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INTRODUCTION 
 

Triple-negative breast cancer (TNBC), making up 

10%~20% of breast cancer (BC) cases [1], revealed 

clinical attributes of malignant invasion, aggressive 
lymph-node metastasis and high recurrence [2]. Owing 

to shortages of estrogen receptor (ER), progesterone 

receptor (PR) and human epidermal growth factor 
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ABSTRACT 
 

Increasing attentions have been paid to the role of circRNAs in the etiology of triple-negative breast cancer 
(TNBC), and we strived to figure out the association of circRNA AKT3/miRNA axis with TNBC chemo-resistance. 
Altogether 207 BC patients were divided into TNBC group (n=83) and non-TNBC group (n=124), and MCF-10A, 
MDA-MB-231, MDA-MB-468, SK-BR-3 and MCF-7 cell lines were prepared in advance. Expressions of AKT3-derived 
circRNAs and relevant miRNAs in the TNBC tissues and cell lines were determined by employing real-time 
polymerase chain reaction (PCR). It was indicated that hsa_circ_0000199 expression was higher in TNBC tissues 
than in non-TNBC tissues, and high hsa_circ_0000199 expression was predictive of large tumor size, advanced 
TNM grade, high Ki-67 level and poor 3-year survival of TNBC patients (all P<0.05). Furthermore, miR-613 and miR-
206 were sponged and negatively regulated by hsa_circ_0000199 (P<0.001), and PI3K/Akt/mTOR signaling was 
depressed by si-hsa_circ_0000199 in TNBC cell lines (P<0.01). Ultimately, miR-206/miR-613 inhibitor reversed 
impacts of si-hsa_circ_0000199 on PI3K/Akt/mTOR signaling, proliferation, migration, invasion, chemo-sensitivity 
and autophagy of TNBC cells (all P<0.01). Conclusively, silencing of hsa_circ_0000199 enhanced TNBC chemo-
sensitivity by promoting miR-206/miR-613 expression and deactivating PI3K/Akt/mTOR signaling, which was 
conducive to improving chemotherapeutic efficacy of TNBC patients. 
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receptor 2 (Her-2), endocrino- and trastuzumab-based 

therapies that worked for other BC subtypes were no 

longer suitable for TNBC treatment [3]. Instead, 

chemotherapies have been broadly applied to benefit 

TNBC patients, yet drug-tolerance rendered these 

strategies less efficacious than anticipated [4], which 

underscored the necessity of elucidating molecular 

mechanisms implicit in TNBC chemo-resistance. 

 

Circular RNAs (circRNAs), originally mistaken as non-

function products of RNA splicing, held potential to 

diagnose malignancies, and their dysfunction could 

powerfully drive progression of tumors [5], including 

BC [6], gastric cancer [7], glioma [8] and colorectal 

cancer [9]. Specifically, high expression of circKIF4A 

was associated with elevated likelihood of TNBC onset 

[10], and survival of TNBC patients was prolonged 

when they carried low expression of circAGFG1 [11]. 

Furthermore, knockout of circGFRA1 dampened 

proliferation and enabled apoptosis of TNBC cells [12], 

while adriamycin (ADM)-sensitivity of MCF7 cell line 

was encouraged after silencing of hsa_circ 0006528 

[13]. Despite the growing recognition that circRNAs 

mattered in BC etiology, few circRNA-centric signaling 

pathways were verified to account for intensified drug-

resistance in TNBC. 

 

Intriguingly, circRNAs which were derived from tumor-

activating/deactivating genes played similar roles in 

carcinogenesis, such as hsa_circ_0000543 (gene 

symbol: DAAM1) and hsa_circ_0000285 (gene symbol: 

HIPK3) [14–17]. Built on this assumption, circRNAs 

produced from AKT3, an oncogene in melanoma [18], 

hepatocellular carcinoma [PMID: 25370363] and 

TNBC [19], were also likely to be responsible for tumor 

progression, including TNBC. Furthermore, apart from 

spurring proliferation, migration and invasion of cancer 

cells [20], AKT3 also enabled rising tamoxifen-

resistance in ErbB2(+) BC cells [21]. However, whether 

AKT3-derived circRNAs also enhanced chemo-

resistance and promoted deterioration of neoplasms 

(e.g. TNBC) remained ambiguous. In addition, 

circRNAs were expected to facilitate carcinogenesis by 

sponging cancer-specific miRNAs and then stimulating 

translation of oncogenes [22]. For example, 

hsa_circRNA_002178 was reported to foster migration 

and invasion of BC cells by sponging miR-328-3p and 

motivating COL1A1 expression [23]. Nonetheless, so 

far few researches were able to surface the association 

of circRNA AKT3/miRNA network with TNBC 

progression and chemo-tolerance. 

 
To bridge this gap, this investigation was intended to 

elucidate the contribution of circRNA AKT3-centric 

miRNA axes underlying TNBC etiology, which might 

help to address concerns over TNBC chemo-resistance. 

RESULTS 
 

Association of hsa_circ_0000199 expression with 

clinico-pathological features of TNBC patients 

 

There were altogether 16 circRNAs retrievable from both 

ENCORI website (http://starbase.sysu.edu.cn/) [24] and 

CircInteractome website (https://circinteractome.nia. 

nih.gov/) [25], including hsa_circ_0017242, hsa_circ_ 

0017251, hsa_circ_0006696, hsa_circ_0017252, hsa_ 

circ_0017243, hsa_circ_0004649, hsa_circ_0017254, 

hsa_circ_0017246, hsa_circ_0017250, hsa_circ_0000199, 

hsa_circ_0017247, hsa_circ_0017244, hsa_circ_0017253, 

hsa_circ_0002240, hsa_circ_0017245 and hsa_circ_ 

0017248 (Supplementary Table 3), and miRNAs 

potentially sponged by the circRNAs were included in 

Supplementary Table 4. Expressions of the circRNAs 

were tentatively compared among adjacent normal 

tissues (n=60), TNBC tissues (n=30) and non-TNBC 

tissues (n=30) (Figure 1A). It was demonstrated that 

hsa_circ_0000199 expression in TNBC tissues was 

increased to 3.34 times of that in non-TNBC tissues 

(P<0.001), and hsa_circ_0000199 expression in non-

TNBC tissues reached 5.60 folds of that in adjacent 

normal tissues (P<0.001). Hsa_circ_0017242, has_circ_ 

0017243, hsa_circ_0017246, hsa_circ_0017244 and 

hsa_circ_0017240 were also up-regulated in non-TNBC 

tissues in comparison to adjacent normal tissues (all 

P<0.001), however, their expressional change between 

TNBC and non-TNBC tissues were not so pronounced as 

hsa_circ_0000199. 
 

To emphasize the part of hsa_circ_0000199 in TNBC, a 

larger crowd of TNBC patients (n=83) and non-TNBC 

patients (n=124) were incorporated, which revealed that 

hsa_circ_0000199 expression was indeed higher in 

TNBC tissues than in non-TNBC tissues (P<0.0001) 

(Figure 1B). Consistently, TNBC cell lines (i.e. MDA-

MB-231 and MDA-MB-468) also expressed larger 

amounts of hsa_circ_0000199 than normal breast 

epithelial cell line (i.e. MCF-10A) and BC cell lines of 

other subtypes (i.e. SK-BR-3 and MCF-7) (P<0.001) 

(Figure 1C). Furthermore, TNBC patients and non-

TNBC patients were separately sub-grouped based on 

their median expression of hsa_circ_0000199 (TNBC: 

5.36; non-TNBC: 1.43) (Table 1). It was indicated that 

highly-expressed (>5.36) hsa_circ_0000199 was 

associated with large tumor size (diameter > 5 cm) 

(P=0.010), advanced TNM grade (G3) (P=0.003) and 

high Ki-67 proportion (>14%) (P=0.012) of TNBC 

patients, while hardly any statistical significance was 

discernable among patients of non-TNBC group (all 

P>0.05). Moreover, 3-year overall survival of TNBC 

patients was less desirable in the highly-expressed 

hsa_circ_0000199 group than in the lowly-expressed 

hsa_circ_0000199 group (P=0.001) (Figure 1D), and 

http://starbase.sysu.edu.cn/
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highly-expressed hsa_circ_0000199 (P=0.048), large 

tumor size (P=0.014) and high Ki-67 proportion 

(P=0.012) were independent predictors of unfavorable 

prognosis among the TNBC population (Table 2 and 

Supplementary Figure 1). All these results implied that 

hsa_circ_0000199 was a peculiar biomarker in 

estimating TNBC onset and prognosis among the 

Chinese cohort. 

 

Downstream miRNA network of AKT3-derived 

circRNAs in TNBC 

 

As concluded by KEGG database (https://www.kegg.jp/ 

kegg/pathway.html), Notch signaling, Wnt-β actin 

signaling, PI3K/Akt/mTOR signaling and EGFR 

signaling were critical pathways inducing TNBC onset 

(https://www.kegg.jp/kegg-bin/highlight_pathway?scale 

=1.0&map=map05224&keyword=Triple%20negative%

20breast%20cancer). It was noteworthy that a majority 

of miRNAs, which were potentially sponged by top 5 

up-regulated circRNAs in BC (Figure 1A and 

Supplementary Table 4), were documented to intervene 

in the four signalings, and nine of them were pivotal 

indicators of TNBC progression (Supplementary Table 

5). After comparing expressions of the miRNAs among 

adjacent normal tissues (n=60), TNBC tissues (n=30) 

and non-TNBC tissues (n=30) (Figure 2A), we noticed 

that miR-613, miR-206, miR-93-5p and miR-199a-3p, 

which were down-regulated in non-TNBC tissues as 

relative to para-cancerous normal tissues (all P<0.001), 

exhibited lower expression in TNBC tissues than in non-

TNBC tissues (all P<0.001) (Figure 2B). Furthermore, 

 

 
 

Figure 1. Clinical value of circRNA AKT3 in triple-negative breast cancer (TNBC). (A) Fold change of AKT3-derived circRNAs were 
determined in BC tissues of other subtypes (i.e. non-TNBC) as relative to normal tissues, and also in TNBC tissues as relative to BC tissues of 
other subtypes. (B) Hsa_circ_0000199 expression was compared among normal tissues, TNBC tissues and BC tissues of other subtypes. ***: 
P<0.001. (C) Hsa_circ_0000199 expression was measured among MCF-10A, MDA-MB-231, MDA-MB-468, SK-BR-3 and MCF-7 cell lines. **: 
P<0.01; ***: P<0.001. (D) Hsa_circ_0000199 expression was associated with 3-year survival of TNBC patients. 

https://www.kegg.jp/kegg/pathway.html
https://www.kegg.jp/kegg/pathway.html
https://www.kegg.jp/kegg-bin/highlight_pathway?scale=1.0&map=map05224&keyword=Triple%20negative%20breast%20cancer
https://www.kegg.jp/kegg-bin/highlight_pathway?scale=1.0&map=map05224&keyword=Triple%20negative%20breast%20cancer
https://www.kegg.jp/kegg-bin/highlight_pathway?scale=1.0&map=map05224&keyword=Triple%20negative%20breast%20cancer
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Table 1. Association of hsa_circ_0000199 expression with clinical features of breast cancer (BC) patients. 

Items 

TNBC group (N=83)  Non-TNBC group (N=124) 

High 

(N=43) 

Low 

(N=40) 
χ2 P OR 95%CI  High 

(N=64) 

Low 

(N=60) 
χ2 P OR 95%CI 

Age (years old) 

≤55 20 17     35 37     

>55 23 23 0.14 0.713 0.85 0.36-2.02 29 23 0.6195 0.431 1.33 0.65-2.73 

Diameter of lesion (cm) 

≤5 27 35     52 44     

>5 16 5 6.70 0.010* 4.15 1.35-12.75 12 16 1.11 0.292 0.64 0.27-1.48 

Classification 

IDC 39 31     41 46     

Others 4 9 2.73 0.098 0.35 0.10-1.26 23 14 2.35 0.125 1.84 0.84-4.05 

TNM grade 

G1+G2 29 37     54 53     

G3 14 3 8.67 0.003* 6.40 1.67-24.48 10 7 0.4102 0.522 1.40 0.50-3.96 

Ki-67 

≤14% 15 25     43 38     

>14% 28 15 6.33 0.012* 3.11 1.27-7.62 21 22 0.203 0.652 0.84 0.40-1.77 

BC: breast cancer; TNBC: triple-negative breast cancer; non-TNBC: BC patients who do not belong to TNBC subtype; High: 
high hsa_circ_0000199 expression; Low: low hsa_circ_0000199 expression; OR: odds ratio; CI: confidence interval; *: 
statistical significance. 

 

Table 2. Association of clinical indicators with 3-year overall survival of triple-negative breast cancer (TNBC) patients. 

Items Number of cases (n) 
Uni-variate analysis Multi-variate analysis 

HR 95% CI P value HR 95% CI P value 

Age (years old) 

≤50 37        

>50 46  0.593 0.285-1.232 0.161 0.672 0.313-1.445 0.309 

Diameter of lesion (cm) 

≤5 62        

> 5 21  2.574 1.228-5.393 0.012* 2.696 1.222-5.946 0.014* 

Classification 

IDC 70        

Others 13  1.227 0.468-3.218 0.677 2.354 0.795-6.973 0.122 

TNM grade 

G1+G2 64        

G3 19  1.813 0.825-3.982 0.139 1.105 0.468-2.614 0.819 

Ki-67 

≤14% 40        

>14% 43  3.218 1.423-7.279 0.005* 3.095 1.281-7.477 0.012* 

Relative level of hsa_circ_0000199 

Low 40        

High 43  3.783 1.614-8.868 0.002* 2.91 1.008-8.401 0.048* 

HR: hazard ratio; CI: confidence interval; *: statistical significance. 
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Figure 2. Identification of miRNA network of circRNA AKT3 in triple-negative breast cancer (TNBC). (A) Fold change of miRNAs, 

potentially sponged by significant AKT3-derived circRNAs, were determined in BC tissues of other subtypes (i.e. non-TNBC) as relative to 
normal tissues, as well as in TNBC tissues as relative to BC tissues of other subtypes. (B) Expressions of miR-613, miR-206, miR-93-5p and miR-
199a-3p were determined in normal tissues, TNBC tissues and BC tissues of other subtypes (i.e. non-TNBC). ***: P<0.001. (C) KEGG pathways 
enriched by genes targeted by miR-613, miR-206, miR-93-5p and miR-199a-3p were drawn from miRPath online tool (http://snf-
515788.vm.okeanos.grnet.gr/). (D) MiR-613 and miR-206 expressions were compared among MCF-10A, MDA-MB-231, MDA-MB-468, SK-BR-
3 and MCF-7 cell lines. ***: P<0.001. 

http://snf-515788.vm.okeanos.grnet.gr/
http://snf-515788.vm.okeanos.grnet.gr/
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according to the estimation of miRPath online software 

(http://snf-515788.vm.okeanos.grnet.gr/) [26], genes 

targeted by the miR-613, miR-206, miR-93-5p and miR-

199a-3p were enriched in mTOR signaling and PI3K/Akt 

signaling (Figure 2C), which insinuated that the miRNAs 

were probably implicated in TNBC pathogenesis by 

dysregulating PI3K/Akt/mTOR signaling. 

 

Hsa_circ_0000199 sponged miR-613/miR-206 and 

down-regulated their expression in TNBC cell lines 

 

When compared with SK-BR-3 and MCF-7 cell lines, 

expressions of miR-613 and miR-206 were dramatically 

reduced in TNBC cell lines (i.e. MDA-MB-231 and 

MDA-MB-468) (P<0.001) (Figure 2D), which further 

corroborated that the couple of miRNAs were specific 

protectors for TNBC [16, 27]. After transfection of si-

hsa_circ_0000199, hsa_circ_0000199 expression fell 

significantly in MDA-MB-231 and MDA-MB-468 cell 

lines (P<0.001) (Figure 3A), and expressions of miR-

613 and miR-206 were marked increased (P<0.001) 

(Figure 3B). Nevertheless, miR-613/miR-206 inhibitor, 

which decreased miR-613/miR-206 expression in 

TNBC cell lines (P<0.001) (Figure 3C), appeared 

incapable of altering hsa_circ_0000199 expression in 

MDA-MB-231 and MDA-MB-468 cell lines (all 

P>0.05) (Figure 3D). 

 

In addition, luciferase activity of TNBC cells was 

weakened after combined transfection of miR-613/miR-

206 mimic and pGL3-hsa_circ_0000199, when 

compared with TNBC cells of miR-613/miR-206 

mimic+hsa_circ_0000199 Wt group and hsa_circ_ 

0000199 Mut+miR-NC group (P<0.001) (Figure 3E, 

3F). Meanwhile, there was no statistical difference in 

luciferase activity of TNBC cells between miR-

613/miR-206 mimic+hsa_circ_0000199 Wt group  

and hsa_circ_0000199 Mut+miR-NC group (P>0.05). 

Collectively, it was implied that miR-613 and miR-206 

were sponged and down-regulated by hsa_circ_0000199 

in TNBC. 

 

MiR-613 and miR-206 hindered impacts of hsa_circ_ 

0000199 on PI3K/Akt/mTOR signaling 

 

Phosphorylation of PI3K, Akt and mTOR was 

depressed in MDA-MB-231 and MDA-MB-468 cell 

lines, after silencing of hsa_circ_0000199 (all P<0.001) 

(Figure 4). Powered by si-hsa_circ_0000199, p-

PI3K/PI3K ratio, p-Akt/Akt ratio and p-mTOR/mTOR 

ratio were also decreased in the TNBC cells, when 

compared with NC group and si-NC group. Nevertheless, 

under co-transfection of si-hsa_circ_0000199 and miR-
206/miR-613 inhibitor, phosphorylation of PI3K, Akt 

and mTOR were improved in MDA-MB-231 (all 

P<0.01) and MDA-MB-468 (all P<0.001) cell lines, in 

comparison to si-hsa_circ_0000199 transfection alone. 

Moreover, p-PI3K/PI3K ratio, p-Akt/Akt ratio and p-

mTOR/mTOR ratio were raised in the si-hsa_circ_ 

0000199+miR-206/miR-613 inhibitor group as relative to 

si-hsa_circ_0000199 group. Given that PI3K/Akt/mTOR 

signaling dampened cell autophagy [28], which exerted 

dual impacts on neoplastic chemo-resistance [29, 30], 

hsa_circ_0000199-centric miR-206/miR-613 axes might 

also be responsible for chemo-tolerance and disordered 

cell autophagy in TNBC. 

 

MiR-206 and miR-613 undermined contribution of 

hsa_circ_0000199 to proliferation, migration, invasion 

and chemo-sensitivity of TNBC cells 

 

Malignant activities of MDA-MB-231 and MDA-MB-

468 cell lines were all decelerated after silencing of 

hsa_circ_0000199, regardless of proliferation (Figure 

5A, 5B, P<0.001), migration (Figure 5C, 5D, P<0.001) 

or invasion (Figure 5E, 5F, P<0.001). Nonetheless, miR-

613 inhibitor and miR-206 inhibitor abated the 

suppressive impact of si-hsa_circ_0000199 on 

proliferation (Figure 5A, 5B), migration (Figure 5C, 5D) 

and invasion (Figure 5E, 5F) of MDA-MB-231 and 

MDA-MB-468 cell lines, specifically embodied as that 

proliferation, migration and invasion of TNBC cells 

were encouraged in si-hsa_circ_0000199+miR-206/miR-

613 inhibitor group as relative to si-hsa_circ_0000199 

group (all P<0.01). 

 

Furthermore, MDA-MB-231 and MDA-MB-468 cell 

lines in the si-hsa_circ_0000199 group became vulnerable 

to the killing effect of cisplatin, adriamycin, paclitaxel 

and gemcitabine, when compared with NC group and  

si-NC group (all P<0.001) (Figure 6). However, 

tolerances of TNBC cells against cisplatin, adriamycin, 

paclitaxel and gemcitabine were strengthened in the si-

hsa_circ_0000199+miR-613/miR-206 inhibitor group in 

comparison to si-circ_0000199 group (all P<0.01) 

(Figure 6). 

 

MiR-206 and miR-613 disturbed influence of 

hsa_circ_0000199 on TNBC autophagy 

 

Beclin1 and LC3-II were a couple of proteins 

indispensable to cell autophagy [31, 32], and p62 was 

degraded in case of cell autophagy [33]. Not only that, 

Atg5 expression was promoted during autophagy, and 

its combination with Atg12 could drive extension of 

autophagosome membrane [34]. Here we observed that 

Beclin1, LC3-II and p62 expressions were evidently 

boosted, and p62 expression was down-regulated in 

MDA-MB-231 and MDA-MB-468 cell lines after 

transfection of si-has_circ_0000199 (P<0.001) (Figure 

7A, 7B). Consistently, MDC-positive particles in the 

form of bright blue dots were abundantly present in 

http://snf-515788.vm.okeanos.grnet.gr/
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MDA-MB-231 and MDA-MB-468 cell lines of si-

hsa_circ_0000199 group in comparison to si-NC group, 

and the number of MDC-positive particle was falling in 

si-hsa_circ_0000199+3-MA group as relative to si-

hsa_circ_0000199 group (Supplementary Figure 2). 

Nonetheless, protein levels of beclin1, LC3-II and Atg5 

were down-regulated, accompanied by up-regulated 

expression of p62, in MDA-MB-231 and MDA-MB-

468 cell lines of si-hsa_circ_0000199+miR-206/miR-

613 inhibitor group in comparison to TNBC cells of 

 

 
 

Figure 3. Sponged relationship between hsa_circ_0000199 and miR-613/miR-206 in triple-negative breast cancer (TNBC).  
(A) Hsa_circ_0000199 expression in MDA-MB-231 and MDA-MB-468 cell lines was determined after transfection of si-hsa_circ_0000199. ***: 
P<0.001. (B) MiR-613 and miR-206 expressions in MDA-MB-231 and MDA-MB-468 cell lines were compared between si-NC group and si-
hsa_circ_0000199 group. ***: P<0.001. (C) MiR-613 and miR-206 expressions were assessed after transfection of their respective inhibitors 
into MDA-MB-231 and MDA-MB-468 cell lines. ***: P<0.001. (D) Hsa_circ_0000199 expression in MDA-MB-231 and MDA-MB-468 cell lines 
was evaluated after transfection of miR-613/miR-206 inhibitor. (E) Hsa_circ_0000199 sponged miR-613 in certain sites, and luciferase activity 
of MDA-MB-231 and MDA-MB-468 cell lines was compared between pGL3-hsa_circ_0000199 Wt+miR-613 mimic group and pGL3-
hsa_circ_0000199 Wt+miR-NC group. ***: P<0.001. (F) MiR-206 was sponged by hsa_circ_0000199, and luciferase activity of MDA-MB-231 
and MDA-MB-468 cell lines was determined after co-transfection of pGL3-hsa_circ_0000199 Wt and miR-206 mimic/miR-NC. ***: P<0.001. 
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Figure 4. PI3K/AKT/mTOR signaling was modified by hsa_circ_0000199-miR-613/miR-206 axis in triple-negative breast 
cancer (TNBC). (A) Protein levels of PI3K, p-PI3K, AKT, p-AKT, mTOR and p-mTOR, as well as ratios of PI3K/p-PI3K, AKT/p-AKT and mTOR/p-

mTOR, were compared among NC, si-NC, si-hsa_circ_0000199+miR-613 inhibitor and si-hsa_circ_0000199 groups. ***: P<0.001. (B) Protein 
levels of PI3K, p-PI3K, AKT, p-AKT, mTOR and p-mTOR, as well as ratios of PI3K/p-PI3K, AKT/p-AKT and mTOR/p-mTOR in MDA-MB-231 and 
MDA-MB-468 cell lines, were determined after treatments of NC, si-NC, si-hsa_circ_0000199+miR-206 inhibitor and si-hsa_circ_0000199. **: 
P<0.01; ***: P<0.001. 



 

www.aging-us.com 4530 AGING 

si-hsa_circ_0000199 group (all P<0.01) (Figure 7A, 

7B). Co-transfection of si-hsa_circ_0000199 and miR-

206/miR-613 inhibitor engendered less MDA-positive 

particles than simply transfection of si-circ_0000199 

(Figure 7C). 

 

DISCUSSION 
 

Despite with a 5-year survival of 90%, there were up to 

41,760 American females dying of BC in 2019, 

covering 15% of all tumor deaths [35]. TNBC, a BC 

subtype notorious for high odds of recurrence and 

metastasis [36], was managed principally by various 

chemotherapies, whose efficacy, however, was reduced 

owing to drug-resistance. Therefore, clarification of 

TNBC etiology was urgently required, and growing 

interests were sparked concerning the implication of 

circRNA-led miRNA network in TNBC. 

Distinct from linear RNAs with the structure of 5’-cap 

and 3’-tail, circRNAs in the shape of closed rings were 

produced through back-splicing approach [37], which 

made it tough to degrade circRNA with exonuclease 

and thereby maintained circRNA stability. Thanks to 

this trait, circRNAs were capable of reflecting cancer 

progression sensitively, including bladder cancer [38], 

hepatocellular cancer [39], laryngeal cancer [40] and 

basal cell carcinoma [41]. With regard to BC, 

hsa_circ_006054 combined with hsa_circ_100219 and 

has_circ_406697 excelled in diagnosing BC patients 

from healthy volunteers [42], and molecular results 

showed that proliferation of MDA-MB-231 cell line 

was boosted by circDENND4C in the oxygen-free 

context [43]. Nonetheless, circRNAs available to 

differentiate BC subtypes (e.g. TNBC) were poorly 

known, let alone their sophisticated function in TNBC 

etiology [12, 44]. In this investigation, AKT3-derived 

 

 
 

Figure 5. MiR-613 and miR-206 were involved in modulating contribution of hsa_circ_0000199 to activity of triple-negative 
breast cancer (TNBC) cells. (A, B) Proliferation of MDA-MB-231 and MDA-MB-468 cell lines were compared after treatments of si-

hsa_circ_0000199+miR-613/miR-206 inhibitor, si-hsa_circ_0000199 and none. *: compared with NC group; #: compared with si-
hsa_circ_0000199 group; **/##: P<0.01; ***/###: P<0.001. (C, D) Migration of MDA-MB-231 and MDA-MB-468 cell lines were appraised 
among si-hsa_circ_0000199+miR-613/miR-206 inhibitor, si-hsa_circ_0000199 and NC groups. **: P<0.01; ***: P<0.001. (E, F) The invasive 
capability of MDA-MB-231 and MDA-MB-468 cell lines were evaluated after treatments of si-hsa_circ_0000199+miR-613/miR-206 inhibitor, 
si-hsa_circ_0000199 and none. ***: P<0.001. 
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hsa_circ_0000199 was found to specifically over-

express in TNBC (Figure 1), and its high expression 

was associated with clinical symptoms of TNBC 

patients, rather than the whole BC population (Tables 1, 

2). However, whether this result could be generalized to 

other populations demanded more researches. 

 

The competing endogenous RNA (ceRNA) hypothesis 

introduced that circRNAs could sponge miRNAs with 

their miRNA response elements (MREs), and then 

lessened impacts of miRNAs on neoplastic development 

[45]. Taking BC for instance, circRNA antisense to the 

cerebellar degeneration-related protein 1 transcript 

(CDR1-AS) sponged miR-7 and reduced its expression, 

thereby slowing down BC exacerbation [46]. In 

agreement with this theory, miR-613 and miR-206 were 

negatively modified by hsa_circ_0000199 in TNBC 

cells after being targeted by it (Figures 2, 3), and they 

also participated in the contribution of hsa_circ_0000199 

to malignant activities of TNBC cells (Figures 5–7). 

 

 
 

Figure 6. Hsa_circ_0000199-miR-613/miR-206 axis was implicated in modifying chemosensitivity of triple-negative breast 
cancer (TNBC) cells. (A–D) Resistance of MDA-MB-231 and MDA-MB-468 cell lines against cisplatin (A), adriamycin (B), paclitaxel (C) and 
gemcitabine (D) was compared among si-hsa_circ_0000199+miR-613 inhibitor, si-hsa_circ_0000199 and NC groups. *: compared with NC 
group; #: compared with si-hsa_circ_0000199 group; **/##: P<0.01; ***/###: P<0.001. (E–H) Sensitivity of MDA-MB-231 and MDA-MB-468 
cell lines responding to cisplatin (E), adriamycin (F), paclitaxel (G) and gemcitabine (H) was assessed after treatments of si-
hsa_circ_0000199+miR-206 inhibitor, si-hsa_circ_0000199 and none. *: compared with NC group; #: compared with si-hsa_circ_0000199 
group; */#: P<0.05; **/##: P<0.01; ***/###: P<0.001. 
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Collectively, si-hsa_circ_0000199 might curb worsening 

of TNBC through suppressing anti-oncogenic functions 

of miR-613 and miR-206, which have been extensively 

published. To be specific, miR-206 restrained 

multiplication of MCF-7 cell line [47] and metastasis of 

MDA-MB-231 cell line [48], and miR-613 antagonized 

progression of gastric cancer [49], bladder cancer [50], 

osteosarcoma [51], thyroid papillary carcinoma [52] and 

TNBC [16]. However, there was a contradictory finding 

which stated that miR-613 deteriorated colon cancer by 

targeting ATOH1 and motivating JNK1 signaling [53]. 

We speculated that different cell types used and distinct 

experimental procedures followed could account for this 

paradox, yet convincing evidence was entailed. 

 

 
 

Figure 7. Hsa_circ_0000199-miR-613/miR-206 axis participated in regulating autophagy of triple-negative breast cancer 
(TNBC) cells. (A) Beclin-1, LC3-II, p62 and Atg5 expressions were determined in MDA-MB-231 and MDA-MB-468 cell lines treated by NC, si-

NC, si-hsa_circ_0000199 and si-hsa_circ_0000199+miR-206 inhibitor. **: P<0.01; ***: P<0.001. (B) Beclin-1, LC3-II, p62 and Atg5 expressions 
were detected among MDA-MB-231 and MDA-MB-468 cell lines of NC, si-NC, si-hsa_circ_0000199 and si-hsa_circ_0000199+miR-613 
inhibitor groups. **: P<0.01; ***: P<0.001. (C) Monodansylcadaverine (MDC) fluorescence intensity was monitored among MDA-MB-231 and 
MDA-MB-468 cell lines transfected by NC, si-NC, si-hsa_circ_0000199 and si-hsa_circ_0000199+miR-613 inhibitor. (D) MDC fluorescence 
intensity of MDA-MB-231 and MDA-MB-468 cell lines was determined among NC, si-NC, si-hsa_circ_0000199 and si-hsa_circ_0000199+miR-
206 inhibitor groups. 
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Additionally, PI3K/Akt/mTOR signaling, downstream 

pathway of hsa_circ_0000199-miR-206/miR-613 axis in 

TNBC (Figure 4), was reported to stimulate tumor onset 

and to potentiate metastasis and proliferation of tumor 

(e.g. TNBC) cells [54]. Moreover, phosphorylated 

mTOR was measurable in a larger share of TNBC 

patients than in non-TNBC patients, which stressed that 

PI3K/Akt/mTOR signaling could matter in TNBC as 

compared with other BC subtypes [55]. Furthermore, 

rapamycin treatment, a common inhibitor of mTOR 

signaling, not merely strengthened anti-TNBC power of 

adriamycin in nude mice [56], but also improved 

paclitaxel’s performance in fighting against TNBC [57], 

implying that it was practicable to raise TNBC chemo-

sensitivity by attenuating PI3K/Akt/mTOR signaling. In 

addition, autophagy, which served bi-directional roles in 

tumors [58], was induced when PI3K/Akt/mTOR 

signaling was obstructed [28]. This physiological  

change was likely to weaken tumor development by 

facilitating apoptosis of tumor cells, which also explained 

increased chemo-sensitivity of BC [59]. Allowing  

for multiple roles performed by PI3K/Akt/mTOR 

signaling, it might be tenable that hsa_circ_0000199-

miR-206/miR-613 axis-controlled proliferation, 

migration, invasion, drug-resistance and autophagy of 

TNBC cells. 

 

CONCLUSIONS 
 

In conclusion, hsa_circ_0000199-miR-206/miR-613 axis 

pronouncedly disordered migration, invasion, chemo-

resistance and autophagy of TNBC cells by motivating 

PI3K/Akt/mTOR signaling (Figure 8), providing 

molecular foundations for developing TNBC treatments. 

However, several pitfalls should be addressed in later 

researches. Firstly, it was uncertain whether hsa_circ_ 

0000199 was applicable in distinguishing TNBC  

from other BC subtypes among populations of  

other ethnicities. Secondly, although hsa_circ_0000199 

expression was heightened in tumor tissues of 

 

 
 

Figure 8. Mechanism map that elaborated on involvement of hsa_circ_0000199-miR-613/miR-206 axis in regulating chemo-
sensitivity of triple-negative breast cancer (TNBC) cells by modulation of PI3K/AKT/mTOR signaling. 
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TNBC-bearing mice models as compared with paired 

normal tissues (Supplementary Figure 3), we failed  

to uncover the effect of over/under-expressed 

hsa_circ_0000199 on tumor formation in TNBC mice 

models owing to technical obstacles. Last but not the 

least, miRNA networks that aided hsa_circ_0000199 to 

function oncogenetically in TNBC should be expanded, 

so as to deepen understanding of TNBC pathogenesis.  

Above all, all these challenges should be coped with in 

future. 

 

MATERIALS AND METHODS 
 

Collection of BC samples 

 

Two hundred and seven cases out of 210 primary BC 

patients (response rate: 98.57%) were recruited in 

Minhang Hospital affiliated to Fudan University, from 

December, 2012 to May, 2016. They were divided into 

TNBC group (n=83) and non-TNBC group (n=124) 

based on the immunohistochemical results, and they all 

underwent none of surgical puncture, immunity 

enhancement, chemotherapy and radiotherapy prior to 

surgery. The TNBC patients all exhibited negative 

expressions of ER, PR and Her-2, and the BC cases 

were graded according to TNM staging system revised 

by American Joint Committee on Cancer 

(AJCC)/Union International Center of Cancer (UICC) 

(6th edition) [60]. The participants have signed 

informed consents, and this program was approved by 

Minhang Hospital affiliated to Fudan University and 

the ethics committee of Minhang Hospital affiliated to 

Fudan University. Additionally, BC tissues and 

adjacent normal tissues, after excision from patients 

during surgery, were split into pieces weighing around 

0.1 g before storage at -80° C. 

 

Cell culture 

 

Human mammary epithelial cell line (i.e. MCF-10A) 

was incubated in MEBM medium (Lonzo, Sweden),  

and human BC cell lines, including MDA-MB-231, 

MDA-MB-468, SK-BR-3 and MCF-7, were cultivated 

in RPMI 1640 medium (Hyclone, USA) which 

contained 10% fetal bovine serum (FBS) (Gibco, USA), 

100 Ku/L penicillin (Solarbio, China) and 100 mg/L 

streptomycin (Solarbio, China). The cell lines were all 

purchased from American Type Culture Collection 

(ATCC, USA), and they were cultured under 

circumstances of 37° C, 5% CO2 and saturated humidity 

until 80%~90% confluence. 

  

Cell transfection 

 

SiRNA against hsa_circ_0000199, si-negative control 

(NC), miR-206 inhibitor, miR-206 mimic, miR-613 

inhibitor, miR-613 mimic and miR-NC were designed 

and synthesized by Geenseed Biotech corporation 

(Guangzhou, China). They were transfected into MDA-

MB-231 and MDA-MB-468 cell lines for 48 h, strictly 

in line with the requirements of LipofectamineTM 2000 

kit (Invitrogen, USA). 

 

Cell treatment by 3-methyladenine (3-MA) 

 

TNBC cell lines after 48-h transfection were treated by 

5 mmol /L 3-MA (Selleck, USA) for 24 h. 

 

Methyl thiazolyl tetrazolium (MTT) assay to assess 

chemosensitivity of TNBC cells 

 

MDA-MB-231 and MDA-MB-468 cell lines of 

logarithmic growth were seeded into 96-well plates at 

the concentration of 1×104 per well. After treatment by 

different concentrations of cisplatin (Shandong Qilu 

Pharmaceutical, China), adriamycin (Solarbio, China), 

paclitaxel (Bristol-Myers Squibb Company, USA) and 

gemcitabine (Eli Lily and Company, USA) for 48 h, the 

TNBC cell lines were incubated by MTT solution 

(Beyotime Biotechnology, China) for 4 h. Optical 

density (OD) of the cell lines was measured on the 

microplate reader (model: iMark, BioRad, USA) at the 

wavelength of 570 nm, and proliferation inhibition  

rate was calculated in line with the formula of. 

( )1-OD test group

OD control group
100%.  The half maximal inhibitory 

concentration (IC50) values of each drug for each cell 

were calculated with online Quest Graph™ IC50 

Calculator (https://www.aatbio.com/tools/ic50-calculator, 

AAT Bioquest, USA). 

 

Cell counting kit-8 (CCK8) assay 

 

Abiding by procedures detailed in the CCK8 kit (Sino-

American Biotechnology, China), MDA-MB-231 and 

MDA-MB-468 cell lines were blended with 10 μl 

enhanced CCK8 reagent. After incubation at 37° C for  

1 h, optical density (OD) of TNBC cells was evaluated 

on microplate reader (model: iMark, BioRad, USA) at 

the wavelength of 450 nm. 

 

Transwell assays 

 
Cell migration 

The upper transwell chamber (Corning, USA) was 

inoculated by 1×105 TNBC cells, and 700 μl 10% FBS-

containing DMEM (Biological Industries, USA) was 

supplemented into the lower transwell chamber. After 

cultivation in 5% CO2 for 24 h, MDA-MB-231 and 
MDA-MB-468 cell lines were successively fixated by 

10% methanol for 20 min and stained by 0.5% crystal 

violet for 30 min. TNBC cells left on the membrane 

https://www.aatbio.com/tools/ic50-calculator
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were eliminated with a cotton rub, and pictures of  

5 views were taken to count average cell number with 

inverted microscope (Nikon, Japan). 

 

Cell invasion 

After dilution by serum-free and high-glucose DMEM 

(Biological Industries, USA) at the ratio of 1:8, 100 μl 

Matrigel (Corning, USA) was paved onto the center  

of upper transwell chamber (Corning, USA). Then 1×105 

TNBC cells were supplemented onto the coagulated 

Matrigel, and 700 μl 10% FBS-inclusive high-glucose 

DMEM was poured into the lower chamber (Corning, 

USA). Twenty-four hours later, MDA-MB-231 and 

MDA-MB-468 cell lines were managed by 10% 

methanol for 20 min, followed by dyeing with 0.5% 

crystal violet for 30 min. Eventually, TNBC cells that 

hardly penetrated the upper chamber were wiped off, 

and 5 fields were randomly selected to count cell 

number under inverted microscope (Nikon, Japan). 

 

Dual-luciferase reporter gene assay 

 

Hsa_circ_000019 fragments that included binding  

sites with miR-613 or miR-206 were, respectively, 

mutated, and the products were integrated into pGL3  

vector (Promega, USA) to construct pGL3-hsa_circ_ 

0000199-Mut-1 and pGL3-hsa_circ_0000199-Mut-2. 

Simultaneously, pGL3-hsa_circ_0000199-Wt-1 and 

pGL3-hsa_circ_0000199-Wt-2 were constructed by 

amplifying hsa_circ_000019 fragments which contained 

binding sites with miR-613 and miR-206. Afterwards, 

MDA-MB-231 and MDA-MB-468 cell lines were, 

respectively, transfected by: 1) miR-613 mimic+hsa_ 

circ_0000199-Wt-1, 2) miR-NC+hsa_circ_0000199-

Wt-1, 3) miR-613 mimic+hsa_circ_0000199-Mut-1, 4) 

miR-NC+-hsa_circ_0000199-Mut-1, 5) miR-206 mimic 

+hsa_circ_0000199-Wt-2, 6) miR-NC+hsa_circ_0000199 

-Wt-2, 7) miR-206 mimic+hsa_circ_0000199-Mut-2, 

and 8) miR-NC+ hsa_circ_0000199-Mut-2, as per 

specifications of LipofectamineTM 2000 kit (Invitrogen, 

USA). Twenty-four hours later, MDA-MB-231 and 

MDA-MB-468 cells of each group were lysed, and the 

mixture was centrifuged at 3000×g for 5 min. After 

removal of supernatants, luciferase activity of each 

sample, designated as the ratio of Firefly luciferase 

activity and Renilla luciferase activity, was examined 

with Dual-luciferase assay kit (Promega, USA). 

 

Monodansylcadaverine (MDC) staining to determine 

autophagic condition of TNBC cells 

 

After digestion by pancreatin to a density of 3×104/ml, 

MDA-MB-231 and MDA-MB-468 cell lines at the 
logarithmic growth phase were inoculated into 12-well 

plates until 70% confluence. Each cell sample was evenly 

mixed with 10 μl MDC solution (Sigma, USA), which 

was then left in the darkness for 40 min. After 

centrifugation at 1000 g for 5 min, the TNBC cells were 

re-suspended in 100 μl PBS, and they were photographed 

under fluorescent microscope (Olympus, Japan). 

 

Real-time quantitative polymerase chain reaction 

(PCR) 

 

Total RNAs were extracted from BC tissues and cell 

lines by addition of TRIzol reagent (Invitrogen, USA). 

Integrity of the RNAs was confirmed through agarose gel 

electrophoresis (AGE), and their concentration and purity 

were determined with spectrophotometer (model: 

SmartSpec Plus, Bio-Rad, USA). Subsequently, the 

RNAs were reversely transcribed into cDNAs (TransGen 

Biotech, China), and cDNAs were amplified (Applied 

Biosystems, USA) on the real-time PCR instrument 

(model: 9300, Bio-Rad, USA) following procedures of: 

1) pre-denaturation at 95° C for 3 min, and 2) 40 cycles 

of denaturation at 95° C for 5 s, annealing at 60° C for 30 

s and extension at 72° C for 30 s. Primers of circRNAs 

and miRNAs were arranged in Supplementary Tables 1, 2, 

and their relative expression was calculated through  

2-ΔΔCt approach [61]. Expressions of circRNAs were 

normalized to that of GAPDH, and U6 was set as the 

internal reference of miRNAs. 

 

Western blotting 
 

MDA-MB-231 and MDA-MB-468 cell lines of 

logarithmic growth phase, after digestion by 0.25% 

trypsin to a density of 5×105/ml, were inoculated into  

96-well plates. After dissociation by 200 μl RIPA at 4° C 

for 30 min, TNBC cells were centrifuged at 12000×g for 

30 min, and supernatants were collected to quantify 

proteins through Bradford method (Bio-Rad, USA). 

Subsequently, 20 μg of each protein sample was 

separated to carry out sodium dodecyl sulfate- 

polyacrylamide gel electrophoresis (SDS-PAGE) (Bio-

Rad, USA), and the products were shifted onto 

polyvinylidene fluoride (PVDF) membrane (EMD 

Millipore, USA). In the wake of blockage within 5% 

skimmed milk (v/v) for 2 h, primary antibodies (rabbit 

anti-human, Abcam, USA) against beclin 1 (1:2000, 

ab207612), LC3-II (1:200, ab222776), p62 (1:2000, 

ab101266), Atg5 (1:5000, ab199560), PI3K (1:1000, 

ab191606), p-PI3K (rabbit anti-human, 1:1000, 

ab182651), Akt (rabbit anti-human, 1:10000, ab179463), 

p-Akt (rabbit anti-human, 1:500, ab38449), mTOR 

(rabbit anti-human, 1:10000, ab134903) and p-mTOR 

(rabbit anti-human, 1:1000, ab109268) were formulated 

to incubate protein samples at 4° C for overnight. After 

rinsage with TBST for 3 times (5 min each time), 
samples were incubated by IgG H&L (HRP) secondary 

antibody (goat-anti-rabbit, 1:10000, ab97080, Abcam, 

USA) for 1 h, and they were analyzed by virtue of 
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electro-chemiluminescence (ECL) imaging system 

(Thermo, USA). 

 

Statistical analyses 

 

All data were analyzed with SPSS 17.0 software (IBM 

Corporation, USA). Differences among categorical 

variables (n) were discerned using chi-square test, and 

continuous variables [mean ± standard deviation (SD)] 

were compared through student’s t test or single-factor 

analysis of variance (ANOVA). Kaplan-Meier survival 

curves were plotted, and log-rank test was applied to 

identify statistical difference between groups. Cox-

proportional hazard model was also established to 

screen out variables that were predictive of TNBC 

patients’ survival. It was statistically significant when P 

value was less than 0.05. 

 

Ethics approval and consent to participate 

 

All these operations and experimental process have 

been approved by the ethics committee and the 

experimental animal ethics committee of Minhang 

Hospital affiliated to Fudan University. 
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included in this article. 
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SUPPLEMENTARY MATERIALS 
 

Supplementary Figures 
 

 

 
 

Supplementary Figure 1. Large tumor size (A) and high Ki-67 proportion (B) were associated with poor survival of triple-negative breast 

cancer (TNBC) patients. 
 

 
 

Supplementary Figure 2. Comparison of Monodansylcadaverine (MDC) fluorescence intensity among MDA-MB-231 and 
MDA-MB-468 cell lines under treatments of si-NC, si-hsa_circ_0000199 and si-hsa_circ_0000199+3-MA. 3-MA: 3-

methyladenine. 
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Supplementary Figure 3. Hsa_circ_0000199 expression was compared between tumor tissues and normal tissues in triple-
negative breast cancer (TNBC)-bearing mice models. ***: P<0.001. #Establishment of TNBC-bearing mice models: Single-cell 

suspension of MDA-MB-231 cell line (concentration: 1.5×107/ml) was injected into the subcutaneous fat pad in the chest of SPF-degree 
female BALB/Cnu/nu mice (n=20), which were provided by Laboratory Animal department of Minhang Hospital affiliated to Fudan University. 
The mice were aged 5-6 weeks old, and their weight ranged from 18 g to 20 g. On the 2nd day after inoculation, nodes were observable at 
their injection site. Ten days later, tumors were formed in all mice models, whose tumor tissues and normal tissues were then excised to 
determine hsa_circ_0000199 expression utilizing PCR. All the procedures were finished in accordance with requirements of Care and Use of 
Experimental Animals of the US National Institutes of Health (Bethesda, USA), and approvals were obtained from Animal Care Committee of 
Minhang Hospital affiliated to Fudan University. 
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Supplementary Tables 
 

 

Supplementary Table 1. Primers for circRNAs and their internal reference. 

Genes 
Primers 

Forward Reverse 

hsa_circ_0017242 5'-TTGGTGGAGGACCAGATGAT-3' 5'-CCCCCAACTTGGAGAAATGGTA-3' 

hsa_circ_0017251 5'-TCCTTCCAGACAAAAGACCGTT-3' 5'-TCCACATCTTGAGGTTTCTCTT-3' 

hsa_circ_0006696 5'-TCCTTCCAGACAAAAGACCGT-3' 5'-TCCACTTGCCTTCTCTCGAAC-3' 

hsa_circ_0017252 5'-CCTTCCAGACAAAAGACCGT-3' 5'-CCCCCAACTTGGAGAAATGGT-3' 

hsa_circ_0017243 5'-GCAGCCACCATGAAGACATTC-3' 5'-AGGTAAATCCACATCTTGAGGTT-3' 

hsa_circ_0004649 5'-TGAAGACAGATGGCTCATTCAT-3' 5'-GGTTTGGATTCTCTGCTGCT-3' 

hsa_circ_0017254 5'-GGATGCCTCTACAACCCATC-3' 5'-CCCCAACTTGGAGAAATGGT-3' 

hsa_circ_0017246 5'-ACCGCACACGTTTCTATGGT-3' 5'-ATGTGTTTGGCTTTGGTCGT-3' 

hsa_circ_0017250 5'-CATCCCTTTTTAACATCCTTGAA-3' 5'-GTGTTTGGCTTTGGTCGTTC-3' 

hsa_circ_0000199 5'-CAAATAAACGCCTTGGTGGA-3' 5'-ATAGAAACGTGTGCGGTCCT-3' 

hsa_circ_0017247 5'-AGGACCGCACACGTTTCTAT-3' 5'-GGAAGTATCTTGGCCTCCAG-3' 

hsa_circ_0017244 5'-TTTGCAAAGAAGGGATCACA-3' 5'-AGGGTTTGGATTCTCTGCTG-3' 

hsa_circ_0017253 5'-TGGTTCGAGAGAAGGCAAGT-3' 5'-GGTTTGGATTCTCTGCTGCT-3' 

hsa_circ_0002240 5'-CCTCCTTTTAAACCTCAAGTAACATC-3' 5'-ATAGAAACGTGTGCGGTCCT-3' 

hsa_circ_0017245 5'-ACCGCACACGTTTCTATGGT-3' 5'-TCGCCCCCATTAACATATTC-3' 

hsa_circ_0017248 5'-AGGACCGCACACGTTTCTAT-3' 5'-AGGGTTTGGATTCTCTGCTG-3' 

GAPDH 5’-ACAACTTTGGTATCGTGGAAGG-3’ 5’-GCCATCACGCCACAGTTTC-3’ 
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Supplementary Table 2. Primers for miRNAs and their internal reference. 

Genes 
Primers 

Forward Reverse 

miR-613 5’-GGCGAAAGGAATGTTCCTTCT-3’ 5’-CAGTGCGTGTCGTGGAGT-3’ 

miR-1-3p 5’-GCGGCGGTGGAATGTAAAGAAG-3’ 5’-ATCCAGTGCAGGGTCCGAGG-3’ 

miR-206 5’-CGTCAGAAGGAATGATGCACAG-3’ 5’-ACCTGCGTAGGTAGTTTCATGT-3’ 

miR-147b 5’-GCGGCGGGTGTGCGGAAATGCTTC-3’ 5’-ATCCAGTGCAGGGTCCGAGG-3’ 

miR-450b-5p 5’-GCGGCGGTTTTGCAATATGTTC-3’ 5’-ATCCAGTGCAGGGTCCGAGG-3’ 

miR-942-5p 5’-GCGGCGGTCTTCTCTGTTTTGG-3’ 5’-ATCCAGTGCAGGGTCCGAGG-3’ 

miR-20a-5p 5’-GCGGCGGTAAAGTGCTTATAGTG-3’ 5’-ATCCAGTGCAGGGTCCGAGG-3’ 

miR-106b-5p 5’-GCGGCGGTAAAGTGCTGACAGTG-3’ 5’-ATCCAGTGCAGGGTCCGAGG-3’ 

miR-20b-5p 5’-GCGGCGGCAAAGTGCTCATAGTGC-3’ 5’-ATCCAGTGCAGGGTCCGAGG-3’ 

miR-526b-3p 5’-GCGGCGGGAAAGTGCTTCCTTT-3’ 5’-ATCCAGTGCAGGGTCCGAGG-3’ 

miR-519d-3p 5’-GCGGCGGCAAAGTGCCTCCC-3’ 5’-ATCCAGTGCAGGGTCCGAGG-3’ 

miR-93-5p 5’-GCGGCGGCAAAGTGCTGTTCGTG-3’ 5’-ATCCAGTGCAGGGTCCGAGG-3’ 

miR-17-5p 5’-GCGGCGGCAAAGTGCTTACAGTG-3’ 5’-ATCCAGTGCAGGGTCCGAGG-3’ 

miR-325 5’-GCGGCGGCCTAGTAGGTGTCCAG-3’ 5’-ATCCAGTGCAGGGTCCGAGG-3’ 

miR-382-3p 5’-GCGGCGGAATCATTCACGGACAAC-3’ 5’-ATCCAGTGCAGGGTCCGAGG-3’ 

miR-337-3p 5’-GCGGCGGCTCCTATATGATGCC-3’ 5’-ATCCAGTGCAGGGTCCGAGG-3’ 

miR-656-3p 5’-GCGGCGGAATATTATACAGTCAAC-3’ 5’-ATCCAGTGCAGGGTCCGAGG-3’ 

miR-3611 5’-GCGGCGGTTGTGAAGAAAGAAA-3’ 5’-ATCCAGTGCAGGGTCCGAGG-3’ 

miR-516b-5p 5’-GCGGCGGATCTGGAGGTAAGAAG-3’ 5’-ATCCAGTGCAGGGTCCGAGG-3’ 

miR-3129-5p 5’-GCGGCGGGCAGTAGTGTAGAG-3’ 5’-ATCCAGTGCAGGGTCCGAGG-3’ 

miR-199a-3p 5’-GCGGCGGACAGTAGTCTGCAC-3’ 5’-ATCCAGTGCAGGGTCCGAGG-3’ 

miR-199b-3p 5’-GCGGCGGACAGTAGTCTGCAC-3’ 5’-ATCCAGTGCAGGGTCCGAGG-3’ 

miR-6509-3p 5’-GCGGCGGTTCCACTGCCACTAC-3’ 5’-ATCCAGTGCAGGGTCCGAGG-3’ 

miR-9-5p 5’-GCGGCGGTCTTTGGTTATCTAG-3’ 5’-ATCCAGTGCAGGGTCCGAGG-3’ 

miR-382-5p 5’-GCGGCGGGAAGTTGTTCGTGGTG-3’ 5’-ATCCAGTGCAGGGTCCGAGG-3’ 

miR-526b-5p 5’-GCGGCGGCTCTTGAGGGAAGCAC-3’ 5’-ATCCAGTGCAGGGTCCGAGG-3’ 

miR-432-5p 5’-GCGGCGGTCTTGGAGTAGGTC-3’ 5’-ATCCAGTGCAGGGTCCGAGG-3’ 

miR-224-3p 5’-GCGGCGGAAAATGGTGCCCTAG-3’ 5’-ATCCAGTGCAGGGTCCGAGG-3’ 

miR-522-3p 5’-GCGGCGGAAAATGGTTCCCTTTAG-3’ 5’-ATCCAGTGCAGGGTCCGAGG-3’ 

miR-144-5p 5’-GCGGCGGGGATATCATCATATAC-3’ 5’-ATCCAGTGCAGGGTCCGAGG-3’ 

U6 5’-CTCGCTTCGGCAGCACA-3’ 5’-AACGCTTCACGAATTTGCGT-3’ 
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Supplementary Table 3. AKT3-derived circRNAs according to the encyclopedia of RNA interactomes (ENCORI) and 
circinteractome databases. 

CircRNA ID Position Strand Genomic length Spliced length ENCORI CircInteractome 

hsa_circ_0017242 chr1:243708811-244006584 - 297773 1363 √ √ 

hsa_circ_0112774 chr1:243708811-243801044 - 92233 822 × √ 

hsa_circ_0017251 chr1:243776972-243859018 - 82046 650 √ √ 

hsa_circ_0112785 chr1:243772331-243772728 + 397 397 × √ 

hsa_circ_0017249 chr1:243776972-243778463 - 1491 135 × √ 

hsa_circ_0112773 chr1:243708811-243778463 - 69652 690 × √ 

hsa_circ_0006696 chr1:243776972-243801044 - 24072 267 √ √ 

hsa_circ_0017252 chr1:243776972-244006584 - 229612 808 √ √ 

hsa_circ_0017243 chr1:243727021-243859018 - 131997 902 √ √ 

hsa_circ_0112797 chr1:243852874-243853025 + 151 151 × √ 

hsa_circ_0112778 chr1:243723199-243723386 + 187 187 × √ 

hsa_circ_0112800 chr1:243858892-243905345 - 46453 46453 × √ 

hsa_circ_0004649 chr1:243858892-244006584 - 147692 284 √ √ 

hsa_circ_0112777 chr1:243716030-243801044 - 85014 734 × √ 

hsa_circ_0017254 chr1:243809194-244006584 - 197390 541 √ √ 

hsa_circ_0017246 chr1:243736227-243828185 - 91958 647 √ √ 

hsa_circ_0112788 chr1:243788210-243791306 - 3096 3096 × √ 

hsa_circ_0112798 chr1:243858892-243859018 - 126 126 × √ 

hsa_circ_0017250 chr1:243776972-243828185 - 51213 524 √ √ 

hsa_circ_0000199 chr1:243708811-243736350 - 27539 555 √ √ 

hsa_circ_0112770 chr1:243675625-243727150 - 51525 535 × √ 

hsa_circ_0112782 chr1:243727021-243809339 - 82318 664 × √ 

hsa_circ_0112787 chr1:243778397-243859018 - 80621 581 × √ 

hsa_circ_0017247 chr1:243736227-243859018 - 122791 773 √ √ 

hsa_circ_0017244 chr1:243727021-244006584 - 279563 1060 √ √ 

hsa_circ_0112767 chr1:243667689-243736350 - 68661 1605 × √ 

hsa_circ_0112775 chr1:243716030-243736350 - 20320 467 × √ 

hsa_circ_0017253 chr1:243800912-244006584 - 205672 673 √ √ 

hsa_circ_0112799 chr1:243858892-243899049 - 40157 40157 × √ 

hsa_circ_0112776 chr1:243716030-243778463 - 62433 602 × √ 

hsa_circ_0002240 chr1:243675625-243736350 - 60725 658 √ √ 

hsa_circ_0112801 chr1:243927962-243928163 - 201 201 × √ 

hsa_circ_0112802 chr1:244006426-244006584 - 158 158 × √ 

hsa_circ_0112772 chr1:243708811-243727689 - 18878 971 × √ 

hsa_circ_0112780 chr1:243727021-243778463 - 51442 387 × √ 

hsa_circ_0112771 chr1:243708811-243727150 - 18339 432 × √ 

hsa_circ_0112791 chr1:243800912-243859018 - 58106 515 × √ 

hsa_circ_0112766 chr1:243666011-243666150 - 139 139 × √ 

hsa_circ_0112783 chr1:243736227-243778463 - 42236 258 × √ 

hsa_circ_0017245 chr1:243736227-243777041 - 40814 192 √ √ 

hsa_circ_0112790 chr1:243800912-243828185 - 27273 389 × √ 

hsa_circ_0112786 chr1:243776972-243809339 - 32367 412 × √ 

hsa_circ_0112792 chr1:243800981-243828177 - 27196 312 × √ 

hsa_circ_0112768 chr1:243668233-243668458 - 225 225 × √ 

hsa_circ_0112784 chr1:243736227-243801044 - 64817 390 × √ 
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hsa_circ_0017248 chr1:243736227-244006584 - 270357 931 √ √ 

hsa_circ_0112779 chr1:243727021-243736350 - 9329 252 × √ 

hsa_circ_0112796 chr1:243846498-243859018 - 12520 12520 × √ 

hsa_circ_0112769 chr1:243673800-243674014 + 214 214 × √ 

hsa_circ_0112789 chr1:243800912-243809233 - 8321 171 × √ 

hsa_circ_0112781 chr1:243727021-243801044 - 74023 519 × √ 

hsa_circ_0112794 chr1:243828073-243859018 - 30945 238 × √ 

hsa_circ_0112793 chr1:243809194-243859018 - 49824 383 × √ 

hsa_circ_0112795 chr1:243828073-243898418 - 70345 39638 × √ 

*: ENCORI: https://www.starbase.sysu.edu.cn. CircInteractome: https://circinteractome.nia.nih.gov/index.html. 
 

Supplementary Table 4. MiRNAs potentially targeted by AKT3-derived circRNAs in accordance with The 
Encyclopedia of RNA Interactomes (ENCORI) and CircInteractome databases*. 

CircRNAs Potentially targeted miRNAs* 

hsa_circ_0017242 hsa-miR-613; hsa-miR-1-3p; hsa-miR-206; hsa-miR-147b; hsa-miR-450b-5p; hsa-miR-942-5p; hsa-

miR-20a-5p; hsa-miR-106b-5p; hsa-miR-20b-5p; hsa-miR-526b-3p; hsa-miR-519d-3p; hsa-miR-93-

5p; hsa-miR-17-5p; hsa-miR-106a-5p; hsa-miR-325; hsa-miR-382-3p; hsa-miR-337-3p; hsa-miR-

656-3p; hsa-miR-3611; hsa-miR-516b-5p; hsa-miR-3129-5p; hsa-miR-199a-3p; hsa-miR-199b-3p; 

hsa-miR-6509-3p; hsa-miR-9-5p; hsa-miR-382-5p; hsa-miR-526b-5p; hsa-miR-432-5p; hsa-miR-

224-3p; hsa-miR-522-3p; hsa-miR-144-5p 

hsa_circ_0017251 hsa-miR-450b-5p; hsa-miR-942-5p; hsa-miR-20a-5p; hsa-miR-106b-5p; hsa-miR-20b-5p; hsa-miR-

526b-3p; hsa-miR-519d-3p; hsa-miR-93-5p; hsa-miR-17-5p; hsa-miR-106a-5p; hsa-miR-325; hsa-

miR-382-3p; hsa-miR-337-3p; hsa-miR-656-3p; hsa-miR-3611; hsa-miR-516b-5p; hsa-miR-3129-

5p; hsa-miR-199a-3p; hsa-miR-199b-3p;      hsa-miR-6509-3p; hsa-miR-9-5p; hsa-miR-382-5p; hsa-

miR-526b-5p 

hsa_circ_0006696 hsa-miR-450b-5p; hsa-miR-942-5p; hsa-miR-20a-5p; hsa-miR-106b-5p; hsa-miR-20b-5p; hsa-miR-

526b-3p; hsa-miR-519d-3p;hsa-miR-93-5p; hsa-miR-17-5p; hsa-miR-106a-5p; hsa-miR-325; hsa-

miR-382-3p  

hsa_circ_0017252 hsa-miR-450b-5p; hsa-miR-942-5p; hsa-miR-20a-5p; hsa-miR-106b-5p; hsa-miR-20b-5p; hsa-miR-

526b-3p; hsa-miR-519d-3p; hsa-miR-93-5p; hsa-miR-17-5p; hsa-miR-106a-5p; hsa-miR-325; hsa-

miR-382-3p; hsa-miR-337-3p; hsa-miR-656-3p; hsa-miR-3611; hsa-miR-516b-5p; hsa-miR-3129-

5p; hsa-miR-199a-3p; hsa-miR-199b-3p; hsa-miR-6509-3p; hsa-miR-9-5p; hsa-miR-382-5p; hsa-

miR-526b-5p; hsa-miR-432-5p; hsa-miR-224-3p; hsa-miR-522-3p; hsa-miR-144-5p 

hsa_circ_0017243 hsa-miR-613; hsa-miR-1-3p; hsa-miR-206; hsa-miR-147b; hsa-miR-450b-5p; hsa-miR-942-5p; hsa-

miR-20a-5p; hsa-miR-106b-5p; hsa-miR-20b-5p; hsa-miR-526b-3p; hsa-miR-519d-3p; hsa-miR-93-

5p; hsa-miR-17-5p; hsa-miR-106a-5p; hsa-miR-325; hsa-miR-382-3p; hsa-miR-337-3p; hsa-miR-

656-3p; hsa-miR-3611; hsa-miR-516b-5p; hsa-miR-3129-5p; hsa-miR-199a-3p; hsa-miR-199b-3p; 

hsa-miR-6509-3p; hsa-miR-9-5p; hsa-miR-382-5p; hsa-miR-526b-5p 

hsa_circ_0004649 hsa-miR-382-5p; hsa-miR-526b-5p; hsa-miR-432-5p; hsa-miR-224-3p; hsa-miR-522-3p; hsa-miR-

144-5p 

hsa_circ_0017254 hsa-miR-337-3p; hsa-miR-656-3p; hsa-miR-3611; hsa-miR-516b-5p; hsa-miR-3129-5p; hsa-miR-

199a-3p; hsa-miR-199b-3p; hsa-miR-6509-3p; hsa-miR-9-5p; hsa-miR-382-5p; hsa-miR-526b-5p; 

hsa-miR-432-5p; hsa-miR-224-3p; hsa-miR-522-3p; hsa-miR-144-5p 

hsa_circ_0017246 hsa-miR-613; hsa-miR-1-3p; hsa-miR-206; hsa-miR-147b; hsa-miR-450b-5p; hsa-miR-942-5p; hsa-

miR-20a-5p; hsa-miR-106b-5p; hsa-miR-20b-5p; hsa-miR-526b-3p; hsa-miR-519d-3p; hsa-miR-93-

5p; hsa-miR-17-5p; hsa-miR-106a-5p; hsa-miR-325; hsa-miR-382-3p; hsa-miR-337-3p; hsa-miR-

656-3p; hsa-miR-3611; hsa-miR-516b-5p; hsa-miR-3129-5p; hsa-miR-199a-3p; hsa-miR-199b-3p; 

hsa-miR-6509-3p; hsa-miR-9-5p 

hsa_circ_0017250 hsa-miR-450b-5p; hsa-miR-942-5p; hsa-miR-20a-5p; hsa-miR-106b-5p; hsa-miR-20b-5p; hsa-miR-

526b-3p; hsa-miR-519d-3p; hsa-miR-93-5p; hsa-miR-17-5p; hsa-miR-106a-5p; hsa-miR-325; hsa-

miR-382-3p; hsa-miR-337-3p; hsa-miR-656-3p       hsa-miR-3611; hsa-miR-516b-5p; hsa-miR-

3129-5p; hsa-miR-199a-3p; hsa-miR-199b-3p; hsa-miR-6509-3p; hsa-miR-9-5p 

https://www.starbase.sysu.edu.cn/
https://circinteractome.nia.nih.gov/index.html
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hsa_circ_0000199 hsa-miR-613; hsa-miR-1-3p; hsa-miR-206 

hsa_circ_0017247 hsa-miR-613; hsa-miR-1-3p; hsa-miR-206; hsa-miR-147b; hsa-miR-450b-5p; hsa-miR-942-5p; hsa-

miR-20a-5p; hsa-miR-106b-5p; hsa-miR-20b-5p; hsa-miR-526b-3p; hsa-miR-519d-3p; hsa-miR-93-

5p; hsa-miR-17-5p; hsa-miR-106a-5p; hsa-miR-325; hsa-miR-382-3p; hsa-miR-337-3p; hsa-miR-

656-3p; hsa-miR-3611; hsa-miR-516b-5p; hsa-miR-3129-5p; hsa-miR-199a-3p; hsa-miR-199b-3p; 

hsa-miR-6509-3p; hsa-miR-9-5p; hsa-miR-382-5p; hsa-miR-526b-5p 

hsa_circ_0017244 hsa-miR-613; hsa-miR-1-3p; hsa-miR-206; hsa-miR-147b; hsa-miR-450b-5p; hsa-miR-942-5p; hsa-

miR-20a-5p; hsa-miR-106b-5p; hsa-miR-20b-5p; hsa-miR-526b-3p; hsa-miR-519d-3p; hsa-miR-93-

5p; hsa-miR-17-5p; hsa-miR-106a-5p; hsa-miR-325; hsa-miR-382-3p; hsa-miR-337-3p; hsa-miR-

656-3p; hsa-miR-3611; hsa-miR-516b-5p; hsa-miR-3129-5p; hsa-miR-199a-3p; hsa-miR-199b-3p; 

hsa-miR-6509-3p; hsa-miR-9-5p; hsa-miR-382-5p; hsa-miR-526b-5p; hsa-miR-432-5p; hsa-miR-

224-3p; hsa-miR-522-3p; hsa-miR-144-5p 

hsa_circ_0017253 hsa-miR-450b-5p; hsa-miR-942-5p; hsa-miR-20a-5p; hsa-miR-106b-5p; hsa-miR-20b-5p; hsa-miR-

526b-3p; hsa-miR-519d-3p; hsa-miR-93-5p; hsa-miR-17-5p; hsa-miR-106a-5p; hsa-miR-325; hsa-

miR-382-3p; hsa-miR-337-3p; hsa-miR-656-3p;       hsa-miR-3611; hsa-miR-516b-5p; hsa-miR-

3129-5p; hsa-miR-199a-3p; hsa-miR-199b-3p; hsa-miR-6509-3p; hsa-miR-9-5p; hsa-miR-382-5p; 

hsa-miR-526b-5p; hsa-miR-432-5p; hsa-miR-224-3p; hsa-miR-522-3p; hsa-miR-144-5p 

hsa_circ_0002240 hsa-miR-613; hsa-miR-1-3p; hsa-miR-206 

hsa_circ_0017245 hsa-miR-613; hsa-miR-1-3p; hsa-miR-206; hsa-miR-147b 

hsa_circ_0017248 hsa-miR-613; hsa-miR-1-3p; hsa-miR-206; hsa-miR-147b; hsa-miR-450b-5p; hsa-miR-942-5p; hsa-

miR-20a-5p; hsa-miR-106b-5p; hsa-miR-20b-5p; hsa-miR-526b-3p; hsa-miR-519d-3p; hsa-miR-93-

5p; hsa-miR-17-5p; hsa-miR-106a-5p; hsa-miR-325; hsa-miR-382-3p; hsa-miR-337-3p; hsa-miR-

656-3p; hsa-miR-3611; hsa-miR-516b-5p; hsa-miR-3129-5p; hsa-miR-199a-3p; hsa-miR-199b-3p; 

hsa-miR-6509-3p; hsa-miR-9-5p; hsa-miR-382-5p; hsa-miR-526b-5p; hsa-miR-432-5p; hsa-miR-

224-3p; hsa-miR-522-3p; hsa-miR-144-5p 

*: ENCORI: https://www.starbase.sysu.edu.cn. CircInteractome: https://circinteractome.nia.nih.gov/index.html. 
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Supplementary Table 5. Correlation of miRNAs with autophagy-signalizing signaling pathways in triple-negative 
breast cancer. 

miRNAs Notch signaling Wnt-βactin PI3K/AKT/mTOR EGFR protein Triple-negative breast cancer 

hsa-miR-613 [1] [2] [3] × [4] 

hsa-miR-1-3p [5] × [6] [7] [8] 

hsa-miR-206 [9] [10] [11] [12] [13] 

hsa-miR-147b × [14] × [15] × 

hsa-miR-450b-5p × [16] × × × 

hsa-miR-942-5p × [17] × × × 

hsa-miR-20a-5p × × × × [18] 

hsa-miR-106b-5p [19] [20] × × × 

hsa-miR-20b-5p × [21] [22] [23] × 

hsa-miR-526b-3p × × × × × 

hsa-miR-519d-3p × [24] [25] × × 

hsa-miR-93-5p × [26] × × [27, 28] 

hsa-miR-17-5p [29] [30] [31] [32] × 

hsa-miR-325 × × × × × 

hsa-miR-382-3p × × × × × 

hsa-miR-337-3p × [33] [33] × × 

hsa-miR-656-3p × [20] × × × 

hsa-miR-3611 × × × × × 

hsa-miR-516b-5p × [34] × × × 

hsa-miR-3129-5p × × × × × 

hsa-miR-199a-3p [35] [36] [37] [38] [39] 

hsa-miR-199b-3p [40] [41] [42] × × 

hsa-miR-6509-3p × × × × × 

hsa-miR-9-5p [43] [44] × × [45] 

hsa-miR-382-5p × × × × × 

hsa-miR-526b-5p × × × × × 

hsa-miR-432-5p × × [46] × × 

hsa-miR-224-3p [47] [48] × [49] [50] 

hsa-miR-522-3p × [51] × × × 

hsa-miR-144-5p × [52] × × × 
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