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Abstrac

Background: Distinguishing multiple primary lung cancer (MPLC) from intrapulmonary metastasis (IPM) is critical for their disparate
treatment strategy and prognosis. This study aimed to establish a non-invasive model to make the differentiation pre-operatively.

Methods: We retrospectively studied 168 patients with multiple lung cancers (307 pairs of lesions) including 118 cases for modeling
and internal validation, and 50 cases for independent external validation. Radiomic features on computed tomography (CT) were
extracted to calculate the absolute deviation of paired lesions. Features were then selected by correlation coefficients and random
forest classifier 5-fold cross-validation, based on which the lesion pair relation estimation (PRE) model was developed. A major voting
strategy was used to decide diagnosis for cases with multiple pairs of lesions. Cases from another institute were included as the
external validation set for the PRE model to compete with two experienced clinicians.

Results: Seven radiomic features were selected for the PRE model construction. With major voting strategy, the mean area under
receiver operating characteristic curve (AUC), accuracy, sensitivity, and specificity of the training versus internal validation versus
external validation cohort to distinguish MPLC were 0.983 versus 0.844 versus 0.793, 0.942 versus 0.846 versus 0.760, 0.905 versus 0.728
versus 0.727, and 0.962 versus 0.910 versus 0.769, respectively. AUCs of the two clinicians were 0.619 and 0.580.

Conclusions: The CT radiomic feature-based lesion PRE model is potentially an accurate diagnostic tool for the differentiation of
MPLC and IPM, which could help with clinical decision making.

Keywords: multiple primary lung cancer, radiomics, intrapulmonary metastasis

Introduction of previous studies have primarily relied on pathological analysis

As one of the most common cancers worldwide,! lung cancer is a
threat to people’s health and life. As a result of the popularization
of high-resolution computed tomography (CT) scanning, more pa-
tients with lung cancer are diagnosed at an early stage and are
thus able to receive curative surgery®* Along with this trend is
the increasing incidence of those finding more than one lesion in
their lungs.

Multiple primary lung cancer (MPLC) was first reported in 1924°
and has become increasingly common since that time.®’ With
many unsolved problems for MPLC, one consensus is that when-
ever possible, surgical resection should be considered, in that sur-
vival is excellent and even comparable to solitary lung cancer.®-!!
Yet for intrapulmonary metastatic patients, radical surgery may
not be the optimal choice. For this reason, it is of great importance
to distinguish MPLC from intrapulmonary metastasis (IPM) so that
the appropriate treatment strategy may be applied. The majority

for differentiation, emphasizing the need for a diagnostic tool ca-
pable of addressing this issue preoperatively. Recent studies!?:*?
have revealed imaging features indicative of multiple primaries.
The role of positron emission tomography (PET-CT) with standard
uptake value (SUV) maximal ratio in differentiating synchronous
MPLC from IPM appears to be inconsistent among studies.’>*>
Other emerging techniques such as machine-learning tools have
been applied in the diagnosis of pulmonary nodules, yet mostly
focusing on single-lesion cases.'® One study'’ tried to apply an
artificial intelligence method for single lung-nodule diagnosis in
MPLC without attention to the differentiation between pairs of le-
sions. The application of radiomics has been diverse in lung can-
cer and has included histopathology, genetic mutations, and even
immune phenotype.*®

With the application of radiomics, we hypothesize that by
comparing the intrinsic features between paired lesions, the
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discrimination between MPLC and IPM may be achieved with bet-
ter accuracy. The difference of imaging features between paired
lesions of MPLC would likely be greater than the differences be-
tween pairs that include a primary tumor and an intrapulmonary
metastasis. We believe that this method could be helpful for pre-
operative differential diagnosis of MPLC and the subsequent treat-
ment decision-making.

Materials and methods
Patients and pairing

Patients with two or more suspicious lesions receiving surgery for
lung cancer in the First Affiliated Hospital of Sun Yat-sen Univer-
sity (SYSUFH) from October 2014 to October 2020 were enrolled.
Their electronic medical records were extracted for further in-
vestigation, including clinicopathologic characteristics, radiolog-
ical data, operation records, molecular genetic testing results, etc.
Based on the Martini and Melamed criteria’® and the 2013 Ameri-
can College of Chest Physicians criteria,?® patient inclusion crite-
ria for MPLC in this study were as follows.

(i) The time gap between incidence of two lesions was >4 years
(metachronous).

(if) Histopathological results of lesions were obtained by lung re-
section, bronchoscopy, biopsy, or aspiration:

(a) lesions of the same patient were of different pathological
types or subtypes, or with in situ histology;

(b) lesions of proven atypical adenomatous hyperplasia were
ruled out;

(c) for those of the same histology other than in situ types,
molecular genetic testing results showed different driver
mutations or any difference in fusion sites.™

Cases were excluded for:

(i) alack of pre-operative chest CT images;

(ii) distant metastases;

(iii) both lesions displayed as the same rare histological type
such as neuroendocrine tumors or adenosquamous carci-
noma;?!

(iv) gene testing showed lesions share the same uncommon
driver mutation or fusion of the same breakpoint.??

For the last two situations, IPM would be considered. The diag-
nosis of IPM was based on the algorithm combining histopathol-
ogy and molecular results,'*?"?* including patients with similar
but uncommon histology or mutations, or at least two mutations
in common.

A flowchart of the patient enrollment process is showed in
Fig. 1. The same criteria were used for the validation cohort from
Sun Yat-sen University Cancer Center (SYSUCC) between Jan-
uary 2020 and March 2021. This retrospective study was approved
by the respective Institutional Ethics Commissions of SYSUFA
{No0.[2020]371} and SYSUCC {No. YB2018-13} with a waiver of in-
formed consent. The information of CT scan protocols are detailed
in the online supplementary material.

For further analysis, lesions of each individual case were paired.
For example, two lesions of an MPLC patient would make one pair,
while four lesions of an MPLC patient would make six pairs (pairs
of lesions a-b, a-c, a-d, b-c, b-d, and c-d). Based on these lesion-
pairs, the study calculated their differences and managed to dis-
tinguish MPLC from IPM.

Histopathological assessment and molecular
genetic testing

Resected lesion samples underwent histopathological exami-
nation by at least two experienced pathologists, following the
2015 World Health Organization classification guidelines.?* Im-
munohistochemistry was employed as needed. Additionally, when
deemed necessary and with patient consent, next generation
sequencing testing was conducted. Formalin-fixed, paraffin-
embedded specimens were utilized for DNA isolation, enabling
the detection of specific gene mutations, gene rearrangements,
etc. These molecular genetic testing results were obtained to sup-
port the diagnosis of MPLC.

Machine learning based model development

With the collected patient dataset, a machine-learning method
based on radiomic features? was developed for the differential
diagnosis of MPLC and IPM. The main steps to develop the model
included lesion segmentation, radiomic feature calculation, le-
sion pair feature deviation calculation, feature selection and le-
sion pair relation estimation (PRE) model training, and MPLC and
IPM classification, as illustrated in Fig. 2.

Lesion segmentation

All lung cancer lesions were manually delineated using open-
source software ITK-Snap (Penn Image Computing and Science
Laboratory, Philadelphia, PA, USA)?® by two experienced chest ra-
diologists independently, both blinded to the histologic diagnosis.
Firstly, the minimal bounding box was calculated in three dimen-
sions based on the delineated contours. The minimal region of in-
teres was extracted from the normalized image by clipping the im-
age intensities in the range [—1024, 1024] and then mapping them
to the range [—1, 1]. Each lesion was processed via this method to
get cropped region of interest images.

Radiomic feature calculation

The feature vector F with 107 radiomic features (F=
[Fi, ..., F, ..., Fio7]) was calculated for each lesion, which
included 18 first-order features, 14 shape-based features, 24 gray
level co-occurrence matrix (GLCM) features, 16 gray level run
length matrix (GLRLM) features, 16 gray level size zone matrix
(GLSZM) features, 5 neighboring gray-tone difference matrix
(NGTDM,) features, and 14 gray level dependence matrix (GLDM)
features.

Feature deviation calculation of lesion pairs

MPLC lesions, according to the definition itself, originated from
multiple sources independent of each other, while IPM lesions
share the same origin. Thus, it is reasonable to hypothesize that
MPLC lesions could be different in intensity, properties, and ma-
terial construction, etc. On the other hand, IPM lesions could
be more closely related in terms of radiomic features. Based on
this hypothesis, we calculated the absolute deviation (AD) of fea-
ture vectors FAP = [FP, ..., FAP, ..., FAP] for each lesion pair
of each patient, where FAP = F* — F, F%, and F? represent the iy,
radiomic feature of lesions a and b from the same patient. Thus,
FAP was defined as the representative similarity measure of the
lesion pair.

Feature selection

Based on the similarity feature vectors calculated above, a PRE
model was built via the random forest classifier?” for pairwise
lesions. In this study, 70% of patients were randomly split as
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Figure 1. Flowchart of the enrollment process of MPLC.

training dataset (SYSUFH training cohort) and the remaining
30% as testing dataset for model evaluation (SYSUFH internal
validation). Considering the small patient cohort, 107 features for
training could be excessive and decrease the accuracy and sta-
bility of the model. To alleviate the over-fitting problem, feature
selection was achieved by a two-step procedure, including the re-
moval of redundant features of high correlation coefficients and
those of lower variances. That is, for a feature pair, the correla-
tion coefficient was larger than the threshold T, (empirically set
as 0.7). Then 5-fold cross-validation and random forest model fit-
ting methods were applied to obtain the optimal feature number
and evaluate the importance of features, respectively. Each time,
one feature was added according to its ranking in descending or-
der to train the model on the intra-training dataset (4 of 5 folds),
and the receiver operating characteristic (ROC) curve was calcu-
lated on the intra-validation dataset (1 of 5 folds). The area under
the ROC curve (AUC)?® was monitored and validated until the op-
timal model was achieved and its corresponding feature number
obtained. In this way, the top k important features were selected
with the best AUC in the 5-fold cross-validation.

39 patients had pathologically
or genetically distinct lesions
(39 synchronous cases)

External Validation

PRE model construction and MPLC and IPM classification

On the training dataset with selected features, a new model based
on random forest was developed for PRE to diagnose MPLC. Con-
sidering individuals with two or more pairs of lesions, a major vot-
ing strategy as shown in Fig. 2F was adopted where the predicted
probability was the mean probability of majorities for such cases.
For example, for a patient with three lung lesions (noted as a, b,
and c), pair a with b and pair a with ¢ were predicted similar while
pair b with c different. IPM would be considered for this case.

Model evaluation

To evaluate the accuracy and robustness of the proposed method,
the final PRE model training steps were repeated 100 times with
datasets randomly split as training and testing with the ratio 7 :
3. AUC, accuracy sensitivity specificity negative predictive value
(NPV), and positive predictive value (PPV) were used to qualita-
tively evaluate the model’s performance in diagnosing MPLC.

For the external validation set of SYSUCC, two experienced clin-
icians (one experienced chest radiologist and one senior thoracic
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Figure 2. (A-F)The main steps to develop the pairwise machine-learning algorithm for MPLC and IPM differentiation.

surgeon, both with >5 years of experience) were given these im-
ages to make diagnostic decisions blinded of their groups. Their
performance was then compared with that of the PRE model.

Statistical analysis

Analysis of clinicopathological statistics was performed with the
chi-square test (for categorical variables) and Student’s t test (for
continuous variables of normal distribution). Statistical analysis
was carried out with R version 3.6.2 (R Foundation for Statistical
Computing, Vienna, Austria). P < 0.05 was considered statistically
significant.

To analyze feature differences between lesion pairs, the
Kolmogorov-Smirnov test was applied for normal distribution
testing (P > 0.05). The Wilcoxon rank-sum test and unpaired t-
test were used for statistical significance analysis (P < 0.05) on
datasets of abnormal and normal distribution, respectively. The
radiomic feature calculation was achieved based on an open-
source radiomics package (Pyradiomics 3.0.1).?> Model construc-
tion and evaluation were conducted on the platform Python 3.7
(Python Software Foundation) via Pycharm 2020 (JetBrains, Czech
Republic).

Results

Demographic and histopathologic characteristics
Clinicopathological characteristics of patients from SYSUFH are
shown in Table 1. In this study, we identified 76 MPLC patients with
137 lesion pairs and 42 IPM patients with 93 lesion pairs. Among
them, if an individual harbored three lesions, the patient would be
considered as having three pairs of lesions for pairwise compari-
son. There was no statistical difference between the two groups in
terms of age, sex, smoking status, family history of primary lung
cancer, performance status, tumor markers, and main pathologic
type. The clinicopathological characteristics of the SYSUCC val-
idation cohort are shown in supplementary Table S1, see online

supplementary material. Chest CT images of representative cases
of MPLC and IPM are given in Fig. 3.

Radiomic feature selection

CT-derived radiomic features were acquired from the SYSUFH co-
hort. There were 33 features left after performing the correlation
coefficient-based redundant feature reduction procedure,?” which
were put into the next feature selection procedure as illustrated
in supplementary Fig. S1a, see online supplementary material. As
the number of selected features increased from 1 to 7, perfor-
mance of the model improved correspondingly. However, model
performance deteriorated when more features were included,
which could imply overfitting. Hence the top seven features
(as given in supplementary Table S2, see online supplementary
material) were selected for the final PRE model construction and
evaluation. The correlation coefficients among these seven se-
lected features were all <0.52 (supplementary Fig. S1b), suggest-
ing weak correlations of these features. Besides, feature distri-
bution between IPM and MPLC cases was distinct, as shown in
supplementary Fig. Slc. Further analysis of the selected feature
deviation (FAP) between MPLC and IPM lesion pairs is detailed in
supplementary Fig. S2, see online supplementary material.

Model performance

Performance of the PRE model for distinguishing MPLC from IPM
on the SYSUFH training and internal validation datasets is shown
in Fig. 4A. For the diagnosis of MPLC, the mean AUC, accuracy,
sensitivity, specificity, NPV, and PPV on the training dataset were
0.989, 0.947, 0.946, 0.948, 0.947, and 0.949, respectively (Table 2,
Fig. 4A i). The corresponding metrics on the internal validation
dataset were 0.857, 0.794, 0.758, 0.850, 0.677, and 0.906, respec-
tively (Table 2, Fig. 4Aa ii). With the application of a major voting
strategy, performance of the PRE model for the diagnosis of MPLC
is illustrated in Fig. 4B. The mean AUC, accuracy, sensitivity, speci-
ficity, NPV, and PPV of this model were 0.983, 0.942, 0.905, 0.962,
0.950, and 0.934 on the SYSUFH training dataset (Table 2, Fig. 4B i)
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Table 1. Clinicopathological characteristics of patients with MPLC and IPM.

Patient characteristic MPLC IPM P Value
(n=76) (n =42)

Number of lesions (pairs) 180 (137) 108 (93) NA

Mean age (range, years) 60 (32-79) 62 (30-86) 0.531

Sex, 1 (%) 0.415

Fernale 43 (56.58%) 27 (64.29%)

Male 33 (43.42%) 15 (35.71%)

Smoking status, n (%) 0.369

Non-smoker 50 (65.79%) 31 (73.81%)

Current/former smoker 26 (34.21%) 11 (26.19%)

Family history of primary lung cancer, n (%) 11 (14.47%) 4(9.52%) 0.440

Performance status, n (%) 0.082

0 63 (82.89%) 29 (69.05%)

1 13 (17.11%) 13 (30.95%)

Tumour markers, n (%) 0.295

Abnormal 47 (61.84%) 30 (71.43%)

Normal 29 (38.16%) 12 (28.57%)

Distribution of lesions, n (%) 0.019*

Same lobe 25 (32.89%) 5 (11.9%)

Ipsilateral 22 (28.95%) 21 (50%)

Contralateral 29 (38.16%) 16 (38.1%)

Synchronicity, n (%) 0.326

Synchronous 72 (94.74%) 42 (100%)

Metachronous 4 (5.26%) 0 (0%)

Same histologic subtype of the lesion pair 9 (11.84%) 42 (100%) 0.000*

Staged operation, n (%) 27 (35.53%) NA NA

Range of resection, n (%)

Lobectomy 23 (30.26%) NA NA

Bilobectomy 11 (14.47%) NA NA

Lobectomy + sublobectomy(ies) 35 (46.05%) NA NA

Multiple sublobectomies 7 (9.21%) NA NA

NA, Not applicable; P < 0.05 was considered as statistically significant.

ITdN

‘
Pt4 (A) ‘ Pt4 (B) Pt5 (A)

WdI

Figure 3. Chest CT images of representative cases of MPLC and IPM. Patient 1 (Pt1) showed two solid lesions located in the right upper lobe (Pt1 A, APA)
and the right middle lobe (Pt1 B, APA) respectively. Patient 2 (Pt2) had two mixed GGNs situated contralaterally in the right lower lobe (Pt2 A, APA) and
the left upper lobe (Pt2 B, APA). A mixed GGN (Pt3 A, LPA) and a solid nodule (Pt3 B, APA) were found in patient 3 (Pt3), both located in the left upper
lobe. These three were confirmed MPLC cases while patients 4-6 (Pt4-Pt6) were IPM cases. Pt4 and Pt6 both showed the main lesion (Pt4 B and Pt6 A)
located in the same lobe as the metastatic tumor (Pt4 A and Pt6 B). For Pt5, the main lesion was in the right middle lobe (Pt5 A) while the metastatic
lesion was in the right upper lobe (Pt5 B). Based on preoperative chest CT images, it was difficult to decide whether these lesions were MPLC or IPM.
With the radiomic PRE model built by our team, diagnostic accuracy was improved significantly and hence clinical decisions made with stronger
evidence. APA, Acinar-predominant adenocarcinoma; GGN, ground-glass nodule; LPA, lepidic-predominant adenocarcinoma.
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Figure 4. The quantitative results of the PRE model for MPLC and IPM differentiation. (A, i and ii) ROC curves of PRE model on SYSUFH training and
internal validation datasets. (B, 1 and ii) ROC curves of PRE model for MPLC and IPM differentiation (with major voting strategy) on SYSUFH training and
internal validation datasets. (C, i) ROC curve of PRE model (with major voting strategy) on SYSUCC external validation dataset and AUCs of clinicians.
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Accuracy Sensitivity

Specificity NPV PPV AUC

PRE model trianed and tested with lesion pairs from SYSUFH
SYSUFH training 0.947 (0.944-0.950)  0.946 (0.941-0.952)
cohort

SYSUFH internal
validation

PRE model with major voting strategy (case-based prediction)
SYSUFH training 0.942 (0.938-0.946)  0.905 (0.895-0.915)
cohort

SYSUFH internal
validation
Performance of the PRE model on cases from SYSUCC

SYSUCC external 0.760 (0.693-0.811)  0.727 (0.634-0.775)

0.794 (0.784-0.804)  0.758 (0.738-0.778)

0.846 (0.836-0.873)  0.728 (0.705-0.751)

0.948 (0.941-0.954)

0.850 (0.829-0.870)

0.962 (0.956-0.968)

0.910 (0.894-0.925)

0.769 (0.710-0.804)

0.947 (0.943-0.952)  0.949 (0.943-0.954)  0.989 (0.988-0.990)

0.677 (0.656-0.696)  0.906 (0.895-0.916) ~ 0.8597 (0.844-0.869)

0.950 (0.945-0.954)  0.934 (0.924-0.944)  0.983 (0.981- 0.985)

0.861 (0.850-0.873)  0.828 (0.805-0.852)  0.844 (0.826-0.862)

0.909 (0.869-0.941)  0.471 (0.417-0.521)  0.793 (0.758-0.835)

0.692 0.844 0.333 0.619

validation

Performance of clinicians in differentiating MPLC and IPM cases from SYSUCC
Radiologist 0.660 0.545

Thoracic surgeon 0.600 0.545

0.615 0.828 0.286 0.580

and 0.844, 0.846, 0.728, 0.910, 0.861, and 0.828 on the SYSUFH in-
ternal validation cohort (Table 2 and Fig. 4Bb ii). Despite the slight
decline in performance on the testing dataset, it remains sensible
to believe that the PRE model could be of great value to clinical
practice for the differential diagnosis of MPLC.

Validation results of the SYSUCC cohort are shown in Table 2
and Fig. 4C i. The mean AUC, accuracy, sensitivity, specificity, NPV,
and PPV of the established PRE model with major voting strat-
egy were 0.793, 0.760, 0.727,0.769, 0.909, and 0.471, respectively,
to diagnose MPLC. Performance of the model in the SYSUCC ex-
ternal validation cohort was compared with that of experts, as
illustrated in Fig. 4C i. AUCs of the chest radiologist and thoracic
surgeon were 0.619 and 0.580 respectively, significantly lower than
that of the model (0.793). These validation results suggest promis-
ing performance of the proposed model and its great value for
clinical practice.

Discussion

In this study, we have successfully established a novel non-
invasive diagnostic algorithm to differentiate MPLC from IPM. Our
model has demonstrated promising diagnostic performance for
MPLC with a mean AUC of 0.844 and high accuracy, sensitivity,
specificity, NPV, and PPV, outperforming clinical diagnoses in the
external validation cohort.

The escalation in CT screening’s accuracy and popularity has
led to increased detection of multiple pulmonary lesions. The in-
cidence of MPLC reported ranged from 1.1% to 6.9%,>? consis-
tent with the findings in this study. The significance of preoper-
ative diagnosis of these lesions is ever-growing, mainly to distin-
guish between MPLC and IPM. Since its proposal in 1975, the Mar-
tini and Melamed criteria®® have garnered wide acceptance. Re-
cent scientific advancements have further harnessed molecular
genetic characteristics®®:22:233% to develop algorithms that con-
sider comprehensive information.’®21:2340 These advances aim
to aid decision-making in the differentiation between IPM and
MPLC. However, such differentiation relied heavily on postoper-
ative pathological analysis, highlighting an unmet need for pre-
operative diagnostic tools. Previously, some diagnostic indicators
have been identified, such as multi-ground-glass nodule (GGN)
and solid-GGN as potential MPLC flags'? and multiple pure solid
nodules suggestive of IPM.??4! CT imaging features including sub-
solid consistency, spiculated contour, size difference, and small-

est lesion being pure solid were identified as potential discrimina-
tors between MPLC and IPM.'> Another study successfully devel-
oped an algorithm to discriminate between the two, achieving an
AUC of 0.833.1° However, the existing studies primarily provided
somewhat subjective results without the development of predic-
tive models. In contrast, the PRE model attained a mean AUC of
0.844 and demonstrated strong performance in the external vali-
dation cohort, with an AUC of 0.793, showcasing its stability and
reproducibility.

Artificial intelligence has increasingly been utilized in this do-
main to predict malignancy***® or invasiveness'®44 of pul-
monary nodules. But most existing models narrowly focus on sin-
gular lesions, ignoring the holistic view of a patient. Radiomics
methods were used to predict histopathological results in pre-
vious studies, indicating the potential relevance of radiological
features in the pathology of lung cancer.*->° Our work hypoth-
esizes that variations among MPLC lesions could be more sig-
nificant than those between a primary and its metastatic lesion.
Thus, we aimed to craft a machine-learning model that observes
each patient as a cohesive entity. What sets this method apart and
makes it unique and novel is its utilization of the concept of lesion
pairs. Therefore, the radiomic features selected (details shown
in supplementary Table S2) through the comparison of lesion
pairs proved effective in distinguishing MPLC from IPM cases. The
resulting PRE model, grounded in this perspective, has demon-
strated superior efficacy compared to existing methodologies and
hence showcased promising potential for clinical use. The distinc-
tion between MPLC and IPM can pose a significant challenge, even
for seasoned clinicians, as our results have indicated. By lever-
aging this model, clinical practitioners can gain increased confi-
dence and enhance the accuracy of their MPLC diagnoses prior to
surgical interventions.

There are a few limitations in this study. Even with MPLC’s in-
creasing detection rate, our sample size remained limited com-
pared to solitary lung cancer. But, given our focus on lesion pairs
and comparison to extant MPLC research, our sample is reason-
ably sufficient, with an external validation cohort from another
institution adding credibility to the model. While we did not ven-
ture into various machine-learning methods, considering that our
primary aim was not a comparative analysis of these techniques,
future studies might explore this aspect further. Besides, the
construction of the PRE was exclusively image-centric, sidelining
potentially influential factors like age or smoking history. Yet, its
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commendable AUC is a testament to its efficacy, even surpassing
experienced clinicians in the external validation cohort. The effi-
cacy of this model remains unknown in the real world and multi-
center studies will be indispensable.

In summary, our novel machine-learning model offers a
promising preoperative tool for distinguishing IPM from MPLC.
The PRE model’s excellent performance has the potential to sig-
nificantly impact clinical practice.
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