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Abstract: The unfavorable outcome of acute ischemic stroke (AIS) with large vessel occlusion (LVO)
is related to clinical factors at multiple time points. However, predictive models used for dynamically
predicting unfavorable outcomes using clinically relevant preoperative and postoperative time point
variables have not been developed. Our goal was to develop a machine learning (ML) model for
the dynamic prediction of unfavorable outcomes. We retrospectively reviewed patients with AIS
who underwent a consecutive mechanical thrombectomy (MT) from three centers in China between
January 2014 and December 2018. Based on the eXtreme gradient boosting (XGBoost) algorithm, we
used clinical characteristics on admission (“Admission” Model) and additional variables regarding
intraoperative management and the postoperative National Institute of Health stroke scale (NIHSS)
score (“24-Hour” Model, “3-Day” Model and “Discharge” Model). The outcome was an unfavorable
outcome at the three-month mark (modified Rankin scale, mRS 3–6: unfavorable). The area under
the receiver operating characteristic curve and Brier scores were the main evaluating indexes. The
unfavorable outcome at the three-month mark was observed in 156 (62.0%) of 238 patients. These four
models had a high accuracy in the range of 75.0% to 87.5% and had a good discrimination with AUC
in the range of 0.824 to 0.945 on the testing set. The Brier scores of the four models ranged from 0.122
to 0.083 and showed a good predictive ability on the testing set. This is the first dynamic, preoperative
and postoperative predictive model constructed for AIS patients who underwent MT, which is more
accurate than the previous prediction model. The preoperative model could be used to predict the
clinical outcome before MT and support the decision to perform MT, and the postoperative models
would further improve the predictive accuracy of the clinical outcome after MT and timely adjust
therapeutic strategies.

Keywords: mechanical thrombectomy; acute ischemic stroke; dynamic prediction; machine learning;
unfavorable outcome

1. Introduction

Acute ischemic stroke (AIS) is the main cause of lifelong disability and mortality
around the world [1,2]. Therefore, mechanical thrombectomy (MT) is now regarded as
a standard of care for managing patients with acute large vessel occlusion stroke [3–6].
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However, despite high recanalization rates, almost one-third of stroke patients show unfa-
vorable outcomes [7,8]. Hence, the early dynamic prediction of an unfavorable outcome is
important in AIS patients treated with MT, and it can be assessed by the modified Rankin
Scale (mRS) score [9].

Previous studies show that many prognostic factors are associated with the unfavor-
able outcome in AIS patients, such as physiologic factors [10–12] (e.g., age, sex, comorbid-
ity), clinical factors [13,14] (e.g., NHISS score, glycosylated hemoglobin, creatinine), and
neuroimaging prognostic factors [15–17] (e.g., location of the occlusion, Alberta Stroke
Program Early CT Score (ASPECTS)). However, these pretreatment prognostic factors still
cannot well predict the outcome of AIS patients. This is due to some interventional factors
that also affect the prognosis, such as procedure time, surgical technique, recanalization
status, and so on [10,14,18].

Models used for dynamically predicting three-month unfavorable outcomes in patients
with AIS treated with MT using clinically relevant preoperative and postoperative time
point variables have not been developed. Currently, most are built based on preoperative
variables, such as THRIVE [10], HIAT [14], GADIS [19], NAC [20], and IER-START [21],
and several machine learning (ML) models [22–25], and these scores and models cannot be
updated according to the changes in the patient’s state and examination results over time.
In clinical practice, these scores are intended to inform treatment, and they lack focus on
determining functional outcomes after treatment. Additionally, the above scores have been
validated externally, and the AUC range was from 0.680 to 0.838 in recent studies [10,20,21],
indicating that there is still room to improve accuracy. In addition, these scores, based on
the linear regression algorithm, have some limitations in addressing nonlinear problems
between the variables in real-world applications. Therefore, developing a high accuracy
model for a clinically relevant admission, postoperative 24-h, 3-day, with discharge time
points for the dynamical prediction of unfavorable outcomes is desirable.

ML algorithms are in the realm of artificial intelligence. They have been proven to
be an excellent approach in modeling multi-factor events in medical fields, such as brain–
computer interface (BCI) technology [26–28], deep brain stimulation (DBS) application [29],
and outcome prediction [30,31], because ML can contain a mass of data, extract subtle
information, and summarize the knowledge gained on new unseen situations efficiently
and automatically. At the same time, ML can also deal with the non-linear relationship
between data. As can be surmised, applying an ML model at multiple time points after
admission has allowed neurologists to better dynamically assess functional neurological
outcomes and adjust therapeutic strategies.

To improve personalized stroke care, we developed and validated a dynamic
ML model at multiple time points for the dynamic prediction of a three-month
unfavorable outcome.

2. Materials and Methods
2.1. Study Population

We analyzed electronic health record data from three Chinese stroke units (Nanjing
First Hospital, Changsha Central Hospital, and People’s Hospital of Hunan Province)
of adult patients (≥18 years of age at the time of surgery) between January 2014 and
December 2018. Patients included in the analysis went through the following: (i) had
an AIS treated with MT; (ii) had their three-month modified Rankin Scale (mRS) scores
assessed; (iii) their National Institute of Health stroke scale (NIHSS) scores on admission,
postoperative 24-h, 3-day, and discharge were recorded. Patients aged <18 years or with an
intracranial hemorrhage (ICH) on admission or interval from onset to treatment over 24 h
were excluded.

In this study, the candidate variables for our model included demographics (age, sex,
smoking), medical history (previous cerebral infarction, transient ischemic attack, previous
cerebral hemorrhage, diabetes mellitus, hyperlipidemia, hypertension, atrial fibrillation
and coronary heart disease), baseline data (diastolic pressure, systolic pressure, NIHSS
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score on admission, Trial of ORG 10172 in Acute Stroke Treatment (TOAST) classification,
anterior circulation stroke, posterior circulation stroke, and blood biochemical examination),
as well as interventional characteristics (interval from groin puncture to recanalization,
interval from onset to treatment, endovascular therapy and IV thrombolysis) and post
interventional clinical characteristics (symptomatic intracranial hemorrhage (sICH), NIHSS
score after 24-h, NIHSS score after 3-day and NIHSS score on discharge).

We estimated that the outcome was neurological–functional three months after the
AIS with MT, as represented by an mRS score >2 (i.e., poor prognosis). In addition,
the symptomatic intracranial hemorrhage (sICH) was exposed within 24 h after admis-
sion and evaluated by the Heidelberg Bleeding Classification [32]. The NIHSS score and
three-month mRS were collected by outpatient services and telephone interviews with
patients or their families.

2.2. Statistical Analyses

Variables with less than 20% missing values were taken in to generate the complete
dataset. As the case may be, missing variables were imputed by mode for categorical
variables and mean or median for continuous variables

A statistical analysis was performed using SPSS version 22.0 (IBM Corporation, Ar-
monk, NY, USA), applying the number (percentage) as a measure of categorical variables
and the medians (quartile) or means (standard deviation) as measures of continuous vari-
ables, as appropriate. In addition, comparisons in the baseline characteristics between
favorable outcome and unfavorable outcome groups for continuous variables were per-
formed using the Mann–Whitney U test or Student t test, depending on their normality of
distribution, and Pearson’s test or Fisher’s exact test for categorical variables, depending
on their sample amount.

2.3. Feature Selection

Feature selection further reduced redundancy and irrelevant variables, which is
a critical step in improving a model’s stability. Concerning feature selection, we ranked
the model features consistent with their importance (importance type = “gain,” the equal
gain of divides that apply to the feature) and chose a group of features by eliminating the
least important features. To avoid the false-negative result in the univariable analysis, all
features with p < 0.2 in the univariable analysis or that were considered to have clinical
significance features were taken into the feature selection. The features selected from the
model could be divided into four subsets, judging by the time at which they were collected:
admission, postoperative 24-h, postoperative 3-day, and discharge.

2.4. Model Development

Predictive ML models for the three-month outcome of AIS patients treated were
developed by eXtreme gradient boosting (XGBoost). XGBoost is an ensemble learn-
ing classifier that utilizes a Gradient Boosting framework to solve supervised learn-
ing problems. XGBoost has been widely used in medical studies to predict or screen
prognosis [33–35]. XGBoost also uses a trained prediction model to provide a regular-
ized gradient enhancement and feature importance score, which can be applied to feature
selection. For model development, it was performed in Python (version 3.7). We built
machine-learning models with four sets of input variables corresponding to time points,
and it was named the “Admission” model, “24-Hour” model, “3-Day” model, and “Dis-
charge” model, respectively. The following procedure was carried out in each model: First,
patients were randomly split into a train set and a test set according to an 8:2 scale proce-
dure. Then, the train data were used to train and build the model. Meanwhile, we utilized a
grid search algorithm and ten-fold cross-validation to optimize model hyperparameters. In
a ten-fold cross-validation, the training set was randomly divided into ten equal folds, each
fold was used in turn for the validation set, and the remaining nine folds were used for the
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training set, which improved the generalization of the model and avoided overfitting. By
obtaining the models, the model’s performance was measured on the testing set.

2.5. Model Evaluation

We used the area under the receiver operating characteristic curve (AUC) to measure
discrimination [36]. The calibration of the models was assessed using the Brier scores
method (range: 0–1)—a model with a lower Brier score means better model calibration
and discrimination [37]. The AUC comparisons between different models were evaluated
with the DeLong test [38]. We further applied the testing set to THRIVE [10] and HIAT [14]
scores to evaluate the dynamic model’s preponderance in predictive performance.

3. Results
3.1. Study Population

The clinical characteristics of the unfavorable and favorable outcome groups are shown
in Table 1. We screened 239 AIS patients treated with MT, patients for age <18 (n = 1; 0.4%)
were excluded, and our final study sample included 238 patients overall, within the follow-
up period, with a median age of 69 (IQR 59–78), and 72 patients (30.3%) were women.
The median admission NIHSS score was 15 (IQR 10–20), while the median NIHSS score
at postoperative 24-hour, 3-day, and discharge decreased to 13 (IQR 6–21), 12 (IQR 4–23),
and 9 (IQR 2–20), respectively. Of the 238 patients, 156 (cumulative rate 65.5%) patients
developed unfavorable outcomes in three months. and 61 patients (cumulative rate 25.6%)
died (mRS scores = 6). The clinical outcome assessed by mRS scores at three months was 0
in 24 (10%), 1 in 25 (10.5%), 2 in 33 (13.8%), 3 in 34 (14.2%), 4 in 39 (16.3%), 5 in 24 (10%), and
(10.5%), 2 in 33 (13.8%), 3 in 34 (14.2%), and 4 in 6 in 59 patients (24.7%). Compared with
favorable outcome patients, patients with unfavorable outcomes were seven years older
and had lower low-density lipoprotein, lower platelets, and higher creatinine. Patients with
an unfavorable outcome also had longer intervals from groin puncture to recanalization
and a higher NIHSS score.

Table 1. Clinical, demographic and laboratory data of study population stratified according to
three-month favorable or unfavorable outcome after acute ischemic stroke in Chinese patients with
mechanical thrombectomy.

Variables Favorable Outcome
(mRS 0–2)

Unfavorable Outcome
(mRS 3–6) p-Value

Patients, n 82 156

Demographics
Age, years, median (IQR) 65 (58–74) 72 (60–81) 0.001 *
Sex, n (%) 0.592

Male 59 (72) 107 (68.6)
Female 23 (28) 49 (31.4)
Smoking, n (%) 28 (34.1) 49 (31.4) 0.668

Medical history, n (%)
Transient ischemic attack 0 (0) 3 (1.9) 0.110 *
Previous cerebral infarction 12 (14.6) 29 (18.6) 0.443
Previous cerebral hemorrhage 1 (1.2) 6 (3.8) 0.462
Diabetes mellitus 18 (22) 31 (19.9) 0.706
Hypertension 57 (69.5) 108 (69.5) 0.964
Hyperlipidemia 7 (8.5) 12 (7.7) 0.819
Coronary artery disease 15 (18.3) 44 (28.2) 0.092 *
Atrial fibrillation 25 (30.5) 58 (37.2) 0.303
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Table 1. Cont.

Variables Favorable Outcome
(mRS 0–2)

Unfavorable Outcome
(mRS 3–6) p-Value

Baseline data
NIHSS score on admission, median (IQR) 11 (7–16) 17 (13–22) <0.0001 *
Systolic pressure, mmHg, median (IQR) 138 (124–155) 142 (129–160) 0.299
Diastolic pressure, mmHg, median (IQR) 83 (74–93) 86 (76–99) 0.154 *
INR, median (IQR) 0.98 (0.93–1.09) 1.02 (0.935–1.12) 0.092 *
HbA1c, mmol/L, median (IQR) 5.80 (5.50–6.53) 5.90 (5.50–6.50) 0.856
TC, mmol/L, median (IQR) 4.32 (3.43–4.98) 4.08 (3.43–4.83) 0.300
TG, mmol/L, median (IQR) 1.12 (0.82–1.68) 1.05 (0.76–1.47) 0.205
LDL, mmol/L, median (IQR) 2.66 (1.98–3.24) 2.23 (1.80–2.83) 0.019 *
FBG, mmol/L, median (IQR) 6.04 (5.08–7.35) 6.48 (5.60–7.99) 0.028 *
PLT, µmol/L, median (IQR) 193.00 (150.75–235.50) 172.5 (143.00–212.50) 0.017 *
UA, µmol/L, median (IQR) 284.90 (233.00–357.00) 313.50 (232.32–396.75) 0.125 *
HCY, µmol/L, median (IQR) 12.46 (10.70–16.76) 13.18 (10.97–16.64) 0.433
Creatinine, µmol/L, median (IQR) 67.00 (58.37–77.00) 78.00 (61.63–94.00) 0.003 *
Anterior circulation stroke, n (%) 60 (73.2) 126 (80.8) 0.178 *
Posterior circulation stroke, n (%) 22 (26.8) 30 (19.2) 0.178 *
TOAST classification, n (%) 0.119 *
Large artery atherosclerosis 47 (57.3) 69 (44.2)
Cardioembolism 32 (39.0) 75 (48.1)
Others 3 (3.7) 12 (7.7)
Interventional characteristics
Interval from groin puncture to
recanalization, min, median (IQR) 60 (50–85) 81 (59–130) 0.004 *

Interval from onset to treatment,
min, median (IQR) 290 (230–411) 280 (206–413) 0.240

Endovascular therapy, n (%) 0.144 *
Tirofiban 29 (35.4) 41 (26.3)
No tirofiban 53 (64.6) 115 (73.7)
IV thrombolysis, n (%) 0.806
No thrombolysis 45 (54.9) 83 (53.2)
Thrombolysis 37 (45.1) 73 (46.8)
Post interventional characteristics
sICH, n (%) 0 (0) 18 (11.5) 0.001 *
NIHSS score after 24-hour, median (IQR) 5 (2–10) 17 (12–31) <0.0001 *
NIHSS score after 3-day, median (IQR) 3 (2–7) 18 (10–34) <0.0001 *
NIHSS score on discharge, median (IQR) 2 (1–3) 16 (8–34) <0.0001 *

* Included into the feature selection (p < 0.2). mRS, modified Rankin Scale; NIHSS, National Institute of Health
stroke scale; TOAST, Trial of ORG 10172 in Acute Stroke Treatment; INR, International normalized ratios; IQR,
interquartile range; HbAc1, Glycated hemoglobin; TC, total cholesterol; TG, triglyceride; LDL, Low density
lipoprotein; FBG, Fasting blood glucose; PLT, Platelet; UA, Uric Acid; HCY, Homocysteine; IV, Intravenous; sICH,
symptomatic intracranial hemorrhage.

3.2. Feature Selection

According to the results (Supplementary Figure S1), we selected the top 10 variables
that had a higher importance from the feature selection results as input variables of an
“Admission” model. Similarly, the input variables of three other models that were the same
as before the NIHSS score and were consistent with the time point were the highest-ranked
feature in all models.

3.3. Model Performance

From the identified top-performing XGBoost-selected predictors, the prediction mod-
els for the three-month outcome of AIS patients treated with MT were created. Figure 1a,b
presents the ROC curves of four models on the training set and testing set, respectively.
Tables 2–5 present the confusion matrix of the performance of the “Admission”, “24-Hour”,
“3-Day”, and “Discharge” models on the testing dataset. In addition, the Brier scores for
unfavorable functional outcome prediction AIS on the testing dataset are shown in Figure 2.
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3.3.1. “Admission” Model

On the training data, the “Admission” model achieved an AUC of 0.835. On the testing
set, the model achieved an AUC of 0.824, and the sensitivity and specificity were 0.848 and
0.533. Among the 33 cases with an unfavorable outcome, 28 cases were correctly predicted
by the model. The model incorrectly predicted five cases as favorable outcomes, leading to
a recall rate of 70%. A total of 75.0% of cases were correctly predicted, contributing to an
error rate of 25.0%. The hyper-parameters applied in the “Admission” model are shown in
Supplementary Table S1.
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3.3.2. “24-Hour” Model

On the training data, the “24-Hour” model achieved an AUC of 0.917. On the testing
set, the model achieved an AUC of 0.891, and the sensitivity and specificity were 0.788 and
0.800. Among the 33 cases with an unfavorable outcome, 26 cases were correctly predicted
by the model. The model incorrectly predicted seven cases as favorable outcomes, leading
to a recall rate of 78.8%. A total of 79.2 % of cases were correctly predicted, corresponding
to an error rate of 14.6%. The hyper-parameters applied in the “24-Hour” model are shown
in Supplementary Table S1.

3.3.3. The “3-Day” Model

On the training data, the “3-Day” model achieved an AUC of 0.937. On the testing
set, the model achieved an AUC of 0.931, and the sensitivity and specificity were 0.758 and
0.933. Among the 33 cases with an unfavorable outcome, 25 cases were correctly predicted
by the model. The model incorrectly predicted eight cases as favorable outcomes, leading
to a recall rate of 75.8%. A total of 81.2% of cases were correctly predicted, corresponding
to an error rate of 18.8%. The hyper-parameters applied in the “3-Day” model are shown in
Supplementary Table S1.

3.3.4. “Discharge” Model

On the training data, the “Discharge” model achieved an AUC of 0.987. On the testing
set, the model achieved an AUC of 0.945, and the sensitivity and specificity were 0.909 and
0.800. Among the 33 cases with an unfavorable outcome, 30 cases were correctly predicted
by the model. The model incorrectly predicted three cases as favorable outcomes, leading
to a recall rate of 90.9%. A total of 87.5% of cases were correctly predicted, corresponding to
an error rate of 12.5%. The hyper-parameters applied in the “Discharge” model are shown
in Supplementary Table S1.

Table 2. Confusion matrix for the “Admission” Model.

Testing Data Statistical Analysis

True Predicted 0 1 Total Accuracy 0.750
0 8 7 15 Precision 0.800
1 5 28 33 Sensitivity 0.848
Total 13 35 48 Specificity 0.533

AUC 0.824
AUC, the area under curve.

Table 3. Confusion matrix for the “24-H” Model.

Testing Data Statistical Analysis

True Predicted 0 1 Total Accuracy 0.792
0 12 3 15 Precision 0.897
1 7 26 33 Sensitivity 0.788
Total 19 29 48 Specificity 0.800

AUC 0.891
AUC, the area under curve.

Table 4. Confusion matrix for the “3-Day” Model.

Testing Data Statistical Analysis

True Predicted 0 1 Total Accuracy 0.812
0 14 1 15 Precision 0.962
1 8 25 33 Sensitivity 0.758
Total 22 26 48 Specificity 0.933

AUC 0.931
AUC, the area under curve.
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Table 5. Confusion matrix for the “Discharge” Model.

Testing Data Statistical Analysis

True Predicted 0 1 Total Accuracy 0.875
0 12 3 15 Precision 0.909
1 3 30 33 Sensitivity 0.909
Total 17 31 48 Specificity 0.800

AUC 0.945

3.4. Model Comparison

Among all prediction models, we found that the “Discharge” model had the high-
est AUC (0.970; 95%Cl 0.901–0.991) and the lowest Brier scores (0.081), and the “Ad-
mission” model had the lowest AUC (0.824; 95%Cl 0.715–0.899) and the highest Brier
scores (0.122). The results of the DeLong test indicated that the “Admission” and
“24-Hour” models were statistically different from the AUC of “Discharge” models (p < 0.05)
(Supplementary Table S2), and the AUC of the four models gradually increased from
admission to discharge on the testing set. Meanwhile, the Brier scores decreased from
admission to discharge on the testing set. The dynamic model exhibited a good pre-
dictive ability on the testing set and improved over time. In addition, the AUCs of the
dynamic model were significantly superior to THRIVE [10] and HIAT [14] scores (Figure 1b,
Supplementary Table S2).

4. Discussion

To the best of our knowledge, this is the first attempt to construct four XGBoost ML
models (i.e., a preoperative, postoperative 24-h, 3-day, and discharge model) to dynam-
ically predict the probability of a three-month unfavorable outcome in Chinese patients
with AIS treated with MT. Although traditional prediction scores [10,14,19–21] and ML
models [22–25] offer practical guidance and are effective stroke prognosis tools for
population-based comparisons, they predict the outcome of AIS patients undergoing
MT by a static nature, and their clinical use is limited. Instead, in our study, we com-
bined preoperative and intraoperative data with time-relevant postoperative variables to
dynamically predict the three-month outcome of MT for AIS patients. the “Admission”
model could be used to predict the clinical outcome before MT and support the decision to
perform MT, and the “24-Hour”, “3-Day”, and “Discharge” models would further improve
the predictive accuracy of the clinical outcome after MT and adjust therapeutic strategies in
time. From admission to discharge, the physiology or pathology will change along with
treatment, so it is necessary to consider all possible factors that occurred until a specific time
point and provide an outcome prediction in real time that could guide better decisions for
treatment [39]. With that in mind, we proposed a method of risk-based dynamic monitoring
strategies and targeted the introduction of therapy neurologists when discussing prognosis
with AIS patients and their families.

One strength of our study lies in our models showing good discrimination ability
compared to previous scoring systems (THRIVE and HIAT scores) by the AUC of models at
different time points. In the “Admission” model, it included preoperative factors, and the
AUC of the model was 0.824, while in the “24-Hour”, “3-Day”, and “Discharge” models,
they included intraoperative and postoperative factors, and the AUC of the model was
0.891–0.945, while THRIVE and HIAT scores with an AUC of 0.653 and 0.658, respectively.
The recent single-center cohort study combined individual data of 246 patients from
Heidelberg University Hospital with multiple clinical characteristics to develop unfavorable
outcome prediction models [23]. The baseline model included clinical and conventional
imaging characteristics on admission to reach an AUC of 0.740 to predict unfavorable
outcomes in internal validation. Further addition of CT-perfusion, angiographic, and
post-interventional characteristics achieved an AUC of 0.856, still below the predictive
performance of our model [23]. These four prediction models are beneficial to reducing the
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risk of postoperative three-month unfavorable outcome and may have good application
prospects. In addition, however, we also found that adding intraoperative data with
time-relevant postoperative variables (i.e., NIHSS score in postoperative 24-h, 3-day, and
discharge time points) would modestly improve the predictive performance of outcome
models, which supported the theory that the admission NIHSS scores are inferior to
postoperative 24-h NIHSS, 3-day NIHSS, and discharge NIHSS score in predicting post-
stroke functional outcome [40].

There were several additional strong points of this study. First, we derived unfa-
vorable outcome models using state-of-the-art ML methods, which have recently been
applied in the development of neurological function outcome prediction models in the
domain of neurological disease [22–25]. However, our modeling strategy differed from the
conventional single modeling strategy, with multiple models predicting the unfavorable
outcome for more precise forecasting. Second, the prediction models were developed using
multicenter registration data. A wide range of data sources may reduce non-sampling
errors and enhance the reliability of models. Third, it is notable that, in most studies,
the importance of the features were first assessed using univariate analysis and based on
prior knowledge, then the significant features were engaged in the ML model. In the end,
they calculated the variable importance of variables in ML models. This variable selection
method is called the filter method and has been widely used. However, it may introduce
too many variables to fit models well and may bring the collinearity of variables [23]. Thus,
the rank of feature importance in the model was introduced to feature selection, reducing
over-fitting and avoiding variables collinearity.

In our study, the variables selected were inexpensive to obtain and commonly avail-
able. Therefore, we found it to be similar to former prediction models. The most important
features among the four XGBoost models were the NIHSS score, which achieved a domi-
nant position in all variables, and confirmed NIHSS was relatively high in the three-month
outcome of AIS patients [40]. Furthermore, a previous study said the NIHSS score after
endovascular surgery had a better discrimination in predicting three-month functional
outcomes than the pretreatment NIHSS score [41]. Therefore, the “24-Hour”, “3-Day”, and
“Discharge” models, which incorporated both preoperative NIHSS score and postoper-
ative NIHSS score could be offered modest improvements in predicting a three-month
unfavorable outcome.

It is consistent with previous reports, which incorporated the discharge NIHSS
score with good predictive accuracy about the functional outcome. For example, Miguel
Monteiro et al. [42] constructed machine learning prognostic models for AIS patients, and
the models revealed that incorporating the discharge NIHSS score had the best result in pre-
dicting the 90-day functional outcome. Nevertheless, in this paper, all patients were treated
using Recombinant Tissue Plasminogen Activator (rtPA), and the literature included many
variables, which was not conducive to predicting clinical promotion. Furthermore, our
models not only contributed to accurately predicting patients who would and would not
benefit from MT, but also they would benefit from improving the postoperative accuracy of
AIS patients with MT.

Nevertheless, our study has several limitations. First, this study was based on a retro-
spective data set, and there may be invisible disturbing factors contributing to potential
biases in the results. Thus, prospective studies are necessary and validated in an indepen-
dent external cohort to reconfirm these results in future work. Second, the dynamic models
screened out patients with poor outcomes but did not suggest who would benefit from
preventative therapy. It still depends on clinicians to decide whether to use therapeutic
interventions. However, as the disease continues, clinical indicators may change. The
early and precise prediction of poor outcomes may require more time for neurologists to
reform treatment strategies and reduce complications and mortality. Third, the size of our
study population and clinical characteristics were limited, while current ML models lack
an underlying causal structure: their predictions are entirely based on what humans have
done in the past. Hence, the future will expand the sample size for further research.
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5. Conclusions

This is the first dynamic predictive model of a three-month unfavorable outcome for
Chinese AIS patients with MT that was developed and validated at admission, postopera-
tive 24-h, 3-day, and discharge time points, and these models showed good discrimination
and calibration. In terms of AUCs, the range can be up to 0.945, depending on when
the prediction was made. Furthermore, compared with previous scoring (THRIVE and
HIAT scores), the dynamic risk prediction had a better performance. The preoperative
model could be used to predict the clinical outcome before MT and support the decision to
perform MT, and the postoperative models would further improve the predictive accuracy
of the clinical outcome after MT and adjust therapeutic strategies in timely.
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https://www.mdpi.com/article/10.3390/brainsci12070938/s1, Table S1: Hyper-parameters of each
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different models with the Delong test; Figure S1: (a) Top 10 features selected using eXtreme gradient
boosting (XGBoost) and the corresponding variable importance score in “Admission” model; (b) Top
10 features selected using XGBoost and the corresponding variable importance score in “24-Hour”
model; (c) Top 10 features selected using XGBoost and the corresponding variable importance score
in “3-Day” model; (d) Top 10 features selected using XGBoost and the corresponding variable impor-
tance score in “Discharge” model. X-axis indicates the importance score which is the relative number
of a variable that is used to distribute the data, Y-axis indicates the top 10 weighted variables.
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