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SUMMARY

Fire has fascinated humankind since the prehistoric era. Rooted in the interac-
tions between sound and flames, herewe report amethod to use fire for a variety
of purposes, including sonification, art, and the design andmanufacturing nature-
inspired materials. We present a method to sonify fire, thereby offering a trans-
lation from the silent nature of flames, to represent audible information and to
generate de novo flame images. To realize material specimen derived from fire,
we use the autoencoder to generate image stacks to yield continuous 3D geom-
etries that are manufactured using 3D printing. This represents the first genera-
tion of nature-inspired materials from fire and can be a platform to be used for
other natural phenomena in the quest for de novo architectures, geometries,
and design ideas, thus creating additional directions in artistic and scientific
research through the creative manipulation of data with structural similarities
across fields.

INTRODUCTION

Fire has fascinated humankind since the prehistoric era and, according to different traditions, was consid-

ered as one of the four main elements that ‘‘make of all things in Nature’’ (Macauley, 2010). Science and art

have both used fire as a tool and inspiration over the years. From a scientific-technological standpoint, fire

is one of the fundamental agents to enable chemical reactions, and its controlled dynamics have been

widely studied to optimize and control the combustion processes (Drysdale, 2011). Another field of interest

concerns fire detection and monitoring for safety purposes since an efficient control of fire since its activa-

tion has a huge impact not only on people and animal protection but also on environmental sustainability

(Sousa et al., 2020; Zhuang et al., 2017). The complex nature of flames (Figure 1A) offers a deep foundation

of shapes and their temporal evolution that can push the boundary of nature-inspired materials – typically

focused on learning from biomaterials such as nacre or spider webs – toward other phenomena in nature.

Enabled by a variety of deep learning approaches, here we report a palette of tools that create new mate-

rial and structure designs through this mode of observation.

In recent work published by Lattimer et al., researchers reviewed the use of artificial intelligence (AI) strate-

gies to discriminate flame features, showing the advantages in terms of time savings against computational

fluid dynamics approaches (Lattimer et al., 2020). In particular, the authors showed two alternative ap-

proaches: dimensionality reduction (aka reduced-order modeling) and deep learning. In the first case,

they showed the results of an unsupervised machine learning approach that is able to reduce the design

space by using a data set that was not labeled. The algorithm processes fire images from which it extracts

a subset of data used for the detailed analysis of the fire features through ordinary differential equations.

This method thus allows the operators to achieve a lower dimensional analysis subspace saving computa-

tional time and cost. In contrast, the deep learning approach is used to evaluate the velocity and tempera-

ture fields based on the volumetric flow field conditions, geometry of the targeted environment, and fire

description. The model works quite well in 2D, and it is able to detect the spatial variations of the targeted

fields, achieving good matching with computational fluid dynamics results but with a reduced computa-

tional cost (Hodges, 2018; Lattimer et al., 2020).

As for visual and music arts, fire has been used as a tool and inspiration for creating paintings but,

more interestingly, has inspired composers to create melodies able to evoke its power and perpetual

shape mutation without using the audible dull sounds emitted from the interaction with air (ClassicFM,

2020).
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Figure 1. From the observation of a fire to an experimental setup to study sound-fire interactions

Fire (panel A) is an important natural phenomenon, which yields complex shapes that are dynamically changing, and

whose motions are heavily influenced by environmental factors

The structure of a fire as shown in this panel can be viewed as a collection of individual flames (one extracted flame is

shown on the right). For the scientific study reported here, we hence focus on the study of individual flames.

Panels B and C depict the experimental setup, consisting of a speaker as audio source, a burning candle with flame, and a

camera to record images in front of a black background. Panel B. Axonometric view. Panel C. Top view with dimensions

with cross-sectional view (D-D) for better understanding the speaker-flame relative positioning. The camera is positioned

in such a way that the flame only, not the candle, is visible during the data capturing.
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Even though science and art might appear distant from each other in general, they can be seen as the two

faces of the same coin. A way to create a bridge between the domains is the use of so-called sonification, a

technique that maps numeric data sets from features in Nature, or physico-chemical phenomena, into the

music domain, creating a new perspective to ‘‘observe’’ and ‘‘study’’ complex scenarios. In fact, human

perception is mainly driven by visual inputs but, often, the complexity of a problem cannot be grasped

by only using images. Sonification allows us to explore problems by exploiting the auditive capabilities:

the human ear is, indeed, perfectly equipped to perceive different layers of a data set all-in-one, by com-

prehending the different perspectives of an acoustic structure: frequencies, chords, pitch, harmony, and

other features.
2 iScience 24, 102873, August 20, 2021
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Changing paradigm as also demonstrated in previous works, it is possible to re-interpret and use scientific

data into a new form, expanding the design palette (Barrass and Kramer, 1999; Hermann et al., 2011;

Kramer et al., 2010). An example was given recently by mapping the 3D shape of proteins, the building

blocks of life, into music, by exploiting the structural similarities of the domains (Franjou et al, 2019,

2021; Yu et al., 2019). For instance, the spike protein of COVID-19, which is responsible for the deadly infec-

tion, was mapped into a set of vibrations – akin to a unique timbre for each virus variant – demonstrating

how vibrational data can be correlated to the epidemiological data in terms of lethality and transmission

rate (Hu and Buehler, 2021). The employment of AI may also allow us to design and tune new proteins

and structures for specific applications, leading to a new paradigm in designing and developing constructs,

not limited to the bioengineering field, as it allows for rapid translation of information across domains of

information and materialization (Yu and Buehler, 2020).

In a recent work, in our own work we usedmelodies, also from proteins, to deform a thin layer of water, thus

employing sonification and its reverse process to create water patterns. Using a convolutional neural

network (CNN), we were able to classify and transform the images collected from the water patterns as

‘‘keys’’ of a new artistic tool able to create a visualization of musical harmonies (Buehler, 2020). A different

approach that leads to the sonification of visual models was developed by Zhao et al., who exploited the

natural synchronization of visual and audio channels to map images to sounds without a manual supervi-

sion. They called their system ‘‘PixelPlayer’’, a tool that is able to recognize, in unlabeled videos, the regions

of each frame that show objects that can produce sounds. Thus, each pixel of such areas are used to create

melodies based on their features in the RGB map (Zhao et al., 2018). Their work leveraged on previous

studies that developed tools to create sounds from silent videos (Owens et al., 2016; Zhou et al., 2018)

and to localize sound sources from motion (Izadinia et al., 2012) or semantic cues (Arandjelovic and Zisser-

man, 2018; Senocak et al., 2018).

In this work, we use fire upon air interaction as the key element to create a versatile AI-driven tool for mani-

fold uses. Based on a single flame of a candle as a model for more complex fire shapes (Figure 1A), using

data from physico-chemical phenomena driven by acoustic interaction, we propose a new direction to

develop new bioinspired materials with an approach that does not follow the traditional avenues but ex-

ploits specific dynamic mechanisms to extract structural features to inspire and develop new materials

and constructs. Furthermore, from an artistic standpoint, it is possible to create a synthetic analog instru-

ment for new compositions, where a flame takes the place of a vibrating string. Here, it is worth to note that

in contrast to the traditional fire-inspired music, we use images of real fire as inputs for our compositions.

Additionally, from a visual perspective, artistic pictures can bemade by combining the information from fire

with other images, thus creating a newmashup of artistic visualizations that offer semblances of the internal

convolutional layers deep inside the neural network, depicted in everyday images. Finally, we demonstrate

the use of deep neural nets to generate de novo 3D geometries, to realize nature-inspired material designs

that take structural features from fire, and include them into hierarchical material patterns that are fabri-

cated using 3D printing.

RESULTS AND DISCUSSION

Classification and generation of flames

Using the experimental setup described in Figures 1B and 1C, we first collect a series of images of candles

exposed to all frequencies in an octave, as well as under no acoustic exciting (silence), to build a data set

that consists of flame images and associated labels reflecting the type of audio signal the flame was

exposed to during imaging. Figure 2A shows sample images of the flame exposed to different frequencies.

Figure 2B provides an overview of the deep neural network used here, summarizing the two major models

used (a deep CNN classifier and a deep convolutional variational autoencoder [VAE]) for the purposes of

sonification and materials design. Figure 3 shows details of the deep CNN model used, summarizing the

detailed layers and hyperparameters, as well as the training performance in Figure 4.

Correlating flame deformations to sounds

The goal of the classifier is to predict, from an image provided to it, the correct audio signal that the flame

was exposed to (there are 13 classes: silence (no audio), and each note in an octave). Once trained, we test

the performance of the trained CNN model that acts as a classifier to determine the original audio source

upon feeding images of a flame. To test the model performance, we collected new data that the model has

never seen in the original training process and compute the average predicted score. Figure 5 depicts a
iScience 24, 102873, August 20, 2021 3



Figure 2. Overview of the research reported in this paper

Panel A: Sample images of flames excited by the audio signal. The air pressure waves generated by the audio signals lead

to shape changes of the flames, which are recorded by the camera (as shown in Figure 1, the speaker is to the left of the

flames).

Panel B: Flowchart of the two methods used in this paper, based on the training set, involving supervised learning

resulting in a CNN model that is used to classify and sonify, as well as used as the basis for a fire Inceptionism algorithm,

and the VAE model is used to generate videos and 3D printing models.
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predictability radar plot of the neural network performance, showing it can accurately discern which audio

signal caused characteristic deformations of the flame, for all 12 notes in an octave and a flame without

audio (still).

Visual artistic forms using flames

The trained CNN can be used for a variety of purposes. An artistic application of the model is to use the

deep dream algorithm (Szegedy et al., 2015) (similar to the earlier application as reported in (Buehler,

2020)) to elucidate a recurrence of the internal patterns that the trained neural network ‘‘sees’’. We applied

this to a variety of images, whereas a few examples are shown in Figure 6. It is clearly visible how the model

is capable of ‘‘seeing’’ flame patterns all over the image canvas, leading to a remarkably changed outcome.
4 iScience 24, 102873, August 20, 2021



Figure 3. Deep convolutional neural network (CNN)model, summarizing the detailed layers and parameters used

This model is used for supervised learning based on pairs on images and labels (reflecting the audio source) and serves as

a classifier model to associate an image of a flame with an audio source. It is also used to sonify data, in that images of

flames trigger a certain audio to be played.
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This approach represents an extension of the concept of bio-inspired or nature-inspired materials to bio-

inspired art.

Generation of new audio sounds from fire sonification

Another possible application of the CNN model is to apply the model in sonification, to render images as

sound, and by using a sequence of images (or a video) a change in sound or music. In other words, we can
iScience 24, 102873, August 20, 2021 5



Figure 4. Convolutional neural network (CNN) model accuracy and model loss over training epochs

The best performance is obtained at epoch 36, with is used for applications of the classifier model, and the subsequent

analysis.
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watch a flame flicker, or move due to external factors such as air movement and render a soundtrack to it by

classifying the audio signals that are being associated with each frame. Figure 7 shows the basic outline of

the approach, showing a sample audio signals of continuously varying frequency (from pitch C2 upward),

applied over 40 s time each for up and down (a total of 80 s). In this example, the fire serves as an analog

transformer, which is captured using the same experimental setup as shown in Figure 2. The resulting video

with the predicted audio is shown in Video S1. The way the audio was generated is to classify the images in

the temporal sequence and to render the associated sound in the same temporal evolution, yielding an

automated soundtrack or sonification that matches the flame shape seen with the instantaneous audio

signal. Since the input audio signal used in this experiment is different than the original audio used to train

the CNN model (e.g. the fact that we traverse a continuous range of pitches rather than the 12 discrete

pitches in the octave, and that the pitch ranges are different), the fire acts as an analog transformer that

can be viewed as a new form of a musical instrument.

Other modes of excitation of flames could be hand motions, vocalizations by professional singers, or envi-

ronmental conditions such as wind or thermal movement of air, to induce certain flame shapes, which can

be associated with a certain pitch. This can result in interesting sonification methods, where fire becomes a

musical instrument, or a translator of data from one to another form. Another example of this method could

be to apply the sonificationmethod to other audio signals, e.g. those that do not consist of pure sine waves.

This is left to future work, especially in the creative domain.

With the available data set of flames under different audio excitations (see Figures 2A and 5 for sample

flame shapes), it is also possible to develop a generative neural net that allows us to create a continuous

range of synthetic flames, using a method of unsupervised learning, as depicted in Figure 8A. Figures

8B and 8C shows the results of a deep convolutional VAE model of the flames exposed to different fre-

quency. The model is capable, once trained, to reproduce different states of deformation (from Still, to

each of the 12 pitches in the octave), and to distinguish them in latent space. The capacity to distinguish

the different flame shapes underscore the earlier results for the classifier model shown in Figure 5 (albeit,

it is noted that we use a different neural net topology for the autoencoder model, thereby suggesting that

the classification properties are general). Figure 8D shows an example of systematic variations in the two-

dimensional latent space, revealing the associated flame shapes.

The dimensionality of the latent space can be adapted, in principle, to achieve a matching level to the type

of data that is of interest. It is also noted that the plot of the latent space (Figure 8) shows that indeed, in

agreement with the results in Figures 3 and 4, unique flame shapes are associated with specific audio sour-

ces (since there is a clear emergence of clustering of the datapoints in latent space associated with certain

audio sources). The significance of the autoencoder model is that it allows us to generate new flame

shapes, including those that were not included in the training set, and explore the approach as a way to

offer nature-inspired design ideas.

In this vein, this model has several applications: first, to generate synthetic flickering flames using the VAE

model; to further explore the latent space for design ideas; and ultimately, to generate 3Dmaterial samples

inspired by fire.
6 iScience 24, 102873, August 20, 2021



Figure 5. Predictability map of the neural network, graphed as a radar plot

The data show that the model can accurately discern which audio signal caused characteristic deformations of the flame, for all 12 notes in an octave and a

flame without audio (still); there are a total of 13 distinct classification targets. Note, the audio source is played form the left side of the flame, hence leading

to flame deflections toward the right.
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Figure 9 shows the use of a random walk algorithm to generate pairs of latent space numbers (Figure 9A),

and we use the decoder model to generate a synthetic flickering flame. This result is shown as video, in

Video S2. This approach may also be used to map other variables, such as environmental data (e.g., tem-

perature) into latent space variables and then flame shapes. In future work, these newly predicted flame

shapes could also be sonified, which offers yet another way to realize data sonification of complex multi-

dimensional data.

Design and fabrication of materials inspired by fire

Another perspective concerns the fabrication of nature-inspired structures from fire, integrating the ma-

chine learning methods with additive manufacturing (Figure 10). The combination of the autoencoder

model and a random walk algorithm can be used to create material designs that can be manufactured

using 3D printing. Figure 10A shows the differential random walk data generated (the variables in the

latent space are offset by (�4, �4) to reflecting the beginning of the walk (red circle) with a stable flame

shape (as can be confirmed in Figure 10A). The random walk is used to generate a series of images (with

x-y data) that are stacked together (in the z-direction) to create a 3D geometry. The walk distance in each

step must be chosen small enough to achieve smooth variations in shape in each step. Figure 10B shows

the resulting 3D geometry as seen in a slicer program, rendering a hollow interior. Figure 10C shows

various renderings of the flame shapes, specifically focusing on the internal structures; the ‘‘inside of a

flame’’ that is typically invisible, and which provides a novel perspective of fire and its materialization. Fig-

ure 10D depicts the result of a 3D print of the same geometry, realized using an SLA (LCD) printing
iScience 24, 102873, August 20, 2021 7



Figure 6. Fire Inceptionism, seeing and painting flames in image data

Example of the application of the deep dream algorithm to an image of a leaf, showing how the salient patterns of flames

appear as hallucinations in the result. The bottom image shows a zoomed-in view of a particularly interesting region in

which the abstractions of flame signals is prominently expressed (Szegedy et al., 2015) (Buehler, 2020).
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method. Figure 10E shows another example, this time printed using an FDM printing technique. Fig-

ure 10F shows the resulting printed material realizations using a multi-material FDM printer and PVA sup-

port material (note, to generate this geometry, we use the distance matrix of protein with PDB ID 4RLC

(crystal structure of the N-terminal beta-barrel domain of Pseudomonas aeruginosa) to generate the path

in 2D latent space, thereby drawing the resulting flame shape as a material interpretation). This is an

example for an application of the method to material-to-material translations, where material source

data (e.g. distance matrices of proteins) are used to generate flame geometries, which are then rendered

into 3D material shapes.

Moreover, when flames are printed using more flexible materials such as polyurethane, the resulting ma-

terials can be used for mechanical experiments, such as bending (Figure S5) or torsional deformation

(Video S3). Such analysis could also be carried out using finite element modeling in future work, and offer

additional layers of mechanistic analysis, and applications to solid mechanics.

Additionally, to increase the sensorial experience, we use the sonification method described above to

generate a video in Video S4 that shows the sonification of the same 3D-printed dataset that is overlaid

on the original video recording. This video is a culmination of the methods reported here; where the

autoencoder is used to generate the flame shapes and 3D structure of the flame composition, and

the classifier is used to determine the sound over time. The temporal evolution of the sound reflects

a type of musical composition – a rendering of the materialization of the fire shapes shown in Figure 10,

made audible, providing yet another perspective into the structure. We note that instead of using

random walk as input, we can also use other data (e.g., climate data – using pairs of temperature

and sea level) to realize evolutions of flame shapes, and associated audio. These types of explorations

are left to future work. By changing the dimensionality of the latent space (in the examples shown here,

it was two) and matching them to the dimensionality of the data to be visualized, one can explore a va-

riety of options.
8 iScience 24, 102873, August 20, 2021



Figure 7. Application of the model in sonification

As input, we use images of a flame exposed to a systematic variation of a sine way audio signal with continuous frequency increase from 0 to 120 Hz and

mirrored decrease over the same time frame of Dt = 80 s. The flame images produced by this continuous change in pitch of the audio signal are then

classified using the neural network and a musical score generated that is used for generation of a new audio signal, based on classifying the images and

identifying associated sounds.

See attached supplementary information, Video S1.
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Looking ahead, we envision that in future work the random walk and design creations can be coupled with

an optimization algorithm (e.g., a genetic algorithm, Bayesian methods) to achieve certain target material

properties. For instance, the use of flame shapes in architecture may require finding a certain volume frac-

tion, or stiffness, which can be identified by seeking certain latent space parameters. This, combined with

finite element modeling of the resulting shapes, could yield interesting new insights into mechanical per-

formance (deformation of flames, fracture of flames, etc.), and adaptation toward certain required material

properties.

The manipulation of data from a clean flame may lead to applications also in the materials science field. As

also outlined in previous work (Franjou et al, 2019, 2021), it is possible to exploit and correlate the similar-

ities of the hierarchical structures of music and of many complex tissues and composites. As already

demonstrated in the specific case of proteins (Yu et al., 2019), such a mapping may be also used with

data coming from an excited fire. The musical instrument described above, could be used to bridge the

natural fire source with a design palette for materials. Through a double-step data processing, we could

extract specific patterns and features from the observed deformation to identify bioinspired structural

properties with which create new materials that can be ultimately 3D printed. A first example of such direc-

tion is the collection of the frequency spectrum that could be the target of structural optimizations.

The systematic collection of the topological features of flames upon an external disturbance over time (e.g.,

flame height, bending angle) may be used as a model for structural properties to implement in novel bio-

inspired materials. Mimicking the deformability of flames upon external loads may find applications in the

so-called soft robotics, an emerging field of research that uses the high deformability and biomimetic func-

tionalities of structural materials to prevent collisions and ensure, as a meta-material (Zadpoor, 2020), a

high adaptability in unstructured environments and applications not limited to the bioengineering field

(Ilievski et al., 2011; Wang et al., 2019). Finally, following also the examples of previous studies (Halder

and Dey, 2015; O’Brien et al., 2010), observing the relationship between excitation and structural response

of the fire (i.e., deformation, delay response), new bioinspired strategies for controlling deformable struc-

tures may be implemented, complementing the traditional approaches.

CONCLUSIONS

This work has highlighted several features of ‘‘fire’’ at the nexus of physics, engineering, and art, and we

reported the first nature-inspiredmaterial design from fire, including thematerialization of fire using a com-

plement of deep learning and additive manufacturing. The use of a natural phenomenon like fire expands

the concepts of design by nature from the typical nacre- or silk-inspired materials and offers us now a new

way to use neural nets to translate a variety of phenomena into new designs.
iScience 24, 102873, August 20, 2021 9



Figure 8. Development of a variational autoencoder model (schematic: panel A) of the flames exposed to

different frequency

The model is capable, once trained (B), to reproduce different states of deformation (from 0 = still to 1–12 in the octave),

revealing a characteristic clustering learned autonomously, supporting the results obtained from the classifier model that

it is possible to associate flame shapes with specific audio signals (C). Panel D shows an example of systematic variations

in the two-dimensional latent space (�10..10 in both dimensions).
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First, we showed that flame shapes can be associated closely with the source of excitation. While this de-

pends on the details of the parameters (e.g., distance of audio source, sound amplitude) and may not be

generalizable easily, if parameters are kept constant, such a characterization can be done rigorously and a

relationship between audio source and flame pattern learned using a deep neural network. This model, in
10 iScience 24, 102873, August 20, 2021



Figure 9. Generating synthetic ‘‘flickering flames’’ using a random walk algorithm

Using a random walk algorithm to generate pairs of latent space numbers (panel A) we use the decoder model described

in Figure 8A to generate a synthetic ‘‘flickering flame’’, with examples shown in panel B. This approachmay also be used to

map other variables, such as environmental data (e.g. temperature) into latent space variables and then flame shapes,

which could also be sonified to provide audible renditions of data using fire as a translator. A video of synthetic flickering is

shown is provided in supplementary information, Video S2. Figure S4 shows an example where we use the distance matrix

of a protein to generate 2D trajectory data, which then yields a novel 3Dmodel design as shown in Figure 10F. This type of

material-to-material translation using fire as a medium can be applied to numerous other areas and provide a new source

of material design, art, and cross-domain transformation.
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turn, allows us to use the model in the reverse direction and predict the audio source from the flame shape,

to create a unique sound association.

We further used this new data set of flames to develop a variational autoencoder that enable us to map a

two-parameter latent space into a variety of flame shapes. One application was to generate flickering flame

models by randomly moving in this latent space. Another application could be to map other data to this

latent space, and then provide visualizations of such data in the form of flames, and ultimately as sound

(since each flame image can be associated with a pitch).

The last, but not least important, application is the use of the collected data to create new data sets of

properties and features to be exported and translated in the engineering field. For instance, new materials

and constructs may be developed by mimicking the deformability of fire or its adaptability to the surround-

ing environment. In addition to materials science, also new emerging fields like the soft robotics may take

advantage of such approach to develop devices able to be integrated complex systems for unstructured

scenarios. Some of the preliminary analyses reported here (e.g., Figure S5, Video S3) offer some insights

into what may be possible toward applications in science and technology.

In conclusion, the methods reported here offer new directions in scientific and artistic research fields. This

transcends the traditional definition of bio-inspiration in materials research and opens a new avenue where

human creativity is intermingled with AI to explore interfaces of natural and synthetic worlds, especially via

the use of multi-material additive manufacturing of complex geometries. In addition to the use in STEM

outreach, this can also provide a powerful toolkit for translation across disciplinary boundaries, and eluci-

date new design paradigms that solicit natural design languages, patterns, and other forms of signals in the

engineering process. For instance, augmenting images using the fire Inceptionism algorithm can provide

material inspiration for architectural design, to come up with new shapes or geometries for fire-inspired

design work for future infrastructure. This can be a powerful tool to mix emotional with material aspects

that reflect cultural heritage in novel dimensions.
iScience 24, 102873, August 20, 2021 11



Figure 10. Manufacturing of nature-inspired materials from fire

The combination of the VAE model and a random walk algorithm can also be used to realize material designs that can be

manufactured using 3D printing. Panel A shows the differential random walk data generated (the variables in the latent

space are offset by (�4,�4) to reflecting the beginning of the walk (red circle) with a stable flame shape (as can be seen in

Figure 8C). The random walk is used to generate a series of images that are stacked together to create a 3D geometry.

The walk distance must be chosen small enough to achieve smooth variations in shape in each step. Panel B shows the

resulting 3D geometry as seen in a slicer program, rendering a hollow interior. Panel C depicts various internal views of the

3D model, in particular the right version resembling the interior of the gut. Panel D shows the result of a 3D using an SLA/

LCD (detailed views see Figure S3). Panel E shows a section of the same sample printed using FDM with a thermoplastic

polymer, and Panel F shows the resulting prints using an FDM printer and PVA support material [left – with support

material, right – support material removed] (note, to generate this geometry, we use the distance matrix of protein with

PDB ID 4RLC (crystal structure of the N-terminal beta-barrel domain of Pseudomonas aeruginosa) to generate the path in

2D latent space, thereby drawing the resulting flame shape as a material interpretation). We have also provided, via Video

S4, a sonification of the same printed dataset that was overlaid over the video, rendering the emergence of de novo

photographic data and audible data.
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Table 1. List of frequencies of the selected octave from C2 onward

Note name Frequency [Hz]

C2 65.406

C2# (D2X) 69.296

D2 73.416

D2# (E2X) 77.782

E2 82.407

F2 87.307

F2# (G2X) 92.499

G2 97.999

G2# (A2X) 103.83

A2 110.00

A2# (B2X) 116.54

B2 123.47
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Limitations of the study

One limitation of this work is the need of a clean image of a flame, so that we used a dark background to

highlight the sharp fire contour. Moreover, we acknowledge that the flame from a candle is a relatively

weak source of light that can be easily affected by external noises. This is why we have performed all our

experiments in a controlled environment to avoid any bias on the deep learning algorithm. In view of

this, it is possible to pursue this avenue of research to provide, in future works, additional data sets

with ‘‘stronger flames’’ (e.g., wildfire, log fire, gas fire, and others) and an improved deep learning algo-

rithm able to detect random fire features also in pictures with environmental noise. Other methods to

improve the stability of the algorithm is to use image-transforming GAN methods, for example, to

map complex flames seen in stronger flame sources into corresponding ‘‘unit measures’’ of fire, a single

flame, as studied here.
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KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Deposited data

N/A

Software and algorithms

Adobe Premiere Pro Version 15.1 https://www.adobe.com/

Ableton Live Version 10.1 https://www.ableton.com/en/

Dragonfly Version 2021.1.977 http://www.theobjects.com/dragonfly/

Other

Wax candle UCO https://www.rei.com/product/410128/uco-

candle-lantern-candles

3D printer Monoprice Maker Ultimate,

PLA+ print filament

https://www.monoprice.com/

3D printer Ultimaker S3 https://ultimaker.com/3d-printers/

ultimaker-s3

Stereolithography (SLA)/LCD masking Elegoo Mars http://elegoo.com
RESOURCE AVAILABILITY

Lead contact

Further information and requests for resources should be directed to and will be fulfilled by the Lead Con-

tact, Prof. Markus J. Buehler (mbuehler@mit.edu).

Materials availability

This study did not generate new unique reagents.

Data and code availability

This paper does not report original code.

METHOD DETAILS

Experimental setup

The experimental setup, shown in Figures 1B and 1C, consists of a speaker as audio source (studio monitors

ROKIT5, KRK systems), a burning candle with a clearly distinguishable flame, and a camera to record im-

ages in front of a black background. We use a wax candle (https://www.rei.com/product/410128/uco-

candle-lantern-candles) as the fire source, to ensure a consistent flame shape and little wax dropping.

A Sony A7S III camera with a Canon 105 mm F/2.8 EX DG OS HSM Macro lens, mounted on a tripod in the

positioning described in Figures 1B and 1C, is used to take high-frame rate videos at 180 fps, at HD reso-

lution, for different frequency excitations ranging from C2 and upwards for one octave (see Table 1). The

audio signals consist of pure sine waves for each frequency with amplitudes equal to a power output of 50

W. Experiments are carried out at room temperature (~23�C) and atmospheric pressure (~1 bar).

The video is recorded in the S-Log3 format for highdynamic range, and then converted to REC.709 8-bit images

at HD resolution using a Sony LUT executed in Adobe Premiere Pro (Version 15.1; https://www.adobe.com/).

Development of flame training set

We use 2,000 images for each acoustic excitation signal, which are split into train/test datasets using a ran-

domized 80:20 ratio. We use image augmentation methods to enrich the training data set. We also use an

additional 200 images to validate the model after training.
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Deep convolutional classifier

To develop a 13-type classifier (still, plus each of the notes in an octave), we use themachine learningmodel

as shown in Figure 3, and train it using the dataset described above. The training and testing performance

are shown in Figure 4, revealing good convergence.
Sonification method

The sonification method uses the trained classifier, and takes a time series of images as input, then pro-

duces aMIDI file that features unique notes in the octave at each time point. It was rendered a Digital Audio

Workstations (DAW), Ableton Live (Version 10.1, https://www.ableton.com/en/).
Convolutional variational autoencoder (VAE)

We develop a convolutional variational autoencoder to encode and decode images of the flames exposed

to different frequencies. The detailed structure of the neural net is shown in Figure S1. The model is trained

on a set of 1,300 unlabeled images (100 images for each audible condition), and uses a 2-dimensional latent

space vector. Images are scaled to sizes of 1,024 x 512 pixels. Figure S2 depicts sample snapshots of the

training performance of the variational autoencoder model (VAE) model, from top (early) to bottom

(converged). One can see how the model learns, over multiple optimization epochs, how to draw flame

shapes.

Once trained, we validate themodel by visualizing the original label in latent space, revealing the clustering

of the same labels close in latent space, as shown in Figure 8C. It is noted that in principle, other dimen-

sionalities for the latent space can be chosen. We found the 2D approach useful for simple visualization

of the latent space, and for the subsequent random walk analyses.
Additive manufacturing

We use the VAE model to generate stacks of images via movements in latent space. The stacks of images,

typically on the order of several thousand, are translated into a 3D geometry using Dragonfly (http://www.

theobjects.com/dragonfly/, Version 2021.1.977). A STL file is then rendered, which can be printed upon

slicing them to prepare native print code.

In this study we exemplify the printing using both fused deposition modeling (FDM) (Monoprice Maker Ul-

timate, PLA+ print filament, https://www.monoprice.com/, as well as the Ultimaker S3 with both polyure-

thane and PLA filament, as well as PVA support material, https://ultimaker.com/3d-printers/ultimaker-s3)

and stereolithography (SLA)/LCD masking (Elegoo Mars, http://elegoo.com). These two layer-by-layer

manufacturing techniques have a different working principle: with the FDM, a rod of raw matter is progres-

sively fed through a nozzle and melts while depositing the material layer while, in contrast, SLA consists in

selectively melting a bed of raw material using a heating source. Despite the differences, they have been

broadly employed to fabricate constructs made of thermoplastics or, more recently, biomimetic/bio-

inspired materials and composites with particular hierarchical structures (e.g., silk-based hydrogels,

bone-like tissues) (Milazzo et al., 2019; Valino et al., 2019). For some complex flame geometries (e.g. over-

hangs, or islands) it is necessary to print support material. Generally, the LCD method works better for the

complex flame geometries.
QUANTIFICATION AND STATISTICAL ANALYSIS

No statistical analysis was performed in the study.
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