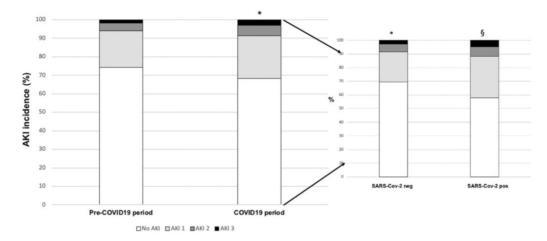
		No AKI (N=78,537)		AKI			Total	p-
			Total (N=4,824)	Recovred (N=4,503)	AKD (N=321)	p-value	(N=83361)	value
Age		57.9 ± 15.1	62.8 ± 13.5	62.9 ± 13.4	61.0 ± 14.6	0.023	58.1 ± 15.1	< 0.001
Male, n(%)			3206 (66.5%)	3023 (67.1%)	183 (57.0%)	< 0.001	44901 (53.9%)	< 0.001
Smoking, n(%)		41695 (53.1%)	5200 (00.5%)	5025 (67.1%)	165 (57.0%)	0.196	44901 (55.9%)	< 0.001
• • • •	rent	11413 (14.6%)	720 (15.1%)	666 (14.9%)	54 (17.2%)	0.190	67677 (81.8%)	< 0.001
Cui	Ex	2645 (3.4%)	313 (6.6%)	. ,	14 (4.5%)		12133 (14.7%)	
	LA	2045 (3.470)	313 (0.070)	299 (6.7%)	14 (4.576)		2958 (3.6%)	
SBP (mmHg)		122.4 ± 15.8	125.0 ± 17.8	124.9 ± 17.9	126.0 ± 16.5	0.302	122.6 ± 15.9	< 0.001
			75.5 ± 11.6		76.3 ± 11.0	0.302		0.985
DBP (mmHg) Heart rate		75.5 ± 11.0 69.0 ± 12.2	70.9 ± 14.0	75.4 ± 11.6 70.8 ± 13.9	70.3 ± 11.0 72.4 ± 15.0	0.212	75.5 ± 11.0 69.1 ± 12.3	< 0.001
Body mass index		05.0 ± 12.2	70.5 ± 14.0	70.0 ± 13.9	72.4 ± 15.0	0.503	03.1 ± 12.3	< 0.001
	18.5	3063 (4.0%)	242 (5.1%)	223 (5.1%)	19 (6.1%)	0.505	3305 (4.0%)	<0.001
	18.5 8.5≤	74383 (96.0%)	4467 (94.9%)	4175 (94.9%)	292 (93.9%)		78850 (96.0%)	
Operation factors	0.32	74303 (90.078)	4407 (94.976)	4175 (94.976)	232 (33.376)		78850 (90.078)	
Departement						< 0.001		< 0.001
Departement	GS	33979 (43.3%)	2670 (55.3%)	2528 (56.1%)	142 (44.2%)	< 0.001	36649 (44.0%)	< 0.001
	NS	13203 (16.8%)		245 (5.4%)				
0			266 (5.5%)		21 (6.5%)		13469 (16.2%)	
0	BGY	3387 (4.3%)	175 (3.6%)	159 (3.5%)	16 (5.0%)		3562 (4.3%)	
	OS UR	21640 (27.6%)	850 (17.6%)	802 (17.8%) 769 (17.1%)	48 (15.0%)		22490 (27.0%)	
Admission duration (days)	UK	6328 (8.1%)	863 (17.9%)	. ,	94 (29.3%)	0.441	7191 (8.6%)	<0.001
Admission duration (days)		12.9 ± 18.0	25.8 ± 64.3	25.9 ± 65.1	23.6 ± 51.6	0.441 0.497	13.7 ± 23.5 6471 (7.8%)	<0.001 <0.001
Emegency oepration		5911 (7.6%)	560 (11.6%) 4311 (89.6%)	527 (11.7%)	33 (10.3%)		. ,	< 0.001
General anesthesia		68130 (87.0%)	4311 (09.0%)	4014 (89.4%)	297 (92.8%)	0.063	10689 (12.9%)	< 0.001
Estimated operation		3.2 ± 1.3	3.8 ± 1.7	3.8 ± 1.8	3.3 ± 1.6	< 0.001	3.2 ± 1.3	< 0.001
duration (hr)		20 1 1 6	42 - 25	42 . 25	25 . 22	.0.001	3.0 ± 1.7	< 0.001
Operation duration (hr)		2.9 ± 1.6	4.2 ± 2.5	4.2 ± 2.5	3.5 ± 2.2	< 0.001	3.0 ± 1.7	< 0.001
Comorbidities SPARK score		31.7 ± 11.1	44.0 ± 15.3	44.3 ± 15.3	38.6 ± 13.4	.0.001	32.4 ± 11.7	< 0.001
		51.7 ± 11.1	44.0 ± 15.5	44.5 ± 15.5	50.0 ± 15.4	< 0.001	52.4 ± 11.7	
SPARK classification	ss A	0449 (12 69/)	177 (4 09/)	157 (2 00/)	20 (7 19/)	< 0.001	0625 (12.09/)	< 0.001
		9448 (13.6%)	177 (4.0%)	157 (3.8%)	20 (7.1%)		9625 (13.0%)	
	iss B	45260 (65.2%)	1697 (38.7%)	1553 (37.8%)	144 (50.9%)		46957 (63.6%)	
	iss C	13533 (19.5%)	1788 (40.7%)	1695 (41.3%)	93 (32.9%)		15321 (20.8%)	
	ss D	1175 (1.7%)	728 (16.6%)	702 (17.1%)	26 (9.2%)	0.010	1903 (2.6%)	.0.001
ASA class		71150 (02.49()		2241 (75 50()		0.018	74747 (01 50()	< 0.001
	≤3 3<	71150 (92.4%)	3597 (75.9%)	3341 (75.5%)	256 (81.5%)		74747 (91.5%)	
	3<	5820 (7.6%)	1145 (24.1%)	1087 (24.5%)	58 (18.5%)	.0.001	6965 (8.5%)	.0.001
Diabetes mellitus, n(%)		9417 (12.0%)	1079 (22.4%)	1034 (23.0%)	45 (14.0%)	< 0.001	10496 (12.6%)	< 0.001
Hypertension, n(%)		18093 (23.0%)	1615 (33.5%)	1528 (33.9%)	87 (27.1%)	0.015	19708 (23.6%)	< 0.001
Coronary artery disease, n(%)		2916 (3.7%)	317 (6.6%)	295 (6.6%)	22 (6.9%)	0.925	3233 (3.9%)	< 0.001
Cerebrovascular disease, n(%)		6117 (7.8%)	402 (8.3%)	379 (8.4%)	23 (7.2%)	0.497	6519 (7.8%)	0.18
Malignancy, n(%)		31402 (40.0%)	2207 (45.8%)	2102 (46.7%)	105 (32.7%)	< 0.001	33609 (40.3%)	< 0.001
Medications		11400 (14 59/)	607 (12.6%)	561 (12 50/)	16 (14 30/)	0.374	12007 (14 49()	<0.001
NSAIDS, n(%)		11400 (14.5%)	. ,	561 (12.5%)	46 (14.3%)	0.374	12007 (14.4%)	< 0.001
Diuretics, n(%) RAS blocker, n(%)		2749 (3.5%) 5558 (7.1%)	473 (9.8%) 628 (13.0%)	441 (9.8%) 595 (13.2%)	32 (10.0%) 33 (10.3%)	0.996	3222 (3.9%) 6186 (7.4%)	<0.001 <0.001
		5556 (7.1%)	626 (15.0%)	595 (15.2%)	55 (10.5%)	0.155	0100 (7.4%)	< 0.001
Laboratory findings		122 10	122 22	122 . 22	121 . 22	0.64	121 . 10	<0.001
Hemoglobin White blood cell count		13.2 ± 1.8	12.2 ± 2.2 70 + 72	12.2 ± 2.2 70 + 73	12.1 ± 2.2	0.64	13.1 ± 1.9 68 ± 3.1	< 0.001
ESR		6.8 ± 2.6 20.5 ± 20.6	7.0 ± 7.2 28.7 ± 26.8	7.0 ± 7.3 28.5 ± 26.4	7.5 ± 3.8	0.045 0.244	6.8 ± 3.1	0.022
		20.5 ± 20.6 59.0 ± 11.1			31.4 ± 31.5 62.2 ± 11.5		20.9 ± 21.1 59.1 ± 11.2	<0.001 <0.001
Neutrophil count (%) C-reactive protein			61.7 ± 12.3	61.7 ± 12.3		0.54		< 0.001
2-reactive protein Sodium		0.9 ± 3.0	1.7 ± 4.0	1.7 ± 4.0	2.2 ± 4.6	0.099	1.0 ± 3.1	
		140.5 ± 2.6	139.3 ± 4.0	139.4 ± 4.0	139.2 ± 3.9	0.377	140.4 ± 2.7	< 0.001
3UN Creatinine		14.9 ± 5.3	18.0 ± 9.5	18.1 ± 9.6	15.7 ± 7.9	< 0.001	15.1 ± 5.7	< 0.001
		0.9 ± 0.2	1.0 ± 0.5	1.0 ± 0.5	0.8 ± 0.4 95.9 ± 30.9	< 0.001	0.9 ± 0.3	< 0.001
eGFR, CKD-EPI		91.9 ± 20.0	80.4 ± 26.5	79.3 ± 25.9		< 0.001	91.3 ± 20.6	< 0.001
Albumin Fotal shalastaral		4.1 ± 0.5	3.7 ± 0.7	3.7 ± 0.7	3.7 ± 0.8	0.958	4.1 ± 0.5	< 0.001
Total cholesterol LDL cholesterol		178.1 ± 40.5	156.5 ± 49.4	156.1 ± 49.2	162.8 ± 50.9	0.025	176.8 ± 41.4	< 0.001
		104.4 ± 35.5	94.8 ± 41.0	93.9 ± 41.3	108.2 ± 33.5	0.042	103.9 ± 35.9	< 0.001
Urinalysis proteinuria Urinalysis haematuria		16115 (22.9%)	1616 (36.5%)	1506 (36.4%)	110 (38.5%)		17731 (23.7%)	< 0.001
		17171 (26.2%)	1496 (39.4%)	1375 (38.9%)	121 (46.5%)	0.017	18667 (26.9%)	< 0.001



IMPACT OF COVID-19 PANDEMIC ON IN-HOSPITAL ACUTE KIDNEY INJURY EPIDEMIOLOGY AND OUTCOMES: A RETROSPECTIVE COHORT STUDY

¹ IRCCS Ospedale Policlinico San Martino and Universitiy of Genova, Internal Medicine, Clinica Nefrologica, Dialisi e Trapianto, Genoa, Italy, ²IRCCS Ospedale Policlinico San Martino, Clinica Nefrologica, Dialisi e Trapianto, Genoa, Italy, and ³Nephrology and Dialysis Unit, St. Anna University Hospital, Ferrara, Italy

Pasquale Esposito¹, Elisa Russo¹, Daniela Picciotto¹, Francesca Cappadona², Yuri Battaglia³, Giovanni Battista Traverso² and Francesca Viazzi¹

BACKGROUND AND AIMS: Acute kidney injury (AKI) is a common complication in patients affected by coronavirus disease-19 (COVID-19) and its development is associated with high mortality [1]. However, it is also clear that the COVID-19

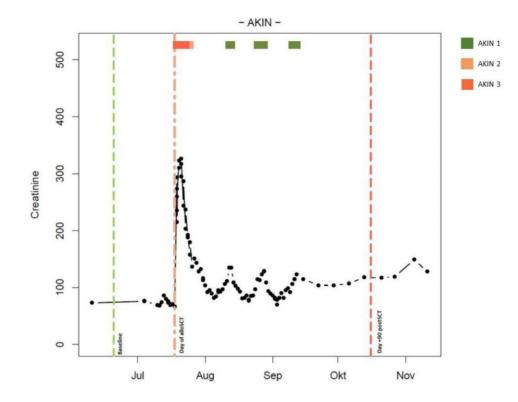
FIGURE 1: Incidence and staging of in-hospital AKI. Comparison of AKI incidence and stages between patients hospitalized in the pre-COVID-19 period (2016–2019) versus COVID-19 period (2020). *P < 0.0001 versus pre-COVID-19; § P < .0001 versus pre-COVID-19 and SARS-CoV-2 negative.

	Univariate			Multivariate Model			
RISK FACTORS	HR	95% CI	р	HR	95% CI	р	
Gender (male)	1.05	0.999 - 1.11	0.103	1.14	1.08 - 1.21	<0.0001	
Age	1.04	1.04 - 1.04	< 0.0001	1.03	1.03 - 1.04	<0.0001	
Comorbidities							
- CVD	3.1	2.90-3.31	< 0.0001	2.41	2.25 -2.58	<0.0001	
- Sepsis	9.9	9.21-10.6	< 0.0001	3.2	2.99 – 3.49	<0.0001	
- Advanced Neoplasia	2.08	1.78-2.43	< 0.0001	3.05	2.61 – 3.57	<0.0001	
Basal sCr	1.24	1.22-1.25	< 0.0001	1.19	1.17 -1.21	< 0.0001	
Medical ward	Ref						
- ICU stay	1.51	1.37 – 1.66	< 0.0001	1.94	1.76 – 2.15	<0.0001	
Admission in COVID-19 period	1.49	1.39-1.59	<0.0001	1.60	1.49 - 1.73	<0.0001	
Sars-Cov-2 infection	2.17	1.91-2.46	< 0.0001	1.68	1.46 - 1.93	<0.0001	
AKI	2.55	2.40-2.71	< 0.0001	1.39	1.3 - 1.48	<0.0001	

Abbreviations: CVD, cardiovascular disease; sCr, serum creatinine; ICU, intensive care unit; AKI, acute kidney

injury; COVID-19, Coronavirus Disease-19 SARS-COV-2, severe acute respiratory syndrome coronavirus 2

FIGURE 2: Cox regression analyses for intra-hospital mortality in hospitalized patients between 2016 and 2020.


pandemic has effects on the management of diseases not directly related to COVID-19 [2]. In this study, we investigated the impact of the COVID-19 pandemic on general intrahospital AKI incidence and outcomes.

METHOD: We performed a retrospective cohort study comparing data on AKI epidemiology and outcomes of patients hospitalized from January 2016 to December 2019 (pre-COVID-19 period) and from January to December 2020 (COVID-19 period, including both SARS-CoV-2 negative and positive patients). AKI was defined and classified by evaluating the kinetics of intra-hospital creatinine (comparing the peak to the minimum serum creatinine level, considered as the basal value) [3]. The prevalence of chronic kidney disease (CKD) (i.e. eGFR < 60 mL/min) was calculated in patients with previous creatinine values available. Patients with CKD stage 4–5 (i.e. eGFR < 30 mL/min/1.73 m²) and with a length of hospital stay > 30 days were excluded.

RESULTS: A total of 51 681 patients during the pre-COVID-19 period and 10,062 during the COVID-19 period (9026 SARS-CoV-2 negative and 1036 SARS-CoV-2 positive patients) were analysed. Patients admitted in the COVID-19 period were significantly older, with a higher prevalence of males and a reduced prevalence of

chronic conditions. In-hospital AKI incidence was 31.7% during the COVID-19 period (30.5% in SARS-CoV-2 negative patients and 42.2% in SARS-CoV-2 positive ones) as compared with 25.9% during the pre-COVID-19 period (P < .0001) (Fig. 1). Similarly, the COVID-19 period showed an increase in AKI stage 2–3 incidence both for AKI on CKD and for 'de novo AKI'. In multivariate analysis, demographic characteristics, length of hospital stay, ICU admission, main comorbidities, basal sCr, admission period (pre-COVID-19 or COVID-19) and SARS-CoV-2 infection were significantly associated with the risk of AKI. In particular, the admission in the COVID-19 period increased the risk of AKI [OR 1.18, 95% confidence interval (95% CI) 1.12–2.25] regardless of SARS-CoV-2 infection. Moreover, we found that in the COVID-19 period, there was an increased number of patients admitted to ICU, accompanied by a significant increase in the length of hospital stay and intrahospital mortality. In the multivariate analysis, development of AKI, admission in the COVID-19 period and active SARS-CoV-2 infection remained significantly and independently associated with mortality risk (Fig. 2).

CONCLUSION: Overall, we found that AKI was more common and severe in the COVID-19 period, regardless of SARS-CoV-2 infection, when compared with patients

admitted to the same hospital during the four years before the pandemic. So, we provide evidence that the COVID-19 pandemic has changed general in-hospital AKI epidemiology. These findings call attention to the need to adapt the resources dedicated to the prevention and management of the intra-hospital AKI in response to health emergencies.

REFERENCES

- Hirsch JS, Ng JH, Ross DW et al. Acute kidney injury in patients hospitalized with COVID-19. Kidney Int 2020;98:209–18
- Mauro V, Lorenzo M, Paolo C *et al.* Treat all COVID-19-positive patients, but do not forget those negative with chronic diseases. *Intern Emerg Med* 2021;16:249
- Ng JH, Hirsch JS, Hazzan A et al. Outcomes among patients hospitalized with COVID-19 and acute kidney injury. Am J Kidney Dis 2021;77:204– 215.e1

MO343 DEEP ANALYSIS OF THE AKI—CKD IN ALLOGENEIC STEM CELL TRANSPLANTATION—A BIG DATA APPROACH

Nicole Brüder¹, Jan T. Kielstein², Luca-Marie Heinze¹, Catherina Lück¹, Victoria Panagiota¹, Elke Dammann¹, Sophia Köhler³, Steven Talbot⁴, Michael Stadler¹, Michael Heuser¹, Arnold Ganser¹, Matthias Eder¹ and Gernot Beutel¹

¹Hemostaseology, Oncology and Stem Cell Transplantation, Clinic for Hematology, Hannover Medical School, Hannover, Germany, ²Rheumatology and Blood Purification, Clinic for Nephrology, Academic Teaching Hospital Brunswick, Brunswick, Germany, ³Enterprise Clinical Research Data Warehouse, Hannover Medical School, Hannover, Germany and ⁴Hannover Medical School, Institute of Laboratory Animal Science, Hannover, Germany

BACKGROUND AND AIMS: Acute kidney injury (AKI) is a common complication in allogeneic stem cell transplantation (SCT). Although short-lived, i.e. < 90 days,

in the majority of patients renal injury can persist for more than 3 months fulfilling the criteria of chronic kidney disease (CKD). So far, only a few publications have shown robust data based on larger patient populations. The aim of this project is to analyse the incidence and severity of AKI in the context of an allogeneic SCT and the transition into CKD.

METHOD: Over a 17-year period, 1394 allogeneic stem cell transplants were performed at our tertiary center. Of those, 42 were second transplants. For 1387, a detailed history of creatinine (n = 142 563) and eGFR (n = 96 689) could be extracted from the Enterprise Clinical Research Data Warehouse. The classification of the respective AKI stages was based on the current KDIGO classification relying solely on the changes in serum creatinine. For AKI, an increase in serum creatinine of ≥ 0.3 mg/dL (26.5 µmol/L) within 48 h or an increase in serum creatinine to $\geq 1.5 \times$ baseline within 7 days was used. Persistence of impaired renal function beyond day 90 was defined as CKD. For the analysis of big data and classification of the AKI/CKD an algorithm was programmed. Validation of the results was performed using a colour-coded visualization of renal function (Fig. 1).

RESULTS: Between 1 January 2003 and 31 December 2020, 239 252 values for creatinine and eGFR were enriched for 1387 transplantations for a period between day -28 before today + 118 after allogeneic stem cell transplantation. The overall incidence of AKI was 86% (n = 1199). A total of 993 patients (83%) have shown an AKIN 1, 173 (14%) an AKIN 2 and 33 (3%) an AKIN 3. Of those, 122 (13%) patients died before day + 90 after allogeneic stem cell transplantation and were therefore excluded from CKD analysis. For 271 of 833 patients (33%), the transition to chronic kidney disease, transplant coordinates and related complications and relapse mortality are shown in Table 1.

CONCLUSION: AKI after SCT is the rule and not the exception. As the vast majority of patients show AKIN 1, it might be often clinically overlooked. However, early intervention might mitigate the development of long-term renal impairment. Automated detection (AKI alert systems) as well as identification and subsequent avoidance of factors contributing or aggravating injury (e.g. conditioning, immunosuppression, perfusion, tissue edema, inappropriate dosing of drugs) might minimize long-term renal complications in allogeneic SCT.