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Abstract: Bladder pathologies, very common in the aged population, have a considerable negative
impact on quality of life. Novel targets are needed to design drugs and combinations to treat diseases
such as overactive bladder and bladder cancers. A promising new target is the ubiquitous Rho
GTPase Rac1, frequently dysregulated and overexpressed in bladder pathologies. We have analyzed
the roles of Rac1 in different bladder pathologies, including bacterial infections, diabetes-induced
bladder dysfunctions and bladder cancers. The contribution of the Rac1 protein to tumorigenesis,
tumor progression, epithelial-mesenchymal transition of bladder cancer cells and their metastasis
has been analyzed. Small molecules selectively targeting Rac1 have been discovered or designed,
and two of them—NSC23766 and EHT 1864—have revealed activities against bladder cancer. Their
mode of interaction with Rac1, at the GTP binding site or the guanine nucleotide exchange factors
(GEF) interaction site, is discussed. Our analysis underlines the possibility of targeting Rac1 with
small molecules with the objective to combat bladder dysfunctions and to reduce lower urinary tract
symptoms. Finally, the interest of a Rac1 inhibitor to treat advanced chemoresistance prostate cancer,
while reducing the risk of associated bladder dysfunction, is discussed. There is hope for a better
management of bladder pathologies via Rac1-targeted approaches.

Keywords: bladder cancer; Rho GTPase; bladder dysfunction; Rac inhibitors; metastasis; overactive
bladder; Rac1 protein

1. Introduction

Chronic bladder diseases are frequent and have a significant impact on quality of
life. Unfortunately, the current treatment options for these diseases are limited and often
unsatisfactory. Deficiency of bladder functions generally lead to failure to store urine or
empty the bladder, and these defects can cause a variety of problems, such as incontinence,
frequent urination, urinary retention, and bladder pain. One of the most common urinary
pathologies is idiopathic overactive bladder (OAB), frequently diagnosed in elderly popula-
tions (Figure 1). OAB is a condition where the bladder muscle contracts involuntarily. It is
characterized by storage-related lower urinary tract symptoms (LUTS), such as urgency in-
continence and nocturia. The prevalence of OAB is high in developed countries, estimated
to 10–16% of the population and increasing with age [1]. The economic impact of the disease
is huge, with an estimated total national cost of OAB reaching USD 82.6 billion in 2020 for
the US only [2,3]. The pathology affects both sexes, although the proportion of women
suffering from OAB (notably wet OAB associated with urgency urinary incontinence) is
apparently higher than in men [4].
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Figure 1. Anatomy of the bladder and the main associated pathologies. 

The pharmacotherapy of OAB relies essentially on the use of two β3-adrenergic ago-
nists: vibegron (Gemtesa®, FDA-approved in 2020) and mirabegron (Myrbetriq®, FDA-ap-
proved in 2012) with a comparable limited efficacy, even if vibegron, with less side effect 
on blood pressure, is often preferred to mirabegron [5–8]. A few other options are availa-
ble, including the use of botulinum toxin A, neuromodulation with implantable devices, 
and laser treatment but their efficacy is limited [9–11]. The search for novel treatment mo-
dalities and drugs continues. New compounds with β3-adrenergic agonistic properties are 
regularly proposed [12–14], as well as novel molecular targets, such as antagonists of 
TRPM8 (transient receptor potential melastatin 8) channels [15] or other TRPM-type chan-
nels [16]. 

New therapeutic targets for OAB at the levels of the bladder urothelium, detrusor 
muscle, spinal cord and brain have been proposed [17,18]. This is the case of Rho guano-
sine triphosphatases (Rho GTPases), which correspond to a family of GTP-binding pro-
teins largely implicated in regulating actin cytoskeleton dynamics and several cellular sig-
naling pathways. There are 20 Rho GTPases divided into eight subfamilies, based on their 
structure and mechanism of enzymatic activity [19,20]. Among them, the Rac subgroup 
includes the four members, designated Rac1-3 and RhoG, involved in a variety of mecha-
nisms and human pathologies (Figure 2). 

 
Figure 2. Rac1 structure and activity. (a) Classification of Ras GTPases. (b) A molecular model of 
Rac1 interacting with p21 (arfaptin) (PDB: 1I4D) with the GTP/GDP (cyan) and GEF (blue) binding 
sites illustrated [21] (c) Cycle of Rac1 activation. The GTPase cycles between an active GTP-bound 

Figure 1. Anatomy of the bladder and the main associated pathologies.

The pharmacotherapy of OAB relies essentially on the use of two β3-adrenergic
agonists: vibegron (Gemtesa®, FDA-approved in 2020) and mirabegron (Myrbetriq®, FDA-
approved in 2012) with a comparable limited efficacy, even if vibegron, with less side
effect on blood pressure, is often preferred to mirabegron [5–8]. A few other options are
available, including the use of botulinum toxin A, neuromodulation with implantable
devices, and laser treatment but their efficacy is limited [9–11]. The search for novel
treatment modalities and drugs continues. New compounds with β3-adrenergic agonistic
properties are regularly proposed [12–14], as well as novel molecular targets, such as
antagonists of TRPM8 (transient receptor potential melastatin 8) channels [15] or other
TRPM-type channels [16].

New therapeutic targets for OAB at the levels of the bladder urothelium, detrusor
muscle, spinal cord and brain have been proposed [17,18]. This is the case of Rho guanosine
triphosphatases (Rho GTPases), which correspond to a family of GTP-binding proteins
largely implicated in regulating actin cytoskeleton dynamics and several cellular signaling
pathways. There are 20 Rho GTPases divided into eight subfamilies, based on their structure
and mechanism of enzymatic activity [19,20]. Among them, the Rac subgroup includes
the four members, designated Rac1-3 and RhoG, involved in a variety of mechanisms and
human pathologies (Figure 2).
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Figure 2. Rac1 structure and activity. (a) Classification of Ras GTPases. (b) A molecular model of
Rac1 interacting with p21 (arfaptin) (PDB: 1I4D) with the GTP/GDP (cyan) and GEF (blue) binding
sites illustrated [21] (c) Cycle of Rac1 activation. The GTPase cycles between an active GTP-bound
state and an inactive GDP-bound state. Guanine nucleotide exchange factors (GEF) turn on signaling
by catalyzing the exchange from G-protein-bound GDP to GTP, whereas GTPase activating proteins
(GAP) terminate signaling by inducing GTP hydrolysis. GEF and GAP regulate the activity of
Rac1 and other small guanine nucleotide-binding (G) proteins to control cellular functions.
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Dysregulations of Rac signaling have been reported in atherosclerosis [22], neurode-
velopmental disorders [23], rheumatic diseases [24], pulmonary hypertension [25] and
different types of cancers, including urothelial carcinoma [26,27]. Protein Rac1 (RAS-related
C3 botulinum toxin substrate (1) is considered a prime target to combat a variety of solid
tumors and certain onco-hematological malignancies. The role and targeting of Rac1 in
cancers have been debated in recent years [28–31], but the specific implication of Rac1 in
OAB and bladder cancer has not been assessed.

Here, we provide an analysis of the role of Rac1 in major bladder pathologies and a
pharmacological approach to target the Rac1 pathway. Specifically, we have analyzed the
role of Rac1 in bacterial infections of the bladder, in diabetes-induced bladder dysfunctions
and in the various steps of bladder cancer (tumorigenesis, tumor progression, metastasis).
In the three situations, Rac1 plays significant roles, and the targeting of the protein could be
a convenient approach to reduce the progression of those diseases. Rac1 inhibitors could
be useful to combat these different pathologies, in particular, to tackle OAB associated with
cancer.

2. Rac1 Structure and Function

Like many other GTPases, Rac1 switches between an inactive GDP-bound and an
active GTP-bound state during signal transduction [32] (Figure 2c). The protein is in-
volved in a wide range of cellular and physiological processes via a multiplicity of protein
partners, among which a variety of guanine nucleotide exchange factors (GEFs) and GTPase-
activating proteins (GAPs) essential to control Rac1 activity [33]. In addition, a diversity of
effector proteins can modulate Rac1 function, such as the serine-threonine kinases PAK1
(p21-activated kinase 1), MLK-1-3 (mixed-lineage kinases), p70 S6 kinase, CaMKII and
many other kinases [20]. The local availability of GTP in cells plays a role in the control
of Rac1 activity [34]. The expression and subcellular localization of Rac1 is also regulated
at the post-transcriptional level via structural modifications, including phosphorylation,
ubiquitination, adenylylation, and lipidation (prenylation, geranylgeranylation, palmi-
toylation) [35]. The lipid anchor is positioned in a hypervariable region, distant from the
guanine nucleotide-binding domain, but contributing importantly to the interaction with
effectors [36]. The protein is generally attached to the plasma membrane, but it can also be
found in the nucleus and/or mitochondria [37]). At the membrane level, Rac1 can form
nanoclusters acting as lipid-based signaling platforms [38].

The GDP/GTP loading status and cycling rate of Rac1 determine the protein activity.
The nucleotide cycling process is impacted by the intrinsic conformational flexibility of
the protein and the Mg2+ abundance [39]. The level of expression of the protein can
vary significantly. An epigenetic downregulation of Rac1 has been reported in patients
suffering from depression [40]. Conversely, Rac1 is often overexpressed and hyperactivated
in cancers, notably in breast, colon, skin (melanoma), liver and lung cancers [31,41–43].
Moreover, Rac1 gain-of-function mutations have been identified in recent years, such as
the two somatic mutations Rac1P29S and Rac1A159V, respectively detected in melanoma and
in head-and-neck cancers [44–46], and occasionally observed in colon, thyroid, and lung
cancers [47]. These variants represent fast cycling mutants that contribute to expand tumor
phenotypes and confer resistance to targeted therapies. There exists also an alternatively
spliced isoform designated Rac1b, with versatile functions, generally involved in tumor
progression, but occasionally described as being engaged in the blockade of tumors [48,49].
To our knowledge, neither the fast-cycling oncogenic mutant enzymes nor the spliced
variant Rac1b have been reported in bladder cancer or bladder pathologies.

3. Rac1 in Non-Cancerous Bladder Pathologies
3.1. Rac1 and Bacterial Infections of the Bladder

The ubiquitous Rho GTPase Rac1 plays key roles in the regulation of the cytoskeleton
dynamic and cell motility in general. The protein is associated with the formation of
protrusions at leading edge of migrating cells (lamellipodia, filopodia), whatever the
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cell type. As such, Rac1, actively participates to control cellular proliferation and cell
mobility. It also plays a role in bacterial attachment to host cells and infections, notably
in bladder infections caused by uropathogenic Escherichia coli [50]. Urinary tract infection
(UTI) produced by uropathogenic E. coli (UPEC) promotes the sensitization of bladder
afferent sensory neurons and the virulence factors produced by those bacteria contribute to
the sensitization of bladder afferents in UTI [51]. The uroepithelial invasion by the bacteria
occurs through lipid rafts, and Rac1 associated with caveolin-1 in those rafts is required for
the bacterial invasion [52]. Rac1 activation enhances the accumulation of actin filaments
at sites of bacterial entry (Figure 3). The use of bladder epithelial cells overexpressing
constitutively activated Rac1, or conversely, cells with the dominant negative form, has
clearly demonstrated that Rac1 activation is essential to the invasion of bladder epithelial
cells by type 1 fimbriated E. coli. Moreover, the inhibition of Rac-1 activation via a Toll-like
receptor 4 (TLR4)-mediated mechanism was found to suppress bacterial invasion [53].
In fact, bacterial lipopolysaccharides engage the TLR4/Rac1/Akt signaling pathway to
enter cells and mediate the proliferation of vascular smooth muscle cells [54]. Once in
the cells, the bacteria produce a toxin CNF1 (cytotoxic necrotizing factor type (1), which
constitutively activates different Rho GTPases, including Rac1 critical to phagocytosis, to
promote further infection [55]. The key role of Rac1 in the invasion of bladder epithelial
cells by uropathogenic bacteria suggests that a negative regulation of Rac1 can be an option
to reduce and combat infections of the urinary bladder. This can be achieved directly with
Rac1-targeting small molecules (discussed below) or indirectly with compounds interfering
with Rac1-mediated actin polymerization, as shown with the dietary flavonoid luteolin, for
example [56].
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Figure 3. Rac1 plays a role in the invasion of bladder epithelial cells by type 1 fimbriated E. coli.
Bacterial lipopolysaccharides activate the TLR4/Rac1/Akt signaling pathway to enter cells vascular
smooth muscle cells and colonize the bladder tissue [54]. The Rac1 GTPase-mediated contributes to
actin cytoskeleton remodeling and regulation of actin filaments.

Rac1 is used by different types of microbial organisms to enter cells. This is also the
case for the Mycobacterium bovis Bacille Calmette–Guerin (BCG) strain, which is used as
a vaccine for tuberculosis. The BCG infection of primary airway epithelial cells has been
shown to induce Rac1 up-regulation and to cause actin redistribution [57]. In bladder cancer
cells, the entry of the BCG was found to rely on the expression of Rac1 and its effector
kinase Pak1 (as well as Cdc42) via a process of micropinocytosis [58]. A BCG-induced
enhanced expression of Rac1 has been reported in a study with infected macrophages, both
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in vitro and in vivo. The mycobacteria activated the p38K/JNK/b1-integrin/Rac1 signaling
cascade in the frame of the infection [59].

The treatment of recurrent urinary tract infections usually relies on the use of in-
travenous antibiotic therapy (which can lead to complications due to allergy or drug-
resistance). Repeated intravesical drug delivery is also possible, but it is more challeng-
ing [60]. The efficacy is these treatments is suboptimal at present. There is a need for new
therapeutic options, new drugs and novel approaches in general to address the pathophysi-
ology of the disease [61].

3.2. Rac1 and Diabetes-Induced Bladder Dysfunctions

Urinary bladder dysfunction is a complication in diabetes mellitus (DM) [62]. Diabetes
causes bladder remodeling leading to uropathy in a mulitfactorial way, with neurogenic
and myogenic detrusor overactivity and changes in transmitter regulation leading to a
hyper-excitability of the detrusor [63]. DM is also a risk factor for bladder cancer prognosis
and outcome [64]. Diabetic cystopathy (urinary disturbances) is one of the most common
complications of diabetes mellitus [65]. The pathophysiology of the disease is complex and
multifactorial, but it seems clear that Rac1 plays a role in the inflammatory mechanism, via
binding to and the activation of the NOD-like receptor protein 3 (NLRP3) inflammasome.
Indeed, under hyperglycemia conditions, Rac1 can promote NLRP3 inflammasome activa-
tion and induces cell damage [66]. The oxidative stress that occurs in the bladder of diabetic
subjects causes oxidative damage to the urothelial and smooth muscle cells. A markedly
enhanced expression of Pak1 (RAC1/p21 activated kinase 1) has been observed in the
smooth muscle of diabetic mouse bladders versus the control group [67]. In a rat model of
streptozotocin-induced diabetic bladder, an increased expression of Rac1 has been observed
by immunohistochemistry. The Rac1 immunoreactivity was found to increase significantly
in all the layers of the bladder tissue (epithelium, lamina propria, and tunica muscularis)
for the diabetic group compared to the control group [68]. This study is important because
it also showed that a Rac1 inhibitor (NSC23766) can inhibit the contractile responses of the
bladder detrusor smooth muscle. This pharmacological aspect is discussed further below.

Interestingly, the expression of Rac1 in bladder tissue is increased not only due to
the diabetes context, but it is also enhanced mechanically through the induced and cyclic
hydrodynamic pressure exerted on bladder smooth muscle cells [69]. The expression of
both Rac1 and phospho-Rac1 was found to be increased when a hydrodynamic pressure
was mechanically applied onto human bladder smooth muscle cells. The expression of
Rac1 downstream effectors, such as phospho-MEK1/2 and ERK-1/2, was also increased,
and the effects were abrogated when cells were treated with a small molecule Rac1 inhibitor
(NSC23766) or a Rac1 siRNA [69]. Rac1 seems to play an important role in the proliferation
and response of bladder smooth muscle cells to hydrodynamic pressure. The data suggest
that, in this situation, the use of Rac1 inhibitors could permit a reduction in bladder
dysfunctions.

Another line of evidence showing that Rac1 plays an important role and is required
for active contraction in smooth muscle comes from experiments using a conditional
Rac1 knockout mouse strain. In this case, the loss of about 50% of Rac1 protein in the
urinary bladder resulted in a significant decrease in the contractile responses to different
agonists, without causing a remodeling of the vessels in the bladder tissue [70]. Similar
effects were obtained using Rac1 inhibitors, as discussed below. In a recent study, the
silencing of Rac1 expression in human bladder smooth muscle cells was found to reduce
cell viability by 50–70% after 48 h and to increase the percentage of cells in (early/late)
apoptosis compared to wild-type cells. The effects were associated with alterations in actin
organization [71].

There are currently multiple pharmacological options to treat diabetes-induced bladder
dysfunctions, notably using α1-adrenoceptor and muscarinic receptor antagonists, β3-
adrenoceptor agonists and phosphodiesterase type 5 inhibitors [72]. However, here also,
newer treatments and drugs are needed to improve long-term efficacy.
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4. Rac1 in Bladder Cancer

The Rac1 gene, like other Rho-related genes, is frequently overexpressed in urothelial
cell carcinoma, and the altered expression of the corresponding proteins plays an important
role in the genesis and progression of cancers of the urinary bladder [73,74]. The gene
overexpression and alterations not only concern Rac1 but also the associated regulatory
elements, such as kinases PAK1 and PAK4 (P21 activated kinase 1/4), which are amplified
and/or overexpressed in muscle-invasive bladder carcinomas [75–77]. A moderate or
strong positive expression of both Rac1 and PAK1 are considered independent factors
for shortened disease-specific survival time in patients with upper urinary tract urothe-
lial carcinoma [78]. Numerous studies have reported alterations of Rac1 expression and
function in bladder cancer, and the expressed protein has been associated with a variety
of functional alterations. For the sake of clarity, we can refer to four categories of effects,
briefly discussed in turn hereafter.

4.1. Rac1 in Bladder Tumorigenesis

A bioinformatic analysis of mRNA from patients with urothelial carcinoma of the
bladder has revealed the presence of a shorter 3’-UTR (3′-untranslated region) isoform of
Rac1 and this specific isoform was associated with an upregulation of Rac1 protein expres-
sion (Figure 4). The formation of this isoform was apparently mediated by the recruitment
of the cleavage stimulation factor 2 (CSTF2) at a polyadenylation site of Rac1, thereby re-
ducing the recruitment of two transcription factors (AFF1 and AFF4), thus causing defects
in elongation. The short 3’UTR isoform of Rac1 apparently plays an essential oncogenic role
in the pathogenesis of bladder cancer [79]. The enhanced expression of Rac1 is certainly not
the sole key element contributing to bladder carcinogenesis; the modulation of the full Rho-
GTPase axis has been implicated in bladder cancer tumorigenesis [80]. Rac1 plays a role in
the carcinogenesis of various cancers, including bladder cancer but also hepatocarcinoma,
breast cancer, non-small-cell-lung cancers and others [81,82].
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Figure 4. Proposed mechanism for the generation of short-3′-UTR (3′-untranslated region) isoform
of Rac1 in the presence of a high level of the cleavage/polyadenylation factor CSTF2 (cleavage
stimulation factor (2). The RAC1 short-3′UTR isoform has oncogenic functions and increases ag-
gressiveness of cancer cells from urothelial bladder carcinoma UBC). The dual high expression of
CSTF2 and Rac1 with short 3′-UTR predicts worse prognosis for UBC patients [79]. The proximal and
distal polyadenylation sites (pPAS, dPAS) are located within the terminal exon. CDS, protein-coding
sequence.
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4.2. Rac1 in Bladder Cancer Cells Proliferation and Tumor Progression

The Rac1 protein is one of the elements that contributes to the proliferation and
dissemination of bladder cancer cells. The Rac1 axis is a regulatory mechanism of bladder
cancer progression. A recent study has shown that the adaptor protein RacGAP1 inactivated
GTP-bound Rac1 in bladder cancer, but the activation was inhibited by protein SHCBP1
(SHC-binding protein 1), which is a regulator of EGF (epidermal growth factor). Via this
relay, SHCBP1 can inactivate Rac1 and promote bladder cancer progression [83]. The
EGF/EGFR ligand/receptor couple is frequently overexpressed in bladder cancers, with
squamous bladder cancers qualified as being EGFR-addicted [84]. This trend encourages the
use of EGFR-targeted drugs to treat these cancers [85,86]. EGFR signaling generally follows
the PAK1/Rac1 route to convey the signal and to regulate tumor progression [87,88]. EGF is
known to stimulate both Rac1 and Pak1 in vascular smooth muscle cells (Figure 5) [89]. It is
therefore possible to slow down the proliferation and migration of bladder cancer cells via
a brake on Rac1. This can be done directly with Rac1 inhibitors or indirectly with molecules
capable of controlling Rac1 expression and function. This is the case, for example, for the
microRNA miR-142-3p, which interacts directly with Rac1 in bladder cancer cells to inhibit
their proliferation but also their migration and invasion [90].
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4.3. Rac1 in Epithelial-Mesenchymal Transition (EMT) of Bladder Cancer Cells

EMT is a biological process through which epithelial cells lose their epithelial phe-
notype and gain mesenchymal features. This process reflects the aggressive and invasive
character of the tumor and is often correlated with metastasis. EMT is vital for the progres-
sion of bladder cancer tumors because it plays a crucial role in cancer cells spreading and
invasion [91]. Numerous signaling proteins contribute to this cellular differentiation pro-
cess and Rac1 is one of them [92]. The targeting of the EGFR-Rac1 axis can permit to reverse
EMT [93]. The activation of Rac1 in the frame of the EMT implicates various modulating
proteins, such as SPAG9 (sperm-associated antigen 9) and HEF1 (human enhancer of fila-
mentation 1), which are both connected to Rac1 expression [94]. Other factors are implicated
in Rac1-mediated EMT, such as the metabolic enzyme AKR1C1 (aldo-keto reductase 1C1),
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which mediates the invasive potential and drug resistance of metastatic bladder cancer cells
(Figure 5). The inhibition of AKR1C1 reduces the invasion/metastatic potential of bladder
cancer cells via the regulation of the Rac1/Src/Akt pathway and modulation of the produc-
tion of inflammatory cytokines, such as interleukin 1β (IL-1β) [95]. The link between EMT
and Rac1 has been studied more deeply in other types of cancers, notably in lung and colon
cancers [96,97]. The contribution of Rac1 to the inflammation process shall not be neglected.
Different studies have pointed out a marked reduction in the production of inflammatory
cytokines upon the inhibition of the activation of Rac1, directly or through intermediate
effectors [98–100]. Rac1 is a major actor of the crosstalk between the inflammatory state and
tumor cell migration [101]. The expression and activation of Rac1 has frequently been found
to enhance the production of pro-inflammatory cytokines (IL-1β, but also IL-6, IL-8 and
TNFα) in different pathological situations [102,103]. For example, the Rac1-GEF interaction
inhibitor 1D-142 reduces the nuclear translocation of the transcription factor NFκB induced
by the cytokine TNFα in NSCLC cells, and this activity contributes significantly to the anti-
tumor effect of this guanidine-type Rac1 inhibitor in vivo [104]. Rac1 can interact directly
with specific cytokines, such as IL-37, which controls the membrane translocation of the
protein and its signaling activities, at least in lung adenocarcinoma [105]. In this context,
more attention should be paid to the alternatively spliced isoform Rac1B, the expression
of which can be induced by pro-inflammatory extracellular signals in polarized colorectal
cancer cells [106,107]. Rac1 protects cells from undergoing EMT in pancreatic and breast
epithelial cells. Similar studies should be conducted with bladder cancer cells.

4.4. Rac1 in Bladder Cancer Metastasis

The role of Rac1 activation in tumor metastasis has been amply discussed, notably in
the frame of various solid tumor types [28,46,108]. A comparable situation can be under-
lined in bladder cancer. Rac1 is a major player of the metastasis of bladder cancer [109]. The
invasion and migration of bladder cancer cells depend, to some extent, on the activation
status of Rac1 and the activity of its regulators, notably the aforementioned Rac1-binding
protein aldoketo reductase 1C1 (AKR1C1), up-regulated in metastatic human bladder can-
cer specimens. AKR1C1 antagonists, such as the anti-inflammatory drug flufenamic acid,
can be used to decrease the invasion potential of metastatic bladder cell lines [95]. A high
activity of GTP-bound Rac1 (coupled with high expression of Pak1) has been measured
in the lymph node metastasis of urothelial carcinoma of the upper urinary tract, thus
providing a potential prognostic marker for this disease, but also reinforcing the idea that
targeting Rac1 can reduce dissemination of the tumor [110].

Rac1 plays roles in tumorigenesis, tumor progression, EMT and metastasis of bladder
cancer cells. The GTPase has been also implicated in other hallmarks of cancer, notably
in stemness, immune escape and drug resistance [30,111]. These aspects have not been
significantly studied in the frame of bladder cancer. For these reasons, we will not discuss
further these aspects here, but they provide additional indirect lines of evidence supporting
the interest of targeting activated Rac1 in bladder cancer.

The management of bladder cancer is excessively complex and variable, depending
on the tumor types and stages. Endoscopic transurethral resection of bladder tumor
represents the standard of care for non-muscle invasive bladder cancer. However, for
more advanced bladder cancers, chemotherapy is required. Immunotherapeutic strategies
for bladder cancers have also been largely developed in recent years through the use of
immune checkpoint inhibitors (antibodies), adoptive cell therapy, cytokine-based therapy
and antibody–drug conjugates [112]. However, there is always a need for new drugs and
combinations to improve treatment efficacy and patients’ survival.

5. Small Molecules Targeting Rac1 to Treat Bladder Pathologies

Until recently, Rho GTPases were deemed somewhat undruggable due to the promis-
cuity of the GDP/GTP binding pocket and the complexity of their regulatory mecha-
nisms [113]. However, over the past seven years, significant progress has been made in
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deciphering the structural and dynamic properties of these GTPases. The use of NMR and
other analytical methods has greatly helped to better comprehend the dynamic of Rac1 and
its capacity to switch between active and inactive states [114]. Molecular modeling can
also facilitate the identification and design of Rho GTPases inhibitors [115]. There exists
now a panoply of Rac1-targeted small molecules, more or less specific to Rac1, and more
or less potent at inhibiting GTP/GDP exchange or at modulating the interaction between
Rac1 and GEF/GAP effectors [113,116]. These inhibitors can be separated in two groups:
(i) compounds that block the interaction between Rac1 and GEF proteins, and (ii) molecules
that bind to the GDP/GTP binding site of Rac1 in a GEF-independent manner. There are
several molecules in both categories, as mentioned in Figure 6. Here, we will focus on a
single representative of each group: the prototypic Rac1 inhibitor NSC23766, considered a
blocker of the GEF-pocket of Rac1, and the thioquinoline derivative EHT 1864, which binds
primarily to the nucleotide binding pocket, thus blocking Rac1 activation. Both compounds
have been used and studied in the context of bladder pathologies.
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5.1. GEF-Targeted Rac1 Inhibitor NSC23766 in Bladder Pathologies

NSC23766 was identified a long time ago as a Rac-specific small-molecule inhibitor [117].
The compound is moderately efficient at inhibiting Rac1 in cells (IC50 = 95.0 µM in MDA-
MB-435 cells), but it represents a useful laboratory tool to block lamellipodial protrusion
and cell migration in various cell types [118]. In human bladder smooth muscle cells,
NSC23766 was found to decrease cell proliferation, and the effect was associated with a re-
duced expression of phospho-Rac1, as well as a repressed phosphorylation of MEK1/2 and
ERK1/2, as observed with a Rac1 siRNA [69]. NSC23766 functions as a blocker of the
interaction between Rac1 and GEF proteins, such as Trio and Tiam1 (T-lymphoma invasion
and metastasis factor 1). A recent analysis of the binding of NSC23766 to the Rac1-Tiam1 in-
terface has identified the key residues involved in the interaction, notably D38, N39,
Y64 and L67 [119]. Our own docking analysis, performed with a different interface (the
Rac1-p21 complex (PDB: 1I4D)), showed that the same amino acid sequences of Rac1 are
implicated in the interaction with NSC23766. In our case, residues N39, Y64 and L67 were
important, but also, several adjacent residues such as N57 and L70 were implicated in
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H-bonding interaction with the small molecule (Figure 7). The local configuration may
slightly vary from one GEF to another, but globally, the binding zone remains the same.
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NSC23766 is a bona fide Rac1 inhibitor, but its selectivity has been questioned. The
compound has been shown to act as a competitive antagonist at muscarinic acetylcholine
receptors, in addition to its Rac1 inhibitory properties [120]. It has been shown to also
antagonize N-methyl-D-aspartate (NMDA) receptors in neurons of rodent species [121].
The compound is very useful at the research level to block Rac1 signaling implicated
in the activation of smooth muscle contraction [70], notably to reduce the contractile
activity in detrusor smooth muscle in diabetic rats [68]. Recently, in a model of isolated
organ, NSC23766 was found to markedly inhibit detrusor contractions, competitively
antagonizing muscarinic receptors [122]. It is a robust pharmacological tool, but in terms of
drug development, more potent and more specific small molecules targeting Rac1 should
be developed to reduce off-target effects and the risk of unwanted toxicities.

5.2. GTP-Antagonizing Rac1 Inhibitor EHT 1864 in Bladder Pathologies

The second small molecule discussed here, EHT 1864 (Figure 8), is a potent inhibitor of
Rac1-dependent lamellipodia formation in cells. It binds well to all Rac isoforms, Rac1 (and
Rac1b), Rac2, and Rac3 (KD = 40–60 nM) to inhibit Rac downstream signaling [123,124]. As
such, the compound has been largely studied for its capacity to reduce growth of a variety
of cell types, including smooth muscle cells and cancer cells, but investigations using cells
with a bladder origin are rare. Like NSC23766, EHT 1864 can inhibit contractions of isolated
detrusor muscle tissue, but unlike NSC23766, EHT 1864 does not competitively antagonize
muscarinic receptors [122]. The compound has been found to inhibit detrusor contractions
induced by the selective agonist of prostaglandin H2 (PGH2)/thromboxane A2 (TxA2) (TP)
receptor agonist U46619, whereas NSC23766 was inefficient in this system [122]. Thus, both
compounds can regulate detrusor smooth muscle contractions, but they apparently exhibit
a divergent mechanism of action.
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The pharmacological profile of EHT 1864 may be better adapted than that of NSC23766
to develop a Rac1-targeting drug. Analogs have been made, such as the imidazole deriva-
tive GYS32661 (developed by Revere Pharmaceuticals (Figure 8)) endowed with potent
anticancer properties. In GYS32661, the g-pyrone (or 4-pyranone) moiety of EHT 1864 has
been replaced with an imidazole ring. This structural modification considerably rein-
forces the Rac1-binding capacity of the compound. The docking analysis indicated that
GYS32661 is much better adapted for binding to the GTP/GDP site of Rac1 than its par-
ent compound EHT 1864 (Figure 8). The calculated empirical energy of interaction (∆E)
values reached −74.7 and −143.1 kcal/mol for EHT 1864 and GYS32661, respectively
(with the PDB structure 1MH1 of Rac1). GYS32661 is currently developed as an anticancer
agent, essentially positioned to treat breast and colon cancers [125], but this potent Rac1 in-
hibitor could be envisioned for the treatment of other malignancies associated with an
overactivation of Rac1, such as bladder cancers.

There is no doubt that both EHT 1864 and NSC23766 are valid Rac1 inhibitors, but they
target a different binding area of Rac1 and exhibit divergent effects in some cell systems.
Whether this is due to the mode of interaction with Rac1 and the modulation of the
signaling pathway, or due to off-target effects, remains to be determined. For example, an
off-target effect on the chemokine receptor CXCR4 has been identified with NSC23766 [126],
and at high concentration (100 mM), both EHT 1864 and NSC23766 can exert critical off-
target effects on platelet functions, at least in a murine model [127]. Nevertheless, both
compounds can be used to reduce growth and actin organization of bladder smooth muscle
cells [128]. Rac1 is a valid target in several bladder pathologies, and there is now clear
evidence that the protein is not “undruggable”. A few chemical series of Rac1-targeting
small molecules have been proposed. There is room for the screening and design of novel
compounds targeting this GTPase. Potent Rac1 inhibitors with nanomolar affinity for the
protein and a high selectivity, such as those cited in recent publications and patents [30,129],
can be considered for further development.

6. Rac1 Outside Bladder

The present review is centered around the role of Rac1 in bladder pathologies and
the pharmacological targeting of the protein. However, evidently, the GTPase plays roles
well beyond bladder pathologies and outside the genitourinary district. The protein is
implicated in a large variety of pathologies, from various types of cancers [30,31] to neurode-
velopmental disorders [128], to cite only two categories. Rac1 contributes to the regulation
of blood pressure and the pathogenesis of pulmonary hypertension [25]. The protein is
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implicated in asthma-associated airway remodeling [130] and other pathophysiological
processes. The focus on bladder presented here shall not underestimate the potential benefit
of targeting Rac1 in other pathologies.

7. Conclusions and Perspectives

In cells, the GTP/GDP-bound dynamic cycle of Rac1 is like a crowded roundabout
used by many signaling factors and implicated in multiple cellular functions. For these
reasons, it is not surprising that this Rho GTPase is now viewed as a potential target to treat
various oncologic and non-oncologic diseases [30]. The list of pathologies addressable with
Rac1 inhibitors has expanded significantly in recent years to include diabetes, neurodevel-
opmental disorders, pulmonary hypertension, asthma and other pathologies [25,128–131].
In cancer, Rac1 is receiving more and more attention given the large implications of the
protein in metastasis, drug resistance and immune modulation [43,46,132]. Our analy-
sis indicates that Rac1 plays a significant role in several bladder dysfunctions and can
be considered a target in three pathologic situations: bacterial infections of the bladder,
diabetes-induced bladder diseases and bladder cancer. These pathologies can be inter-
connected. As mentioned above, diabetes mellitus is a risk factor for bladder cancer
prognosis [64], and urinary incontinence is a common complication of bladder cancer [133].

Different Rac1 antagonists have been reported, such as EHT 1864 and NSC23766
evoked here, and a few other molecules. To our knowledge, two compounds are currently
in preclinical development for the treatment of cancers: the imidazole derivative GYS32661
(Revere Pharmaceuticals, Boston, MA, USA) and the dual Cdc42/Rac inhibitor MBQ-
167 (MBQ Pharma, Puerto Rico, US). The latter compound has been shown to inhibit
Rac1/2/3 in MDA-MB-231 triple-negative breast cancer cells (IC50 = 103 nM) in addition to
inhibiting the other GTPase Cdc42 (cell division control protein 42) (IC50 = 78 nM) [134]. It
is a potent anticancer agent, at least at the preclinical level, currently positioned to treat
triple-negative breast cancer [135,136]. However, the scope of tumors addressable with
such a pan-Rac inhibitor is large and includes breast, colon, liver, lung, and other tumor
types [132]. In this context, it would be interesting to consider further chemo-resistant
prostate cancer, at least for two reasons. First, because Rac1 is usually overactivated in
prostate cancer and Rac1 inhibition has been shown to reverse chemoresistance [137–139].
Second, because prostate cancer is frequently associated with bladder deficiency and lower
urinary tract symptoms (LUTS). The prevalence of OAB symptoms has been found to
be higher in patients receiving brachytherapy (internal radiation therapy) for prostate
cancer compared to other treatment modalities [140]. LUTS and OAB are common in
men with localized prostate cancer undergoing radical prostatectomy [141,142]. There
is a link between prostatectomy and urinary bladder hypertrophy/dysfunctions [143].
Additionally, in women, the prevalence of urinary symptoms (OAB, urinary incontinence)
is high in breast cancer patients treated with oral hormone therapy [144]. Moreover, urinary
incontinence and OAB rates were found to be higher after gynecologic cancer surgery than
in the general female population [145]. For these different reasons, the use of Rac1 inhibitors
in cancer-associated bladder pathologies would make sense. A Rac1 antagonist, preferably
those directly targeting the GDP/GTP binding site, could be an interesting option to
treat advanced chemoresistance prostate cancer while reducing the risk of associated
bladder dysfunction. This could be conducted via a chemotherapy regimen associating
a Rac1 inhibitor and an evaluation of the bladder dysfunction symptom score. There are
methods and tools to evaluate this score [146].

In summary, the present analysis highlights the interest and feasibility of targeting
Rac1 to combat bladder pathologies, both non-oncologic bladder diseases such as OAB and
bladder cancers. Multiple roles for Rac1 in bladder diseases have been evidenced in recent
years. There is no doubt that this GTPase contributes to the dynamic of bladder muscle
cells and bladder physiology in general. Targeting this Rho GTPase is a challenge, but
doors have been opened with the design of selective inhibitors. Rac1 antagonists should
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experience a bright development in the coming years, and hopefully, patients will benefit
from these advances in the near future.
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