where nutrients are limiting (116, 120), and
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CO2 derived from the breakdown of organic carbon through decarboxylation can subse-
quently be reutilized via the CBB cycle (117).

The metabolization of these organic carbon compounds ultimately yields acetyl-
CoA, which, in turn, can be further oxidized in the TCA cycle and/or utilized for fatty
acid and PHA biosynthesis (Fig. 2 and 6). Our transcriptome and Raman microspectro-
scopy data suggest that “Ca. T. oneisti” favors PHA buildup over its degradation under
O conditions (Fig. S5). Higher carbon availability in the presence of oxygen resulting in
a surplus of acetyl-CoA may cause a nutrient imbalance that could facilitate PHA accu-
mulation as previously shown (121–123). Moreover, it might play a role in resilience
against cellular stress, as there is increasing evidence that PHA biosynthesis is
enhanced under unfavorable growth conditions such as extreme temperatures, UV
radiation, osmotic shock, and oxidative stress (124–132). Similar findings have been
obtained for pathogenic (133) and symbiotic (134) bacteria of the genus Burkholderia,
with the latter study reporting upregulation of stress response genes and PHA biosyn-
thesis in the presence of oxygen. Finally, oxic biosynthesis of PHA might also prevent
excessive accumulation and breakdown of sugars by glycolysis and oxidative phospho-
rylation, which, in turn, would exacerbate oxidative stress (135).

Oxic nitrogen assimilation. Despite the oxygen-sensitive nature of nitrogenase
(58), we observed a drastic upregulation of nitrogen fixation genes under O conditions
(Fig. 3 and 5A). Besides ammonia production, nitrogen fixation can act as an electron
sink under heterotrophic conditions (136, 137). The ectosymbiont may therefore use
the nitrogenase to maintain redox balance in the cell when organic carbon is metabo-
lized under oxic conditions.

Urea utilization and uptake genes were also upregulated. Although the nematode
host likely lacks the urea biosynthetic pathway (L. König, unpublished data), this com-
pound is one of the most abundant organic nitrogen substrates in marine ecosystems,
as well as in animal-inhabited (oxygenated) sand (138, 139). The apparent increase in
nitrogen assimilation in the presence of oxygen could thus be a result of an increased
demand for nitrogen driven by the biosynthesis of nitrogen-rich compounds such as
vitamins and cofactors potentially required to survive oxidative stress (Fig. 3, 5, and 6).
Indeed, the upregulation of the urea uptake system and urease accessory proteins, as
well as the aforementioned stress-related relA gene, has been shown to be a response
to nitrogen limitation in other systems (140, 141); nitrogen imbalance may have also
induced PHA accumulation under oxic conditions (121–123). The role of vitamins in
protecting cells against the deleterious effects of oxygen has been shown for animals
(142, 143), and the importance of riboflavin for bacterial survival under oxidative stress
has previously been reported (77, 79). Along this line of thought, oxygen-exposed “Ca.
T. oneisti” upregulated glutathione and thioredoxin, which are known to play a pivotal
role in scavenging reactive oxygen species (ROS) (144). Their function directly (or indi-
rectly) requires vitamin B2, B6, and B12 as cofactors. More specifically, thioredoxin reduc-
tase (trxB) requires riboflavin (vitamin B2) in the form of flavin adenine dinucleotide
(FAD) (145); cysteine synthase (cysM) and glutamate synthases (two-subunit gltB/gltD,
one-subunit gltS) involved in the biosynthesis of the glutathione precursors L-cysteine
and L-glutamate depend on vitamin B6, FAD, and riboflavin in the form of flavin mono-
nucleotide (FMN) (146, 147). As for cobalamin, it was thought that this vitamin played
only an indirect role in oxidative stress resistance (148), by being a precursor of S-aden-
osylmethionine (SAM), a substrate involved in the synthesis of glutathione via the me-
thionine metabolism (and the transsulfuration pathway), and in preventing the Fenton
reaction (149, 150). However, its direct involvement in the protection of chemolithoau-
totrophic bacteria against oxidative stress has also been illustrated (78).

In summary, in the presence of oxygen, the upregulation of genes involved in biosynthe-
sis of vitamins B2, B6, and B12 along with antioxidant systems and their key precursor genes
cysM and B12-dependent-methionine synthase metH suggests that the ectosymbiont
requires increased levels of these vitamins to cope with oxidative stress (Fig. 6).

Evolutionary considerations. Anaerobic sulfur oxidation, increased symbiont prolifera-
tion, and downregulation of stress-related genes lead us to hypothesize that “Ca. T. oneisti”
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evolved from a free-living bacterium that mostly, if not exclusively, inhabited anoxic sand
zones. In support of this, the closest relatives of the nematode ectosymbionts are free-living
sulfur oxidizers thriving under anoxic conditions (i.e., Allochromatium vinosum, Thioflavicoccus
mobilis, and Marichromatium purpuratum) (6, 151). Eventually, advantages such as protection
from predators or utilization of host waste products (e.g., fermentation products, ammonia)
may have been driving forces that led to the “Ca. Thiosymbion”-Stilbonematinae symbioses.
As the association became more and more stable, the symbiont optimized (or acquired)
mechanisms to resist oxidative stress, as well as metabolic pathways to most efficiently exploit
the metabolic potential of oxygenated sand zones (mixotrophy, nitrogen assimilation, and
vitamin and cofactor biosynthesis). From the L. oneistus nematode perspective, the acquired
“symbiotic skin” enabled it to tolerate the otherwise poisonous sulfide and to inhabit sands vir-
tually devoid of predators but rich in decomposed organic matter.

MATERIALS ANDMETHODS
Sample collection. Laxus oneistus individuals were collected on multiple field trips (2017 to 2019)

at approximately 1-m depth from a sandbar off the Smithsonian Field Station, Carrie Bow Cay, in Belize
(16°48911.010N, 88°4954.420W). All the nematodes were extracted at the same location by gently stirring
the sand and pouring the supernatant seawater through a 212-mm mesh sieve. The retained meiofauna
was collected in a petri dish, and single worms of similar size (10 mm length, representing adult L. oneis-
tus) were handpicked by using forceps (Dumont 3; Fine Science Tools, Canada) under a dissecting micro-
scope. L. oneistus nematodes were identified based on morphological characteristics (152). Notably, all
collected L. oneistus nematodes had a white appearance. Upon extraction from the sand, which required
approximately 1 h per batch (50 nematodes) and 4 h for the up to 4 batches necessary to test one exper-
imental condition (200 nematodes), the nematodes were subjected to various incubation conditions as
described below.

The spatial distribution of L. oneistus as well as concentrations of sulfide (
P

H2S, i.e., the sum of H2S,
HS2, and S22), dissolved inorganic nitrogen (DIN; nitrate, nitrite, and ammonia), and dissolved organic
carbon (DOC) was determined in sediment cores at various depths (Fig. 1A; see also Table S1 and Text
S1 in the supplemental material).

Incubations for RNA sequencing (RNA-Seq). Batches of 50 L. oneistus individuals were collected
and incubated in triplicates or more under different oxygen concentrations during two field trips
(Fig. 1B and C). Namely, they were incubated for 24 h in the dark, in either the presence or absence of
oxygen, in 13-ml exetainers (Labco, Lampeter, Wales, UK) fully filled with 0.2-mm filtered seawater col-
lected from seawater overlying the sandbar inhabited by the nematodes. The oxic incubations consisted
of two separate experiments of low (hypoxic; three replicates in July 2017) and high (oxic; three repli-
cates in July 2017, three replicates in March 2019) oxygen concentrations. Here, all exetainers were kept
open, but only the samples with high oxygen concentrations were submerged in an aquarium con-
stantly bubbled with air (Air Pump Plus; Sera, Heinsberg, Germany). Oxic incubations started with around
195 mM O2 and reached an average of 188mM after 24 h. Hypoxic incubations started with around
115mM O2 but reached less than 60mM O2 after 24 h. This likely occurred due to nematode oxygen con-
sumption. The anoxic treatments comprised incubations to which either 11 mM sodium sulfide
(Na2S·9H2O; Sigma-Aldrich, St. Louis, MO, USA) was added (anoxic-sulfidic; three replicates in July 2017)
or no sulfide was supplied (anoxic; three replicates in July 2017, two replicates in March 2019), and
P

H2S concentrations were checked at the beginning and at the end (24 h) of each incubation by spec-
trophotometric determination following the protocol of Cline (Text S1). Anoxic incubations were
achieved with the aid of a polyethylene glove bag (AtmosBag; Sigma-Aldrich) that was flushed with N2

gas (Fabrigas, Belize City, Belize), together with incubation media and all vials, for at least 1 h before
closing. Dissolved oxygen inside the bag was monitored throughout the 24 h of each incubation using a
PreSens Fibox 3 trace fiber-optic oxygen meter and noninvasive trace oxygen sensor spots attached to
the exetainers (PSt6 and PSt3; PreSens, Regensburg, Germany). For exact measurements of

P
H2S and

oxygen, see Table S2A. The seawater used for all incubations had an initial concentration of nitrate and
nitrite of 4.2mM and 0.31mM, respectively (Text S1). Temperature and salinity remained constant
throughout all incubations, measuring 27 to 28°C and 33 to 34%, respectively. All worms were moving
after the 24-h incubations, indicating that they were alive. Each set of 50 worms was quickly transferred
into 2ml RNA storage solution (13.3mM EDTA disodium dihydrate [pH 8.0], 16.6mM sodium citrate
dihydrate, 3.5 M ammonium sulfate [pH 5.2]), kept at 4°C overnight, and finally stored in liquid nitrogen
until RNA extraction.

RNA extraction, library preparation, and RNA-Seq. RNA from symbiotic L. oneistus was extracted
using the NucleoSpin RNA XS kit (Macherey-Nagel, Düren, Germany). Briefly, batches of 50 worms in
RNA storage solution were thawed and the worms were transferred into 90ml lysis buffer RA1 contain-
ing Tris (2-carboxyethyl) phosphine (TCEP) according to the manufacturer’s instructions. The remaining
RNA storage solution was centrifuged to collect any detached bacterial cells (10min, 4°C, 16,100� g),
and pellets were resuspended in 10ml lysis buffer RA1 (plus TCEP) and then added to the worms in lysis
buffer. To further disrupt cells, suspensions were vortexed for 2 min followed by three cycles of freeze
(280°C) and thaw (37°C) and homogenization using a pellet pestle (Sigma-Aldrich) for 60 s with a 15-s
break after 30 s. Any remaining biological material on the pestle tips was collected by rinsing the tip
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with 100ml lysis buffer RA1 (plus TCEP). Lysates were applied to NucleoSpin filters, and samples were
processed according to the manufacturer’s instructions, including an on-filter DNA digest. RNA was
eluted in 20ml RNase-free water. To remove any residual DNA, a second DNase treatment was per-
formed using the Turbo DNA-free kit (Thermo Fisher Scientific, Waltham, MA, USA), RNA was then dis-
solved in 17ml RNase-free water, and the RNA quality was assessed using a Bioanalyzer (Agilent, Santa
Clara, CA, USA). To check whether all DNA was digested, real-time quantitative PCR using the GoTaq
qPCR master mix (Promega, Madison, WI, USA) was performed targeting a 158-bp stretch of the
sodB gene using primers specific for the symbiont (sodB-F, GTGAAGGGTAAGGACGGTTC; sodB-R,
AATCCCAGTTGACGATCTCC; 10mM per primer). Different concentrations of genomic “Ca. T. oneisti” DNA
were used as positive controls. The program was as follows: 1� 95°C for 2min, 40� 95°C for 15 s and 60°C
for 1min, 1� 95°C for 15 s, and 55°C to 95°C for 20min. Next, bacterial and eukaryotic rRNA was removed
using the Ribo-Zero Gold rRNA removal kit (Epidemiology) (Illumina, San Diego, CA, USA) following the man-
ufacturer’s instructions, but volumes were adjusted for low input RNA (153). In short, 125ml magnetic beads
solution, 32.5ml magnetic bead resuspension solution, 2ml Ribo-Zero reaction buffer, and 4ml Ribo-Zero re-
moval solution were used per sample. RNA was cleaned up via ethanol precipitation and dissolved in 9ml
RNase-free water, and rRNA removal was evaluated using the Bioanalyzer RNA Pico kit (Agilent, Santa Clara,
CA, USA). Strand-specific, indexed cDNA libraries were prepared using the SMARTer stranded RNA-Seq kit
(TaKaRa Bio USA, Mountain View, CA, USA). Library preparation was performed according to the instructions,
with 8ml of RNA per sample as input, 3-min fragmentation time, two rounds of AMPure XP Beads (Beckman
Coulter, Brea, CA, USA) cleanup before amplification, and 18 PCR cycles for library amplification. The quality
of the libraries was assessed via the Bioanalyzer DNA high-sensitivity kit (Agilent). Libraries were sequenced
on an Illumina HiSeq 2500 instrument (single-read, 100nucleotides [nt]) at the next-generation sequencing
facility of the Vienna BioCenter Core Facilities (VBCF; https://www.viennabiocenter.org/facilities/).

Genome sequencing, assembly, and functional annotation. The genome draft of “Ca. T. oneisti”
was obtained by performing a hybrid assembly using reads from Oxford Nanopore Technologies (ONT)
sequencing and Illumina sequencing. To extract DNA for ONT sequencing and dissociate the ectosym-
bionts from the host, approximately 800 Laxus oneistus individuals were incubated three times for 5min
each in TE buffer (10mM Tris-HCl [pH 8.0], 1mM disodium EDTA [pH 8.0]). Dissociated symbionts were
collected by 10-min centrifugation at 7,000� g and subsequent removal of the supernatant. DNA was
extracted from this pellet using the blood and tissue kit (Qiagen, Hilden, Germany) according to the
manufacturer’s instructions. The eluant was further purified using the DNA Clean & Concentrator-5 kit
(Zymo Research, Irvine, CA, USA), and the DNA was eluted twice with 10ml nuclease-free water.

The library for ONT sequencing was prepared using the ONT rapid sequencing kit (SQK-RAD002) and
sequenced on an R9.4 flow cell (FLO-MIN106) on a MinION for 48 h. Basecalling was performed locally with
ONT’s Metrichor Agent v1.4.2, and resulting fastq files were trimmed using Porechop v0.2.1 (https://github
.com/rrwick/Porechop). Illumina sequencing reads from a previous study (6) were made available by Harald
Gruber-Vodicka (MPI Bremen). Raw reads were filtered: adapters were removed and trimmed using BBDuk
(BBMap v37.22, https://sourceforge.net/projects/bbmap/), with a minimum length of 36 and a minimum Phred
score of 2. To keep only reads derived from the symbiont, trimmed reads were mapped onto the available ge-
nome draft (NCBI accession FLUZ00000000.1) using BWA-mem v0.7.16a-r1181 (154). Reads that did not map
were discarded. The hybrid assembly was performed using SPAdes v3.11 (155) with flags –careful and the ONT
reads supplied as –nanopore. Contigs smaller than 200bp and a coverage lower than 5� were filtered out
with a custom Python script. The genome completeness was assessed using CheckM v1.0.18 (156) with the
gammaproteobacterial marker gene set using the taxonomy workflow. The genome was estimated to be
96.63% complete and to contain 1.12% contamination and was 4.35Mb in length on 401 contigs with a GC
content of 58.7% and N50 value of 27,060bp.

The genome of “Ca. T. oneisti” was annotated using the MicroScope platform (157), which predicted
5,169 protein-coding genes. To expand the functional annotation provided by MicroScope, predicted
proteins were assigned to KEGG pathway maps using BlastKOALA and KEGG Mapper-Reconstruct
Pathway (158) and gene ontology (GO) terms using Blast2GO v5 (159) and searched for Pfam domains
using the hmmscan algorithm of HMMER 3.0 (160, 161). All functional annotations can be found in Data
Set S1. Furthermore, all genes, proteins, and pathways mentioned in the paper were manually curated
and can be searched by name in Data Set S1.

Gene expression analyses. Based on quality assessment of raw sequencing reads using FastQC
v0.11.8 (162) and prinseq-lite v0.20.4 (163), reads were trimmed and filtered using Trimmomatic v0.39
(164) and prinseq-lite as follows: 18 nucleotides were removed from the 59 end (HEADCROP), Illumina
adapters were removed (ILLUMINACLIP:TruSeq3-SE.fa:2:30:10), reads were trimmed when the average
quality of a five-base sliding window dropped below a Phred score of 20 (SLIDINGWINDOW:5:20), 39 poly(A)
tails were trimmed (-trim_tail_right 1), and only reads longer than 24 nucleotides were kept (MINLEN:25).
Mapping and expression analysis were done as previously described (165). Briefly, reads were mapped to the
“Ca. T. oneisti” genome draft using BWA-backtrack (154) with default settings, only uniquely mapped reads
were kept using SAMtools (166), and the number of strand-specific reads per gene was counted using HTSeq
in the union mode of counting overlaps (167). On average, 1.4� 106 (4.4%) reads uniquely mapped to the “Ca.
T. oneisti” genome. For detailed read and mapping statistics, see Table S3A.

Gene and differential expression analyses were conducted using the R software environment and
the Bioconductor package edgeR v3.28.1 (168–170). Genes were considered expressed if at least two
reads in at least two replicates of one of the four conditions could be assigned. Including all four conditions,
we found 92.8% of all predicted symbiont protein-encoding genes to be expressed (4,797 genes out of 5,169,
Data Set S1). Log2TPM (transcripts per kilobase million) values were calculated by log-transforming TPMs to
which library size-adjusted positive prior counts were added in order to avoid zero TPMs (edgeR function
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addPriorCount, prior.count=4). Log2TPM values were used to assess sample similarities via multidimensional
scaling based on Euclidean distances (R Stats package) (170) (Fig. 1C), and the average of replicate log2TPM val-
ues per expressed gene and condition was used to estimate expression strength. Median gene expression of
entire metabolic processes and pathways per condition was determined from average log2TPMs. A Wilcoxon
signed-rank test was applied to test for significantly different median gene expression between metabolic
processes and pathways (R Stats package).

For differential expression analysis, raw data were normalized by the trimmed mean of M-values
(TMM) normalization method (edgeR function calcNormFactors) (171), and gene-specific biological varia-
tion was estimated (edgeR function estimateDisp). Differential expression was determined using the
quasilikelihood F-test (edgeR functions glmQLFit and glmQLFTest) for pairwise comparisons (between
all four conditions) and comparing both anoxic conditions individually against the average for both oxic
conditions. Expression of genes was considered significantly different if their expression changed 2-fold
between two treatments with a false-discovery rate (FDR) of #0.05 (172). Throughout the paper, all
genes meeting these thresholds are either termed differentially expressed or up- or downregulated.
However, most follow-up analyses were conducted considering only differentially expressed genes
between the anoxic-sulfidic (AS) condition and the two oxygenated conditions combined (O [Results
and Fig. 1C]). For the differential expression analyses between all four conditions, see Data Set S1.
Heatmaps show mean-centered expression values to highlight gene expression change.

Bulk d13C isotopic analysis by Isoprime isotope ratio mass spectrometry (EA-IRMS). To analyze
the assimilation of carbon dioxide (CO2) by the symbionts in the presence or absence of oxygen, batches
of 50 freshly collected, live worms were incubated for 24 h in 150ml of 0.2-mm-filtered seawater, supple-
mented with 2mM (final concentration) either 12C-labeled (natural isotope abundance control) or 13C-la-
beled sodium bicarbonate (Sigma-Aldrich, St. Louis, MO, USA). In a second control experiment, 50 freshly
collected worms were killed by incubating them in a 2% paraformaldehyde/water solution for 12 h prior
to 24 h of incubation with 13C-labeled sodium bicarbonate (dead control).

All three incubations were performed in biological triplicates or quadruplets and set up under anoxic-
sulfidic and oxic conditions. Like the RNA-Seq experiment, the oxic incubations consisted of two separate
experiments of low (hypoxic) and high (oxic) oxygen concentrations. To prevent isotope dilution through
exchange with the atmosphere, both the oxic and anoxic incubations remained closed throughout the 24
h. The procedure was as follows: 0.2-mm-filtered anoxic seawater was prepared as described above and was
subsequently used for both oxic and anoxic incubations. Then, compressed air (DAN oxygen kit; Divers
Alert Network, USA) and 25mM sodium sulfide (Na2S·9H2O; Sigma-Aldrich, St. Louis, MO, USA) were injected
into the oxic and anoxic incubations, respectively, to obtain concentrations resembling the conditions
applied in incubations for the RNA-Seq experiment (see Table S2B for details about the number of repli-
cates, incubation conditions, and a compilation of the measurement data).

At the end of each incubation (24 h), the nematodes were weighed (0.3 to 0.7mg [dry weight]) into
tin capsules (Elemental Microanalysis, Devon, United Kingdom) and dried at 70°C for at least 24 h.
Samples were analyzed using a Costech (Valencia, CA, USA) elemental analyzer interfaced with a contin-
uous flow Micromass (Manchester, United Kingdom) Isoprime isotope ratio mass spectrometer (EA-
IRMS) for determination of 13C/12C isotope ratios. Measurement values are displayed in d notation (per
mille [%]). A protein hydrolysate, calibrated against NIST reference materials, was used as a standard in
sample runs. The achieved precision for d 13C was60.2 % (1 standard deviation of 10 replicate measure-
ments on the standard). Statistically significant differences were determined by applying one-way analy-
sis of variance (ANOVA), followed by Tukey’s pairwise comparisons.

Assessment of the percentage of dividing cells. Three individual nematodes per EA-IRMS incuba-
tion (see Table S2B for O2 and H2S measurements at the beginning and at the end of the incubations)
were fixed, and ectosymbionts were dissociated from their hosts as described for Raman microspectro-
scopy (Text S1). A 1.5-ml amount of each bacterial suspension per condition was applied to a 1% aga-
rose-covered slide (173), and cells were imaged using a Nikon Eclipse NI-U microscope equipped with
an MFCool camera (Jenoptik). Images were obtained using the ProgRes Capture Pro 2.8.8 software
(Jenoptik) and processed with ImageJ (174). Bacterial cells were manually counted (.600 per sample)
and grouped into constricted (dividing) and nonconstricted (nondividing) cells based on visual inspec-
tion (28). The percentage of dividing cells was calculated by counting the total number of dividing cells
and the total amount of cells per condition. The chi-square hypothesis test of independence was applied
to test for a significant relationship between percentage of dividing cells and incubation condition.

Data availability. The assembled and annotated genome of “Ca. T. oneisti” has been deposited at
DDBJ/ENA/GenBank under the accession no. JAAEFD000000000. RNA-Seq data are available at the Gene
Expression Omnibus (GEO) database and are accessible through accession number GSE146081.
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