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Abstract

In this article, we review two challenging computational questions in protein science: neoantigen prediction and protein structure
prediction. Both topics have seen significant leaps forward by deep learning within the past five years, which immediately
unlocked new developments of drugs and immunotherapies. We show that deep learning models offer unique advantages, such
as representation learning and multi-layer architecture, which make them an ideal choice to leverage a huge amount of protein
sequence and structure data to address those two problems. We also discuss the impact and future possibilities enabled by those
two applications, especially how the data-driven approach by deep learning shall accelerate the progress towards personalized
biomedicine.

Keywords: neoantigen prediction, protein structure prediction, deep learning

Introduction
Proteins are the central units of biological activities in liv-
ing organisms. The functions or malfunctions of proteins
are directly related to a wide range of diseases and drugs.
Thanks to recent advances in sequencing technologies
and community efforts to maintain public data resources
[1, 2], large volumes of data have been accumulated and
continue to grow at exponential rates. However, a num-
ber of computational questions remain, especially some
that have been considered as the greatest challenges in
science for several decades.

In 2005, in its 125th anniversary issue [3], the Science
Magazine listed protein structure prediction as one of
125 big open questions: ‘Out of a near infinitude of
possible ways to fold, a protein picks one in just tens of
microseconds. The same task takes 30 years of computer
time’. In 2017, on a different battlefront [4], the Nature
journal appealed for solutions to the problem of neoanti-
gen identification: ‘Personalized immunotherapy is all
the rage but the neoantigen discovery and validation
remains a daunting problem’. While it may first appear to
be a new topic, the solutions to neoantigen identification
are actually built on long-standing research areas that
have spanned several decades, including next-generation
sequencing [5], protein and peptide identification [6, 7],
antigen presentation [8, 9] and immune epitope predic-
tion [10, 11]. Once solved, both of these open questions

will not only fundamentally change biomedical research,
but also immediately unlock new developments of drugs
and therapies. Fortunately, the progress has been signif-
icantly accelerated during the past few years and today
we are closing in to the final solutions to both questions
[12–18]. It is interesting to look back along these jour-
neys, especially the common tool, deep learning, that has
enabled such quick progress. The key factor responsible
for this progress is the ability of deep learning to infer
unknown and implicit features from an unprecedented
amount of data by using models of unprecedented scales
[19–21].

Major breakthroughs of deep learning in Computer
Vision and Natural Language Processing have been
rapidly adopted and become the cores of popular
real-world applications such as autonomous vehicles,
search and recommendation systems, digital personal
assistants, etc. Those applications span across many
industries, from automotive to banking and finance,
retail and e-commerce, among others [19]. As a branch
of machine learning, deep learning models essentially
predict an output y from an input x, for example,
detecting a pedestrian in a camera image or classifying
whether an email is spam or not.

In our view, deep learning offers three unique advan-
tages over conventional machine learning techniques.
First, deep learning models are fed with raw data and
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automatically learn the data representations suitable for
a prediction task. This form of representation learning is
fundamentally different from the traditional approach
of carefully handcrafting/engineering features based on
domain knowledge. Second, to learn multiple levels of
representation, from simple to complex, deep learning
models are composed of multiple nested layers of inter-
mediate variables, where the outputs of one layer are
fed into the inputs of the next, more abstract layer. This
multi-layer architecture, which gives deep learning its
name, allows highly complex functions and representa-
tions to be learned from the raw data. Lastly, deep learn-
ing performance robustly scales up with the size of data
and models, and in fact, its successes have been mainly
driven by the combination of large datasets, large models,
and massive computational power [19–21]. Any research
areas that are aligned with the above three advantages
will greatly benefit from deep learning. For example, in
the field of biomedical research, we are now witnessing
a deep learning revolution fuelled by major advances
in many sub-fields, including genomics [22], proteomics
[23], protein structure determination and design [12],
drug design and discovery [24], and immunotherapy
[20, 21].

In this review, we focus on the applications of deep
learning to address two challenging questions in protein
science: neoantigen identification and protein structure
prediction. These two topics share three commonalities.
First, they have direct implications to the development
of drugs and immunotherapies [3, 4, 25]. Second, they
have been long considered as optimization problems
rather than learning problems, and have not been fully
addressed [6, 26–28]. Third, they have the advantage of a
tremendous amount of data that has been accumulated
for over decades and is ripe for deep learning applica-
tions. Protein data, from sequences to structures, are
often not interpretable by the naked eye, even for human
experts. Hence, representation learning directly from raw
data is key to uncover nontrivial insights. Since proteins
are produced at the highest level of the central dogma,
one could expect a rich and highly complex amount of
information encoded in proteins [29]. More importantly,
in order to perform biological functions, proteins fold
into four different levels of structures, including primary,
secondary, tertiary, and quaternary. Thus, deep learning
models with their multi-layer design are a natural choice
to learn multiple levels of representation of proteins.

Indeed, the last few years have seen a number of deep
learning breakthroughs that bring us close to the final
solutions to the problems of neoantigen identification
and protein structure prediction. For example, Figure 1
demonstrates major leaps forward by deep learning in
de novo peptide sequencing and template-free protein
structure prediction, two representative tasks of the two
problems. The solution to the neoantigen identification
problem provides a bird’s-eye view of several deep learn-
ing advances in proteomics and immunopeptidomics
(Figure 2), including de novo peptide sequencing [30–35],

tandem mass spectrum and retention time prediction
[18, 36–40], protein and peptide identification with
data-independent acquisition (DIA) mass spectrometry
[18, 32, 39, 40], and MHC binding and immunogenicity
prediction for T-cell epitopes [9, 41–43] (MHC: major
histocompatibility complex). For the problem of protein
structure prediction, we shall cover protein contact and
distance prediction [44], contact and distance-based
tertiary structure prediction [13, 45, 46], end-to-end
training [47] and protein model refinement [48]. Finally,
we shall discuss the impact and future possibilities
unlocked by these two technologies, with a special focus
on research topics that can benefit from deep learning
applications.

Neoantigen identification
Neoantigens belong to a broader class of peptides called
HLA-bound peptides. HLA, or human leukocyte antigen,
is a complex of genes that encode MHC proteins, which
transport peptides to the cell surface and present them to
T cells. Neoantigens are encoded by tumor-specific muta-
tions; hence, they can be recognized by T cells as ‘foreign’
to trigger an immune response. As a result, neoantigens
represent ideal targets for cancer vaccines and other
types of immunotherapy, and in fact, neoantigen-based
cancer vaccines are being tested in clinical trials [14, 15,
25]. Identifying neoantigens is very challenging due to
their low abundance, the complex heterogeneity and the
limited amount of native tumor tissues, the genetic vari-
ability and the high specificity of antigen presentation
pathway and T cell immunity [16, 25]. Thus, this problem
requires us to integrate different technologies from all
fronts of proteomics and genomics to address, potentially
giving rise to a new class of neoantigen-based cancer
therapies.

Figure 2 describes a personalized workflow for neoanti-
gen identification and highlights the analysis tasks
where deep learning can be applied. First, HLA-bound
peptides, including neoantigens, are captured directly
from native tumor tissues by immunoprecipitation
and purification assays, and then sequenced by liq-
uid chromatography tandem mass spectrometry (LC–
MS/MS) [16]. Due to the low abundance of neoantigens
and the limited amount of native tumor tissues, data-
independent acquisition (DIA) is preferred over tradi-
tional data-dependent acquisition (DDA) as the former
can produce a complete profile of all peptides in a
sample, thus increasing the sensitivity of neoantigen
identification. Since neoantigens carry mutations, their
amino acid sequences are not presented in standard
databases. They can be identified directly by de novo
sequencing from MS/MS spectra. Or, in a different
proteogenomic approach, tumor DNA mutations are
detected by genome sequencing and translated into
customized protein databases and spectral libraries,
which are then used to search MS/MS spectra to find
the neoantigens. Once identified, candidate neoantigens
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Figure 1. Accuracy improvements of de novo peptide sequencing and template-free protein structure prediction over the past 20 years. Orange boxes
indicate major leaps forward by the respective deep learning methods. CASP: Critical Assessment of Protein Structure Prediction.

Figure 2. Personalized workflow for neoantigen identification. TCR: T cell receptor; WGS/WES: whole genome/exome sequencing. HLA: human
leukocyte antigen; MHC: major histocompatibility complex. DDA: data-dependent acquisition; DIA: data-independent acquisition. LC–MS/MS: liquid
chromatography with tandem mass spectrometry.

are evaluated based on their predicted MHC binding
affinity and immunogenicity and then selected for
further vaccine development. In the next sections,
we shall discuss deep learning applications for de
novo sequencing, MS/MS spectrum and retention time
prediction, database and spectra library search, and MHC
binding affinity and immunogenicity prediction.

De novo sequencing of neoantigens
The task of de novo sequencing is to reconstruct the
amino acid sequence of a peptide from a given MS/MS
spectrum and the peptide mass, without assisting
databases. It is the method of choice to identify novel
or mutated peptides, such as neoantigens. An MS/MS
spectrum is a collection of masses and intensities of
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fragment ions acquired from the peptide fragmentation
inside a mass spectrometer. The mass differences
between the fragment ions may correspond to the
masses of amino acids and hence can help to determine
their identities (Supplementary Figure S1). Thus, de
novo sequencing can be formulated as an optimization
problem where one needs to find the best amino acid
sequence to interpret the most fragment ions in the
spectrum, subject to the given peptide mass. Graph
theory and dynamic programming have been used for
nearly 20 years to address this problem [6, 28, 49, 50]. In
the first approach [49], the spectrum is translated into a
graph where nodes correspond to fragment ions and two
nodes are connected if their mass difference is equal to
the mass of an amino acid. Then one needs to find the
highest scoring paths through the graph. In the second
approach [6], a dynamic programming algorithm is used
to efficiently interrogate all possible combinations of
amino acids for the given peptide mass, assign reward
or penalty to the observed or missing fragment ions, and
find a sequence to maximize the total score recursively.

In a pioneering study published in 2017 [31], Tran
et al. introduced deep learning to de novo sequencing.
Their model, DeepNovo, is fundamentally different from
the conventional optimization approach. DeepNovo
sequences a peptide by iteratively predicting one amino
acid after another, similarly to composing a sentence by
predicting one word after another in Natural Language
Processing [19]. Since its iterative framework is simple
and errors can be accumulated, DeepNovo relies on two
neural networks to make highly accurate predictions
at each iteration. First, a convolutional neural network
[19] (CNN) coupled with amino acid embedding is used
to model the masses and intensities of fragment ions.
This model takes into account both fragment ion and
amino acid types, whereas previous scoring methods
only considered the former. Learning the amino acid
representation is very important because the intensities
of fragment ions are determined by the bonding between
adjacent amino acids. The second model of DeepNovo
uses a recurrent neural network (RNN) and amino acid
embedding to learn sequential patterns of peptides. The
key idea here is to treat protein sequences as a language,
where 20 amino acid letters represent its alphabet.
The sequential patterns contribute a new dimension
of information on top of the spectrum information
and can help to overcome the problem of noisy or
missing fragment ions in the spectrum. Overall, the deep
learning approach by DeepNovo significantly increased
the accuracy of de novo sequencing, resulting in 38.1–
64.0% more accurate peptides than previous methods
[31].

This learning approach has shifted the focus from
algorithms to data and models, which can be selected
and trained to become application-specific, species-
specific, or individual specific (i.e. personalized). This
is especially advantageous for de novo sequencing of
new neoantigens and antibodies because they are just

different from those in existing databases by only a
few amino acids, and hence, a model can learn from
the existing ones to predict the new ones. Indeed, Tran
et al. [17] proposed to train a personalized deep learning
model on normal HLA-bound peptides of an individual
patient and use it to predict neoantigens of that patient.
They were able to expand the immunopeptidomes of
five melanoma patients by 5–15% and discover novel
neoantigens with T-cell responses. Similar results were
demonstrated for antibodies [30, 31] where a deep
learning model was trained specifically on known
antibodies and then used for de novo assembly of new
antibodies, achieving 97.5–100% coverage and 97.2–99.5%
accuracy.

A number of deep learning models have been proposed
to further improve de novo sequencing. SMSNet [35]
used mass tags and an assisting database to refine de
novo sequencing results. pNovo3 [33] predicted MS/MS
spectra of de novo peptides and compared them to the
experimental ones to rank de novo peptides. PointNovo
[34] applied a compact representation of MS/MS data and
an order-invariant neural network to keep the computa-
tional complexity unchanged, regardless of the resolu-
tion of the mass spectrometers.

All of those deep learning tools are open source and
implemented in Python and Tensorflow or Pytorch (Sup-
plementary Table S1). They also include pre-trained mod-
els that were used in the respective publications. How-
ever, those models are often not updated after publica-
tion and may not be good enough for new datasets. The
best way to use those tools is to retrain their models to
adapt to new sources of data, rather than expecting a
general model that works for different datasets. Indeed,
training/retraining is an important feature of deep learn-
ing, given massive amounts of data coming from several
types of instruments, diverse species and different exper-
iment designs. One can even train a personalized deep
learning model to predict neoantigens for each individual
patient, as we have discussed above.

Accurate prediction of MS/MS spectra and
retention times to improve neoantigen
identification
Neoantigens can also be identified using a proteoge-
nomic approach [16, 51]: genome mutations are used to
build a customized database consisting of both normal
and mutated protein sequences; MS/MS spectra are then
searched against that database to identify neoantigens.
Accurate prediction of theoretical MS/MS spectra and
retention times for candidate database peptides is
critical because a search engine compares those theo-
retical ones to an experimental MS/MS spectrum and its
retention time to identify the best candidate peptide.
The intensities and retention times of fragment ions
depend on many factors, including fragment ion types,
precursor charges, instruments, fragmentation methods
and collision energies, amino acids and their peptide
bonds. Traditional methods such as MassAnalyzer [52]
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and MS-Simulator [53] were developed based on the
kinetic model and mobile proton hypothesis to simulate
the peptide fragmentation process. However, their
accuracies are limited at ∼80% and they are difficult
to apply to different fragmentation methods like higher-
energy collisional dissociation (HCD), electron-transfer
dissociation (ETD) or electron-transfer and higher-energy
collision dissociation (EThcD). A machine learning-
approach was proposed in PeptideART [54] using a two-
layer feed-forward neural network and handcrafted
features, including amino acid compositions, ion masses,
N- and C-termini, and physicochemical properties
such as hydrophobicity or helicity. The accuracy was
improved to near 89% for major b- and y-ions, but
overall, it is still lower than that of within-experiment
replicates.

Inspired by the successes of deep learning in Natural
Language Processing, several studies have applied deep
learning models to predict MS/MS spectra and retention
times from peptide sequences, including pDeep [36],
DeepRT [37], Prosit [18, 38], DeepDIA [39], Dia-NN40,
etc. Among them, pDeep was the first deep learning
tool and outperformed traditional tools across different
instruments and fragmentation methods. One of the key
ideas is learning the representation vectors of amino
acids, which can automatically capture physicochemical
properties of amino acids rather than manually selecting
features such as hydrophobicity or helicity as in tradi-
tional methods. Another key idea is using bidirectional
long short-term memory networks to automatically
capture the dependencies of sequential patterns in the
whole peptide, rather than manually selecting which
amino acid positions to consider. These two models
together improved the accuracy of predicted fragment
ions to ∼95%. Furthermore, the models were able to
reveal the fragmentation behaviors between amino acids
and to distinguish isobaric amino acids, e.g. isoleucine
and leucine, which have the same mass and cannot be
differentiated by traditional search engines.

In addition to model architectures, significant improve-
ments of deep learning also come from the massive
amount of training data. For instance, Prosit was trained
on synthetic peptide libraries of 550 000 tryptic peptides
[38] and 300 000 non-tryptic peptides [18] from the
ProteomeTools project, making it one of the most
comprehensive deep learning models for spectrum and
retention time prediction. Predicted MS/MS spectra and
retention times were reported to be nearly identical
to the experimental ones, with Pearson correlation
coefficients >0.99. Those accurate predictions of Prosit
substantially increased the sensitivity of database search
engines, resulting in 5–35% more peptide identifications.
Moreover, Wilhelm et al. [18] showed that such accurate
predictions improved the identification of HLA-bound
peptides by up to 7-fold. Dozens of additional immuno-
genic neoantigens were also discovered from melanoma
patients, much higher than previously reported by
standard database search [16, 18].

A list of deep learning tools for MS/MS spectrum and
retention time prediction and their availability are pro-
vided in Supplementary Table S2. Notably, in addition to
the open source code, an online tool is also available for
Prosit as part of the ProteomeTools project. The predicted
spectra and retention times can also be used to rescore
the database search results with MaxQuant [55] and
Percolator [56]. The online tool comes in handy for those
who need quick predictions for small datasets, without
having to go through the troubles of model training and
implementation.

DIA mass spectrometry to boost sensitivity of
neoantigen detection
DIA strategies allow unbiased fragmentation of all
precursor ions within a wide window of m/z and retention
time, thus producing a complete profile of all peptides in
a sample [57–59]. This is crucial to address the problem
of low abundance of neoantigens in tumor tissues
[60]. However, DIA spectra are highly multiplexed as
they contain fragment ions of multiple peptides. The
prevalent approach for DIA analysis is to search DIA
spectra against spectral libraries of known peptides to
identify the best matching peptides [61–63]. Thus, its
performance depends significantly on the availability
of spectral libraries, which in turn may depend on a
variety of experimental conditions and are costly to
obtain. In silico spectral libraries, which include MS/MS
spectra and retention times predicted by deep learning,
can be built directly from protein databases at much
less cost than experimental spectral libraries. They are
also easier to recalibrate and transfer across different
types of peptides and instruments. Gessulat et al. [38]
showed that Prosit in silico spectral libraries could
replace experimental spectral libraries and give the
same DIA identification results on different species
and instruments. More importantly, Pak et al. [60]
showed that DIA immunopeptidomics workflows using
Prosit in silico spectral libraries of HLA-bound peptides
could achieve higher sensitivity and better neoantigen
discovery than the DDA approach. In silico spectral
libraries of HLA-bound peptides are especially valuable
because existing HLA spectral libraries are limited while
HLA alleles are among the most genetically diverse
regions of human genome.

Deep learning models have also been applied to learn
coeluting patterns of precursor and fragment ions in DIA
spectra, which are then used for direct DIA database
search [40] and DIA de novo sequencing [32]. The capabil-
ity to recognize shapes and objects of deep learning gives
it advantages over other methods, e.g. using Pearson cor-
relation, for discriminating target and decoy precursors,
or for detecting and removing interfering fragment ions
[40, 59]. The combination of DIA and de novo sequencing
is an ideal solution to simultaneously address both the
low abundance and the mutations of neoantigens. Tran
et al. reported nearly 2x more HLA-bound peptides by
applying de novo sequencing on top of standard DIA
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database search [32]. However, DIA de novo sequencing
is very challenging due to the highly multiplexed nature
of DIA spectra, and currently deep learning remains the
only solution to this problem.

MHC binding affinity and immunogenicity
prediction
Once identified, candidate neoantigens are evaluated
based on their predicted MHC binding affinity and
immunogenicity, as these two properties determine
the likelihoods that a neoantigen is presented on the
cell surface and is recognized by T cells, respectively.
Neural networks have been used for MHC binding
prediction for nearly 20 years [8]. There is a great
body of literature on this topic and readers can refer
to comprehensive reviews [64, 65] and common tools
such as NetMHC [8, 9], MHCflurry [42], MixMHCpred
[66] for more details. NetMHC was one of the earliest
and currently is still one of the most popular tools
for MHC binding prediction. In this method, neural
networks were applied to combine multiple encod-
ing schemes of peptide sequences, including sparse
encoding, Blosum encoding, and hidden Markov model
encoding. The authors found that different encoding
schemes provided complementary representations of
amino acids, while multi-layer neural networks could
capture high-order sequence correlations between
amino acids. NetMHC is available as an online tool
that takes input protein sequences and HLA alleles
of interest, and then predicts a list of peptides, their
binding affinities and their ranks compared to random
peptides.

Initially, MHC binding prediction tools were used to
predict candidate neoantigens from somatic mutations
obtained from RNA-seq of the tumor [14, 15, 25], without
mass spectrometry involved. Recent improvements of
immunoassays and mass spectrometry for immunopep-
tidomics have enabled direct identification of HLA-
bound peptides from the cell surface, both for cell lines
and for native tumor tissues [16]. This has prompted a
large number of studies that used mass spectrometry
to improve MHC binding prediction [42, 43, 66–69].
Most of them focused on two approaches: (i) using
endogenous (naturally presented) peptides identified
by mass spectrometry to account for the whole antigen
presentation pathway instead of just MHC binding and
(ii) using pan-allele models to address the unbalanced
and the limited availability of data for many HLA alleles.
Notably, neural networks still remain as the core model
in most of those studies.

Protein structure prediction
Computational protein structure prediction is a very
challenging problem and many methods have been
developed in the past decades. They can be broadly
divided into two categories: template-based modeling
(TBM) [70–75] and template-free modeling (FM) [46, 76–
78]. As their names suggest, TBM predicts the structure

of a protein by copying and refining the experimental
structures of one or multiple similar proteins (called
templates), while FM predicts the protein structure
without explicitly copying from a whole template. Even
just a few years ago, TBM was the most common method
for protein structure prediction as evidenced by several
popular tools [79, 80], whereas the accuracy of FM on
most proteins was far from satisfactory [81]. Machine
learning has been applied to protein structure prediction
for a long time [82–85], but effective deep learning
methods for FM have been developed only recently [13,
44, 46].

Inter-residue contact prediction for tertiary
structure prediction
The revolution of protein structure prediction started
with inter-residue contact prediction. Two residues are
assumed to form a contact if they are spatially close
to each other. In principle if a reasonable number of
native contacts can be identified for a protein, its ter-
tiary structure can be rebuilt with accurate topology
[86]. Contact prediction has been challenging for a long
time and its precision was very low before, e.g. 27%
for top L/5 precision in CASP11[87] (the 11th Critical
Assessment of Structure Prediction) by a meta-predictor
[88] that integrates several global statistical methods
through supervised machine learning where L is pro-
tein sequence length and ‘top L/5 precision’ denotes the
percentage of correctly predicted contacts among the
top L/5 predicted ones. Global statistical methods [89]
shed some light on contact prediction for proteins with
thousands of sequence homologs. However, they do not
fare well on a large number of protein families without
any experimental structures since these families do not
have so many sequence homologs. Even for proteins
with many sequence homologs, global statistical meth-
ods usually can only predict a small percentage of correct
contacts, which alone may not be sufficient to yield high-
resolution tertiary structure prediction [85, 90]. Super-
vised machine learning in principle shall outperform
global statistical methods since the former integrates
both sequence and structure information while the latter
purely makes use of sequence information, but back
then the advantage of supervised learning over global
statistical methods is small if there is any especially
when the protein under prediction has many sequence
homologs [85, 88, 91].

Deep belief network (DBN) was attempted for contact
prediction in 2012 [92, 93], but it performed similarly to
traditional machine learning methods and thus drew lit-
tle attention from the community. Only until 2016 in the
RaptorX-Contact program [94], Xu’s group demonstrated
a major step forward in contact prediction and contact-
based tertiary structure prediction by using a fully deep
convolutional residual neural network (ResNet) [44],
as shown in Figure 3a. By learning from thousands of
experimentally solved protein structures, ResNet greatly
reduced the number of sequence homologs needed for
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Figure 3. Deep network architectures of (a) RaptorX and (b) AlphaFold2 for protein structure prediction. The three blue arrows in (b) show important
differences of AlphaFold2 from RaptorX and other methods.

satisfactory contact prediction, doubling or even tripling
the precision over traditional methods on the CASP13
hard test proteins [45]. Recent studies have shown that
ResNet was able to predict accurate contacts and correct
folds for most proteins with more than 30 non-redundant
sequence homologs [95, 96]. One of the major differences
between DBN and RaptorX’s ResNet is that the former
predicts inter-residue contacts one by one while the
latter predicts the whole contact matrix simultaneously.
That is, ResNet predicts contacts by making use of
protein global information while DBN does not. The
residual learning module in ResNet is critical for the
construction of a very deep neural network to capture
protein global information.

Xu’s group has shown that the contacts predicted by
ResNet can be used to build tertiary structures of correct
folds for many (large) proteins without good templates in
PDB [44, 94]. In addition, this group has also shown that
a ResNet model trained without any membrane proteins
worked well on membrane protein structure prediction

[97] and that a ResNet model trained on individual pro-
tein chains could be applied to protein complex contact
prediction [98, 99]. These results suggest that ResNet
predicts protein contact and tertiary structure not simply
based upon sequence similarity and that protein com-
plex structure prediction may also be addressed by a
similar deep learning method.

Inter-residue distance prediction for tertiary
structure prediction
Protein distance matrix encodes finer-grained informa-
tion than contact matrix and thus may lead to more
accurate tertiary structure prediction. Further, inter-
residue distance is metric while contact is not, so a deep
learning method trained by distance matrices can learn
more physical constraints than a method trained by
contact matrices. However, for a long time inter-residue
distance prediction has not received as much attention
as contact prediction, possibly because back then even
contact prediction was already very challenging. In 2012,
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Xu’s group applied shallow neural networks (≤5 layers)
to predict inter-residue discrete distance distribution and
then convert it to distance potential for protein decoy
ranking [100], protein alignment [101] and conformation
sampling [102]. After successfully applying deep ResNet
to contact prediction, Xu extended his RaptorX-Contact
program to discrete distance prediction and showed that
ResNet-predicted distance might greatly improve both
template-based [103] and template-free protein struc-
ture modeling [45, 46]. In CASP13, DeepMind’s AlphaFold1
predicted on average the best protein 3D models for the
hard targets using ResNet-predicted distance potential
[13]. With accurate distance prediction, protein 3D
models can be built within minutes or hours on a single
Linux workstation or even a laptop computer using
distance geometry or gradient descent optimization
instead of time-consuming conformation sampling [46,
104]. The latest study shows that a better-engineered
RaptorX may predict correct folds for 80% of the CASP13
hard test proteins [95]. Some studies have capitalized
on ResNet’s inherent ability to predict arbitrary inter-
residue relationships, such as inter-residue orientation
[104] and hydrogen bonds [105], which may help improve
protein tertiary structure prediction. Other studies have
also tried real-valued distance prediction [106–109], but
it did not show better protein 3D models than discrete
distance prediction.

Attention-based deep learning for protein
structure prediction
Attention-based deep neural networks (e.g. transformer)
were first applied to self-supervised learning of protein
sequences [110, 111]. The sequence embedding or atten-
tion matrices produced by the self-supervised learning
models can be used to deduce inter-residue contacts with
accuracy close to that of the global statistical methods. In
CASP14, DeepMind’s AlphaFold2 achieved a very impres-
sive result by using attention-based neural networks and
supervised end-to-end training [112], predicting correct
folds for more than 90% of the CASP14 hard test pro-
teins. As shown in Figure 3b, AlphaFold2 used attention-
based neural networks to model both multiple sequence
alignments (MSAs) and inter-residue interaction matrix
(e.g. contact/distance matrix). A few CASP14 groups have
also added attention layers into ResNet [113] for distance
prediction. In principle, attention-based neural networks
are better than ResNet in capturing extra long-range
inter-residue interactions and thus yield more accurate
tertiary structure prediction. AlphaFold2 differed from
RaptorX in that the inter-residue interaction matrix was
also used to regenerate MSA embedding iteratively. To
explicitly model the triangle inequality of distance (i.e.
distance is metric), AlphaFold2 used a novel triangle
attention mechanism to model the correlation of three
residues.

A major innovation in AlphaFold2 is that instead of
using predicted inter-residue distance matrix to build

protein 3D structure, it employs an attention-based neu-
ral network (and ResNet) to directly predict (backbone
and side chain) atom 3D coordinates from the protein
sequence embedding and inferred inter-residue interac-
tion matrix, which makes it possible to conduct an end-
to-end training. By doing so, physical constraints of a
protein structure can be better learned by deep learning
models and the prediction error of a protein 3D model
can be directly propagated back to the network input and
thus, greatly improve prediction accuracy. End-to-end
training was also explored by RGN [47], NEMO [114] and
Jones’ group [115], but AlphaFold2 first demonstrated
that this strategy indeed worked well on protein struc-
ture prediction. AlphaFold2 has also integrated protein
model refinement (called recycling in AlphaFold2) into
its end-to-end pipeline. Such a recycling strategy takes
the currently predicted structure model (and other infor-
mation such as MSAs and templates) as input and pro-
duces an improved structure model. Finally, AlphaFold2
employs a self-distillation strategy to retrain its deep
model by using a large number of well-predicted pro-
tein structures. Nevertheless, it needs a large amount
of computing resources to implement and train a com-
plete AlphaFold2 pipeline, which are not available for
most protein structure prediction research groups. Very
recently, Baker’s group implemented a similar network as
AlphaFold2, with accuracy better than current ResNet-
based methods but still worse than AlphaFold2 [116].

Template-based modeling and integrating
templates into deep learning
Template-based modeling (TBM) consists of two major
steps: sequence-template alignment and 3D struc-
ture modeling from alignment. Lately, several deep
learning models (e.g. ResNet) have been developed to
substantially improve sequence-template alignment
for remotely similar templates [74, 103, 117]. ResNet-
predicted contact and distance have also been used to
improve sequence-template alignment [74, 103, 117–119].
With very similar templates, traditional methods such
as HHblits [73] and CNFpred [120] may already perform
well on sequence-template alignment and thus deep
learning is not essential for this step. A few years ago
TBM was usually the first choice for protein structure
prediction, but now FM may outperform TBM for many
proteins unless very similar templates are available [74].
As such, improving TBM of a protein may not lead to
substantial improvement in its final structure prediction
since FM may produce a better prediction. However, when
similar templates are available, integrating sequence-
template alignment and template (backbone angle and
distance matrix) information into deep networks may
help improve 3D structure prediction, especially when
the protein under prediction is large and does not
have many sequence homologs. Such an idea was first
implemented in the RaptorX-DeepModeller server in
CASP13 [45, 74] and then adopted by a few other groups
in CASP14 such as AlphaFold2 and Baker’s group [121]. It
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was shown that with template information AlphaFold2
may improve by a good margin the structure prediction
of some proteins with fewer than 100 sequence homologs
[112].

Protein model refinement
Protein model refinement is the last step in protein struc-
ture prediction and popular methods, such as Feig’s, are
built upon molecular dynamics simulation [122]. Very
recently, Baker’s group applied ResNet to predict the
local and global quality of a protein model and inter-
residue distance error, and then used it to guide pro-
tein model refinement [48]. However, this method needs
extensive conformation sampling, possibly because it
does not fare well in predicting inter-residue distance
information. Xu’s group developed GNNRefine [123] that
applied deep graph neural networks to predict inter-
residue distance distribution from an initial model and
then rebuilt the refined 3D models using the predicted
distance information. GNNRefine achieved comparable
accuracy as Baker’s method, and both of them slightly
underperformed Feig’s method on the CASP14 test set.
However, GNNRefine is two to three orders of magnitude
faster than the other two methods, because it is able to
predict inter-residue distance more accurately and thus
does not need extensive protein conformation sampling
to produce better refined models. Both Baker’s method
and GNNRefine may refine a protein model iteratively.
That is, given an initial protein model GNNRefine outputs
one or several refined models, which then can be fed into
GNNRefine again for further refinement. The recycling
module in AlphaFold2 can also be interpreted as a model
refinement module. This recycling module is better than
GNNRefine (and Baker’s method) is that the former is
an end-to-end system while GNNRefine is not. Another
difference is that the recycling module directly outputs
atom 3D coordinates while GNNRefine outputs inter-
residue distance and then use PyRosetta [124] to generate
atom 3D coordinates (which is also why GNNRefine is not
an end-to-end system).

In summary, protein structure prediction has been
revolutionized by deep learning including ResNet and
attention-based networks. For a very good percentage of
proteins AlphaFold2 may predict their structures with
accuracy comparable to that of experimental techniques.
In particular, AlphaFold2 may yield a confident predic-
tion for 58% of human protein residues [125]. However,
current successful structure prediction methods includ-
ing AlphaFold2 still have some limitations. In particular,
they fail on many orphan proteins, which do not have any
sequence homologs [126]. They do not fare well on some
very large, multi-domain proteins [125] and intrinsically
disordered proteins either.

As mentioned before, a deep learning model trained
on individual protein chains may be used to predict
inter-protein contacts [98, 99]. However, complex con-
tact and structure prediction is not fully resolved by
deep learning although recently a few AlphaFold2-based

methods are developed to predict complex structures
[127, 128]. One major bottleneck with complex structure
prediction is how to generate a reasonable number of
complex sequence homologs (called interlogs) for inter-
protein co-evolution information extraction. Xu’s group
has described two methods for generating interlogs, but
they fail on some complexes [98]. It is worth mentioning
that a number of good interlogs are not always needed
for complex structure prediction because deep learning
sometimes works well even without co-evolution infor-
mation [95].

Accurate protein structure prediction has many appli-
cations, such as assisting experimental structure deter-
mination [129] and facilitating understanding life pro-
cesses at atom level instead of residue level. Accurate
protein structure is also very useful for drug discovery in
several aspects [130] such as protein target selection for a
specific disease, pocket selection, virtual screening [131]
and determining the binding affinity of drug molecules
[132].

Future perspective of deep learning for
personalized biomedicine
In this article, we have reviewed major deep learning
applications to address two open, challenging questions
in protein science: neoantigen identification and protein
structure prediction. Both topics have seen significant
leaps forward just within the past five years, which
immediately unlocked new developments of drugs and
immunotherapies. In addition, the rapid adoption of deep
learning has shifted the focus from algorithm-centric to
data-centric. Many real-world applications, e.g. Google
searches or Tesla autonomous systems, are now mainly
relying on billion-parameter models trained on huge
amounts of data. The same thing is also happening
in biomedicine. More importantly, we believe that this
approach shall progress towards the personalized trend
of biomedicine, where personal models are trained
on each individual patient’s data to identify optimal
treatments for the patient [21]. We have discussed such
an example in a previous section where the genome and
immunopeptidome of an individual patient can be used
to train a personal model to predict neoantigens of that
patient.

We envision that the trio MHC-neoantigen-TCR
(TCR: T cell receptor) will play the central role of
future personalized cancer immunotherapies, and deep
learning methods for neoantigen and protein structure
prediction will be a major driving force. A neoantigen
needs to be presented on the cell surface by MHC
proteins and recognized by T cells, thus it needs to
bind to both MHC and TCR [133]. MHC and TCR are
well known for their great diversity and specificity
[134–136]. Neoantigens arise from somatic mutations
that are also specific to each individual patient. Thus,
the trio MHC-neoantigen-TCR are patient-specific and
identifying them requires a personalized approach,
such as deep learning on individual patient’s data.
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More importantly, most current prediction tools mainly
focus on the amino acid sequences of neoantigens and
do not take into account the structure information
of MHC and TCR. Thus, with recent breakthroughs
of deep learning methods for neoantigen and protein
structure prediction, a fascinating future research
direction is to develop personalized deep learning models
to predict the structures of TCR, MHC, and neoantigens
of an individual patient and precisely pinpoint which
combinations of MHC-neoantigen-TCR are optimal to
design a vaccine for that patient. This shall be one of
the most quintessential achievements of personalized
medicine and shall immensely benefit from the data-
driven approach of deep learning.

Key Points

• A comprehensive review of deep learning
advances in proteomics and immunopep-
tidomics to solve the problem of neoantigen
prediction.

• A complete review of deep learning break-
throughs in protein structure prediction.

• A future perspective of personalized deep learn-
ing models for MHC-neoantigen-TCR binding
prediction to design cancer vaccines for each
individual patient.
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