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Themembrane protein low-density lipoprotein receptor related-protein 1 (LRP1) has been
attributed a role in cancer. However, its presumably often indirect involvement is far
from understood. LRP1 has both endocytic and signaling activities. As a matricellular
receptor it is involved in regulation, mostly by clearing, of various extracellular matrix
degrading enzymes including matrix metalloproteinases, serine proteases, protease
inhibitor complexes, and the endoglycosidase heparanase. Furthermore, by binding
extracellular ligands including growth factors and subsequent intracellular interaction with
scaffolding and adaptor proteins it is involved in regulation of various signaling cascades.
LRP1 expression levels are often downregulated in cancer and some studies consider
low LRP1 levels a poor prognostic factor. On the contrary, upregulation in brain cancers
has been noted and clinical trials explore the use of LRP1 as cargo receptor to deliver
cytotoxic agents. This mini-review focuses on LRP1’s role in tumor growth andmetastasis
especially by modulation of the extracellular tumor environment. In relation to this role its
diagnostic, prognostic and therapeutic potential will be discussed.
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INTRODUCTION
The matricellular receptor low-density lipoprotein (LDL) receptor-related protein 1 (LRP1) is
a multifunctional receptor implicated in both endocytosis and signaling pathways (Lillis et al.,
2008). Numerous ligands, both structurally and functionally diverse, bind to LRP1 and the
endocytosis of many of these ligands is coupled to activation of signal pathways. Together with
its broad expression pattern, the multifunctionality of this receptor accounts for its involvement
in various physiological and pathological processes including extracellular matrix modulation,
transport across the blood–brain barrier (BBB), coagulation, inflammation, Alzheimer’s disease,
atherosclerosis, etc. The role of LRP1 in many of these processes is discussed in detail in recent
reviews (Kanekiyo and Bu, 2014; Strickland et al., 2014). Following upon a short general description
of the structure and the function of LRP1, the present mini-review, however, focuses on the often
indirect role of LRP1 in tumor growth and metastasis by modulation of the extracellular tumor
environment.
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GENERAL ROLE OF LRP1 IN
ENDOCYTOSIS AND CELL SIGNALING
Lipoprotein receptor related-protein 1, a type I transmembrane
receptor, is amember of the LDL-receptor gene family (Lillis et al.,
2008). The LRP1 precursor is cleaved by furin in the trans-Golgi
to generate a 515 kDa N-terminal α-subunit and an 85 kDa C-
terminal β-subunit. In themature two-chain structure, the entirely
extracellular α-subunit, containing the ligand binding domains,
is non-covalently linked to the transmembrane-containing β-
subunit. After maturation, arrival at the cell surface and ligand
binding it undergoes highly efficient constitutive endocytosis
via clathrin-coated pits and recycling. The dominant signals for
endocytosis are YxxL and dileucine motifs in the cytoplasmic or
intracellular domain of the β-subunit (Li et al., 2000), whereas two
NPxY motifs, of which the latter overlaps with the YxxL motif,
are secondary endocytosis signals and binding sites for adaptor
proteins involved in signaling (Trommsdorff et al., 1998; Li et al.,
2000; Loukinova et al., 2002). Analyses of knock-in mice and
derived MEFs carrying inactivating mutations of the proximal
NPxY and the distal NPxYxxL motifs revealed that, besides
for endocytosis and signaling, these motifs are also relevant
for slow recycling of LRP1 from the perinuclear compartment
to the plasma membrane and even for early steps in LRP1
biosynthesis, preventing premature proteasomal degradation of
precursor LRP1 (Roebroek et al., 2006; Gordts et al., 2009, 2012;
Reekmans et al., 2010).

Lipoprotein receptor related-protein 1 ligands include
proteases, protease inhibitor complexes, extracellular matrix
proteins, growth factors, toxins, and viral proteins (Lillis et al.,
2008). Via clearing of proteases, like (matrix-)metalloproteinases
and other secreted proteins, like coagulation FVIII, LRP1
contributes to the homeostasis of many secreted proteins and
the integrity of the extracellular matrix (Figure 1A). LRP1
regulates, however, also the abundance of many other proteins,
including receptors present at the plasma membrane. For
example, the urokinase-type plasminogen activator (uPA)-
plasminogen activator inhibitor-1 (PAI-1) complex is a bivalent
ligand, which triggers urokinase receptor (uPAR) internalization
and regulates the uPAR signaling by bridging extracellularly
uPAR and LRP1 (Gonias et al., 2011). Fe65 and PSD-95 are
intracellular adaptor proteins (Figure 1B) that interconnect LRP1
to β-amyloid precursor protein (β-APP; Pietrzik et al., 2004)
and N-methyl--aspartate (NMDA) receptor (May et al., 2004;
Martin et al., 2008) respectively, stimulating APP endocytosis and
amyloid (Aβ) generation (Pietrzik et al., 2004), and extracellular
signal-regulated kinase 1/2 (ERK1/2) signaling (Martin et al.,
2008).

LRP1 AND CANCER: A LONG BUT
DIFFICULT MARRIAGE
Lipoprotein receptor related-protein 1 has already been attributed
a role in cancer shortly after its discovery in 1988 (Herz
et al., 1988). Initially, several groups reported decreased LRP1
expression (Figure 1C) levels in various cancer cell lines and
tissues, thus assigning a tumor suppressive role to this receptor

(Kancha et al., 1994; de Vries et al., 1996; Gilardoni et al., 2003).
These findings provided a rationale for earlier studies in which
decreased binding and uptake of α2-macroglobulin (α2M), an
LRP1 ligand, were observed in multiple cancer cell lines (Van
Leuven et al., 1979; Saksela et al., 1981, 1984; Jensen et al., 1989).
It should be noted, however, that under normoxia cell culture
conditions cancer cell lines in vitro might show a reduction in
LRP1 expression compared to hypoxic conditions (Montel et al.,
2007). As in many tumors in vivo hypoxic conditions exist, this
observed decrease in LRP1 expression should be interpreted with
caution. Nonetheless, more recent work supports a reduction
in LRP1 expression in cancer. Amos et al. (2007) compared
LRP1 expression between low-grade astrocytoma and high-grade
astrocytoma (glioblastoma). They correlated a decrease in LRP1
expression with more advanced tumor grade and enhanced uPA-
dependent cell invasion. Previously however, Yamamoto et al.
(1997) and Baum et al. (1998) have described opposite results:
LRP1 expression was predominantly detected in glioblastoma
and to a lesser extent in lower grade astrocytomas. In vitro,
LRP1 expression appears to vary substantially among different
glioblastoma cell lines (Maletinska et al., 2000). In hepatocellular
carcinoma, colorectal carcinoma and lung adenocarcinoma,
reduced LRP1 expression levels were linked to a poor prognosis
and more advanced tumor stages (Obermeyer et al., 2007; Meng
et al., 2011; Huang et al., 2012). Recently, it was shown that
LRP1 acts in response to ApoE as an endogenous suppressor
of the metastatic phenotype in melanoma (Pencheva et al.,
2012). However, contrasting evidence exists suggesting a role for
LRP1 in supporting thyroid and breast cancer cell invasion and
metastasis (Chazaud et al., 2002; Montel et al., 2007; Dedieu et al.,
2008; Fayard et al., 2009). Moreover, increased LRP1 expression
was found to be predictive of more aggressive tumor behavior
and associated with higher histological grade in endometrial
carcinomas (Catasus et al., 2011).

Post-translational regulation of LRP1 by proteolytic cleavage
(also named shedding) is a critical mechanism in regulating
cell-surface LRP1 expression, especially in tumor context
(Figure 1D). Since the first identification of the extracellular
part of LRP1 (LRP1-ECD) solubilized in human plasma (Quinn
et al., 1997), proteolytic enzymes from different classes have been
identified as LRP1 sheddases (Etique et al., 2013). These include
metalloproteinases such as MT1-MMP and ADAM-10 and -12,
the serine proteinase tPA and BACE-1. Shedding of LRP1-ECD
allows the release from the plasma membrane by γ-secretase
of the intra-cytoplasmic domain of LRP1 (LRP1-ICD), which
could act as signaling mediator (May et al., 2002). Accumulation
of extracellular proteolytic activities associated to the tumor
microenvironment could explain at least in part why cell-surface
LRP1 is generally found decreased in advanced tumors. However,
the significance of LRP1 shedding is not really understood in the
field of malignant diseases.

Only a few LRP1 polymorphisms or mutations were identified
in cancer specimens. Benes et al. (2003) associated the C766T
polymorphism with an increased risk to develop breast cancer
in Caucasian women. Although this change into a thymine
nucleotide does not result in an amino acid substitution, this
silent mutation has previously also been linked to Alzheimer’s
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FIGURE 1 | Schematic representation of LRP1-mediated tumor growth and metastasis fine tuning. (A) LRP1 clears various cancer-related ligands from the
ECM by endocytosis. (B) The LRP1 ICD also interacts with several adaptor and scaffolding proteins. (C) LRP1 expression levels vary among different tumor types
and tumor stages and (D) the receptor can undergo shedding and subsequent release of the ICD. (E) Heparanase-1 activation is affected by LRP1-mediated uptake
of its inactive precursor. (F) The formation of co-receptor complexes with LRP1 influences signaling and (G) also the phosphorylation of the LRP1 ICD influences
signaling and regulates endocytosis. (H) LRP1-mediated signaling affects several well-known pathways linked to cancer.

(Kolsch et al., 2003) and coronary artery disease (Pocathikorn
et al., 2003) but also conflicting data were published (Benes et al.,
2001; Pritchard et al., 2005). Recently, a LRP1-SNRNP25 fusion
gene was identified in two osteosarcomas (Yang et al., 2014).
Only the first eight exons including the promoter region of LRP1
are implicated in the fusion gene. Although the relevance of
LRP1 expression to osteosarcoma is currently unknown, in vitro,
however, LRP1-SNRNP25 promotes invasion and migration.
LRP1-SNRNP25 expression was increased in both tumors via
the LRP1 promoter activity of the fusion gene compared to
the wild-type SNRNP25 expression in other osteosarcomas
specimen.

A MULTITUDE OF CANCER-MODIFYING
PATHWAYS

Remodeling of the ECM is essential for both tumor growth and
metastasis. As a matricellular receptor, LRP1 is involved in the
regulation of several ECM modifying pathways.

(Matrix)-metalloproteinases (MMPs) are key enzymes in
physiological but also in cancer-related modulation of ECM
and basement membrane components. Their proteolytic function
mostly results in inactivation or degradation of many of
their different substrates. MMPs are, however, also found
involved in signaling functions in a non-proteolytic manner
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(Kessenbrock et al., 2010, 2015; Yamamoto et al., 2015). LRP1
mediates endocytosis of MMP-2, -9, -13, ADAMTS-4 and
ADAMTS-5 and clears these proteases from the ECM (Emonard
et al., 2005; Yamamoto et al., 2014, 2015). Endocytosis by
LRP1 can depend on complex formation: (pro)MMP-2:TSP-
2 (thrombospondin-2), proMMP-2:TIMP-2 (tissue inhibitor of
metalloproteinases 2), and proMMP-9:TIMP-1 complexes are all
ligands to LRP1 and cleared by this receptor (Emonard et al.,
2005; Yamamoto et al., 2015). Furthermore, other MMPs are
being regulated by LRP1, although indirectly, via the clearance
of TIMP-1, -2, and -3 by LRP1 whether bound to an MMP
(Emonard et al., 2005; Yamamoto et al., 2015) or alone (TIMP-
1 and -3; Scilabra et al., 2013; Thevenard et al., 2014). These
TIMPs also display signaling functions via the ERK and Wnt
pathways (Liu et al., 2003; Egea et al., 2012). Also the broad
spectrum protease inhibitor α2M binds to LRP1 followed by
subsequent internalization (Andersen et al., 2000). Not only
metalloproteinases are a target of this glycoprotein but also
serine-, carboxyl-, and thiol proteinases are blocked from
interacting with their respective substrates (Rehman et al., 2013).
Besides its activity as a protease inhibitor, α2Mwas recently shown
to stimulate angiogenesis via activation of stem cells through
FGF-2 and nitric oxide via LRP1-mediated signaling (Sauer et al.,
2013).

Heparanase-1 is another matrix modifying enzyme that is
endocytosed by LRP1, both for its activation and clearance
(Figure 1E). This enzyme cleaves heparan sulfate proteoglycans
(HSPG), one of the core components of the ECM (Ilan et al.,
2006). HSPGs not only play a role in the integrity of the ECM
but also act as a storage depot for growth factors, chemokines,
cytokines and enzymes.Heparanase-1 is synthesized as an inactive
precursor. Activation requires proteolytic cleavage that is partly
dependent on LRP1-mediated pro-heparanase-1 internalization
(Figure 1E; Vreys et al., 2005). Also mature heparanase-1 can be
endocytosed by LRP1 targeting it for degradation or recycling
(Vreys and David, 2007).

uPA-uPAR signaling is anothermigration- and invasion-related
pathway regulated by LRP1 that can promote cell invasion and
migration (Webb et al., 2000; Amos et al., 2007; Gonias et al.,
2011). uPA and tPA proteinase activity are implicated in the
plasminogen activator system and as such mediate plasmin-
dependent degradation of ECM proteins (Gonias et al., 2011).
Interaction of uPA with PAI-1 on uPAR stimulates uPAR-LRP1
complex formation and subsequent endocytosis (Czekay et al.,
2001). This affects uPAR presence at the plasma membrane
with consequences for ECM degradation via the plasminogen
activation system and uPAR-integrin interaction, both important
for cell migration. Also for angiogenesis the uPA-plasmin system
is highly relevant (Raghu et al., 2010). Furthermore, LRP1 was
shown to promotematuration of the integrin β1 precursor thereby
increasing the level of integrin β1 at the cell surface (Salicioni et al.,
2004). LRP1 also binds to αMβ2 thereby altering integrin function.
In macrophages, LRP1 is important for αMβ2 internalization
thereby possibly influencingmacrophage-mediated inflammation
(Ranganathan et al., 2011).

Migration of malignant cells is further affected by LRP1-
CD44 complexes in the cell membrane (Figure 1F). LRP1 was

recently shown to control the adhesion in tumor cells via
interaction with, and internalization of CD44, a transmembrane
glycoprotein (Perrot et al., 2012). CD44 mediates cell adhesion
to the ECM, migration and is probably involved in tumor
and metastasis initiation. Like LRP1, CD44 acts as an interface
for signal transduction at the cell surface as recently reviewed
(Orian-Rousseau, 2015). A lowering in LRP1 expression as
observed in certain cancers (see supra) could thus result in
CD44 accumulation at the cell surface and enforced cancer cell
attachment.

Besides this, probably far from complete, overview of LRP1-
related ECM modifying processes, LRP1 also forms co-receptor
complexes (Figure 1F) at the cell surface with receptors
involved in cancer-related pathways. A good example is the
association between LRP1 and the platelet-derived growth
factor receptor-β (PDGFR-β). LRP1 not only mediates PDGF
internalization and degradation, in two accompanying papers,
PDGF-BBwas shown tomediate the phosphorylation (Figure 1G)
of the Tyr63 in the distal NPxY motif of LRP1 located
in caveolae (Boucher et al., 2002; Loukinova et al., 2002).
This process is dependent on PDGFR activation and on the
kinase activity of the c-Src family of proto-oncogenic tyrosine
kinases. This relationship links LRP1 to Ras, c-Myc, MAPK,
and Akt/PI3K signaling, well known pathways implicated in
oncogenesis (Figure 1H). Later, LRP1 was shown to directly
associate with PDGFR-β to form a signal transduction complex
(Newton et al., 2005; Muratoglu et al., 2010). As such PDGF
signaling is influenced by LRP1 and vice versa. Recently, the
group of May demonstrated that LRP1’s ICD also modulates
the crosstalk between PDGF-BB and sphingosine-1 which is
important for modulation of PDGF-BB induced cell migration
and blood vessel maturation (Nakajima et al., 2014). The possible
relevance for tumor angiogenesis is yet to be determined.
LRP1 also affects angiogenesis among other things via is
regulatory role in VEGF signaling. The complex of the angiogenic
inhibitor thrombospondin-1 and VEGF is internalized via LRP1
(Greenaway et al., 2007).

THE RELEVANCE OF LRP1 FOR THE
INTERACTION BETWEEN MALIGNANT
CELLS AND THE TUMOR
(MICRO)ENVIRONMENT
Both LRP1 expressed in malignant cells themselves and
LRP1 expressed in non-tumorous cells present in the tumor
(micro)environment are relevant for modulation of the above
described cancer-modifying pathways. These pathways are
involved in processes like growth and survival of tumor
cells, angiogenesis, extravasation of tumor cells, invasion and
metastasis. The relative expression of LRP1, its ligands and
co-receptors, irrespective whether expressed by the tumor cells
themselves or other cells in the tumor (micro)environment
determine the modifying role of LRP1 in these different, but
linked processes, which may in fact result in opposing effects on
cancer progression.

Montel et al. (2007) silenced LRP1 in tumor cells only and host
LRP1 was left untouched. They observed the failure of metastatic
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FIGURE 2 | Potential clinical applications of LRP1. (A) Using LRP1 as a cargo receptor to sluice chemotherapeutic agents through the tightly controlled
blood–brain barrier via transcytosis is undergoing clinical testing. (B) LRP1 antagonists to the ECD could prevent LRP1 internalization and catabolization. (C) The
ECD of LRP1 could also be used as a soluble decoy receptor to capture LRP1 ligands and avoid ligand-receptor interaction.

foci to grow in the lungs from xenografts of CL16 cells in SCID
mice thus illustrating the relevance of LRP1 expression in tumor
cells themselves.

Also the importance of LRP1 expression in non-tumor cells
in the tumor environment has been demonstrated. In the breast
tumor microenvironment, it was reported that the pro-cath-D
protease, highly secreted by tumor cells, may trigger mammary
fibroblast outgrowth in a paracrine LRP1-dependent manner
(Beaujouin et al., 2010). The molecular mechanism engaged
appears atypical as pro-cath-D interacts with the extracellular
part of LRP1 β-subunit mediating the inhibition of LRP1-
regulated intramembrane proteolysis in mammary fibroblasts
(Derocq et al., 2012; Laurent-Matha et al., 2012). Recently,
Staudt et al. (2013) demonstrated that the recruitment of
LRP1-deficient monocytes into subcutaneous and orthotopic
pancreatic tumors were significantly increased. The secretion
of chemokines by LRP1-deficient macrophages is enhanced
(especially CCL3), resulting in an increased number of tumor-
associated macrophages (TAM) in the tumor site. The authors
provided evidence that the LRP1-deficient TAM collectively
contribute to an increased VEGF amount into the tumor
microenvironment, leading to increased tumor angiogenesis.

The aforementioned role of LRP1 in heparanase activation
and uptake implicates a potential regulatory role for LRP1 in
exosomes biogenesis. As reviewed elsewhere (DeToro et al., 2015),
exosomes are nanovesicles secreted by various cell types, including
cancer cells, that serve in cell–cell communication. They can be
isolated from body fluids and are regarded potential biomarkers
for diagnosis and prognosis. As recently shown, syndecan heparan
sulfate (HS) proteoglycans and heparanase are involved in
exosome production (Baietti et al., 2012; Roucourt et al., 2015).
Trimming of HS chains on syndecan molecules by heparanase
appears to affect the formation of multimeric complexes of
syndecans, co-receptors and the intracellular adaptor protein
syntenin triggering the generation of intraluminal vesicles in
multivesicular bodies (MVBs), eventually resulting in the release
of exosomes. Heparanase apparently does not only regulate
secretion of tumor-cell derived exosomes, but also its composition

and function (Thompson et al., 2013). As such, LRP1-mediated
control on active heparanase availability could effect exosome
production and function.

DRUG DELIVERY ACROSS THE
BLOOD–BRAIN BARRIER
Current studies on therapeutic strategies involving LRP1 focus
on using it as a cargo receptor to treat brain metastases.
The aforementioned expression of LRP1 in glioblastoma and
other brain cancers (Yamamoto et al., 1997; Baum et al., 1998)
or metastasis combined with LRP1’s expression at the BBB
(Pflanzner et al., 2011) is crucial to this strategy. The capability
of LRP1 to mediate transcytosis of a broad range of ligands
through the BBB (Figure 2A) could be the long-awaited sluice
for chemotherapeutic agents into the brain as BBB penetration is
currently the Achilles’ heel in brain cancer therapies (Jovčevska
et al., 2013). Uptake of paclitaxel through the BBB followed by
endocytosis into tumor cells was shown to be increased after
conjugating the taxane paclitaxel to a 19 amino acid sequence
named angiopep-2 (Bertrand et al., 2011). This peptide was
derived from the Kunitz domain, a known ligand of LRP1. A
phase I clinical study showed that this conjugate (GRN1005)
is well tolerated (Kurzrock et al., 2012; Drappatz et al., 2013).
Therapeutic concentrations could be reached in the tumor and
three patients where prior taxane therapy was unsuccessful
showed partial response with GRN1005. After an initial phase
II study, additional phase II studies are currently ongoing for
patients with brain metastases from breast cancer and high grade
glioma. Also other constructs are evaluated preclinically including
an anti-HER2 antibody conjugated to angiopep-2 to treat brain
metastasis fromHER2 positive breast cancers (Regina et al., 2015).
As demonstrated recently in vitro and in animal studies, angiopep-
2 could also aid active transport of polymersomes through the
BBB via LRP1 mediated trancytosis suitable for antibody delivery
to the brain (Tian et al., 2015).

Apart from angiopep-2, also peptides containing a serine-
arginine-leucine (SRL) sequence bind LRP1 and were recently

Frontiers in Pharmacology | www.frontiersin.org November 2015 | Volume 6 | Article 2715

http://www.frontiersin.org/Pharmacology/
http://www.frontiersin.org
http://www.frontiersin.org/Pharmacology/archive


Van Gool et al. Modulation of cancer by LRP1

shown to aid PAMAM nanoparticle transport across the BBB
(Zarebkohan et al., 2015). These LRP1 targeted particles could
become a valuable tool for non-invasive gene targeting to the
brain.

Although highly challenging, developing strategies aiming
at LRP1 targeting should be relevant in certain tumor
microenvironments. We might consider new LRP1 antagonists
targeting the extracellular part of the LRP1 β-subunit to avoid
LRP1 itself being internalized and catabolized (Figure 2B).
Another alternative could be to use the soluble LRP1-ECD as a
decoy receptor to interfere with endocytic and signaling activities
of cell-surface LRP1 (Figure 2C). The proof of concept exists
for TIMP-3. Bound to LRP1-ECD, TIMP-3 becomes resistant to
endocytosis and degradation and retains its inhibitory activity
against metalloproteinases (Scilabra et al., 2013). LRP1 ligand-
binding domains II and IV are probably the most critical regions
that could serve as molecular and structural models for designing
new therapeutic tools.

POTENTIAL OF LRP1 IN DIAGNOSIS
AND PROGNOSIS
As discussed previously, in some cancer types, LRP1 expression
was correlated with invasiveness, tumor stage, and even clinical
outcome. However, although it has been suggested that LRP1
could be a potential biomarker (Meng et al., 2011), so far, there
seems to be lots of variability and discussion. As mentioned
before, LRP1 expression in cell cultures is also debatable as the
in vitro conditions could affect LRP1 expression. Recent work
on data from tumor samples identified LRP1 as a hub in a
biomarker network for multi-cancer clinical outcome prediction

(Martinez-Ledesma et al., 2015). This further illustrates the
involvement and possible prognostic value of LRP1 in various
cancers. Future large scale studies on patient samples could
providemore insights and demonstrate the true relevance of LRP1
in diagnosis and prognosis of cancer.

CONCLUSION
Via a diverse array of interactions LRP1 modulates various
pathways involved in cancer. Especially its role in modifying the
ECM could be crucial for tumor growth and metastasis. However,
considering the sometimes contradicting studies LRP1 cannot
be considered a master switch as some prototype oncogenes or
tumor suppressor genes are. Rather, it acts as an interface to
fine-tune various cancer-related pathways. Its effects appear to be
dependent on both the tumor type and the tumor environment.
This complicates LRP1 research and calls for good model systems
that integrate the diverse set of LRP1 activities. These should
answer the question whether LRP1 could be a valuable target for
diagnosis, prognosis and therapeutics in cancer as well as other
diseases.
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