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Urease is a nickel-dependent metalloenzyme found in plants, some bacteria, and fungi. Bacterial enzyme
is of special importance since it has been demonstrated as a potent virulence factor for some species.
Especially it is central to Helicobacter pylorimetabolism and virulence being necessary for its colonization
of the gastric mucosa, and is a potent immunogen that elicits a vigorous immune response. Therefore, it is
not surprising that efforts to design, synthesize and evaluate of new inhibitors of urease are and active
field of medicinal chemistry. In this paper recent advances on this field are reviewed.
� 2018 Production and hosting by Elsevier B.V. on behalf of Cairo University. This is an open access article

under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
Introduction the rate of the un-catalyzed reaction [4,5]. It is worth to express
Being the first organic compound synthesized by Friedrich
Wohler from inorganic components [1] urea has a unique role in
history. Urea is an endogenous product of protein and amino acid
catabolism. For example, approximately 20–35 g of urea is
excreted in human urine per day. Urea is also used in huge quan-
tities as fertilizer (being an exogenous source of ammonia for
plants). This compound is hydrolytically stable and the half-life
of non-enzymatic hydrolysis of urea is equal 3.6 years and the
mechanism of this simple process is still disputable [2,3]. In Nature
it is hydrolyzed by an enzyme urease (urea aminohydrolase
E.C.3.5.1.5), a multi-subunit nickel dependent metalloenzyme that
catalyzes the hydrolysis of urea at a rate approximately 1014 times
that the latter process is proceeding via different mechanism than
this catalyzed by urease. This key enzyme of global nitrogen cycle
converts urea to ammonia and carbamate, which in turn sponta-
neously generate carbon dioxide and next molecule of ammonia.
Urease is the first enzyme, which was ever crystallized in 1926
by James B. Summer, who reported that a pure protein might func-
tion as an enzyme [6].

Bacteria, fungi, yeast, and plants produce urease where it cat-
alyzes the urea degradation to supply these organisms with a
source of nitrogen for growth. Urease is also a virulence factor
found in various pathogenic bacteria. Therefore, it is not surprising
that it is essential in colonization of a host organism and in main-
tenance of bacterial cells in tissues. Its activity leads to several
implications such as appearance of urinary stones, catheters block-
ing, pyelonephritis, ammonia encephalopathy, hepatic coma as
well as gastritis [7]. One of the most frequently studied bacterial
urease is that from H. pylori, a causative agent of gastritis and pep-
tic ulceration and stomach cancer [8,9].
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Ruminal microbial urease plays an important role in the nitro-
gen metabolism in ruminants such as cattle and sheep. The urea
from diet or recycled from blood to rumen is hydrolyzed to ammo-
nia by bacteria residing in this stomach. This causes poor nitrogen
accumulation when diets contain a high urea content [10,11].

Urea accounts significantly in total nitrogen fertilizers con-
sumption worldwide. Its application is accompanied with large
losses in ammonia, which is released upon action of bacterial
ureases by its volatilization [12,13].

Variable and important role of urease stimulate that this
enzyme continued to be the focus of researchers around the world,
in the fields of genetics, biochemistry and physiology [14–16].
Strategies based on urease inhibition are considered as a promising
mean to treat the diseases caused by bacteria producing urease, as
well as a mean to diminish nitrogen loss from urea used as fertil-
izer. Therefore, it is not surprising that inhibitors of urease have
been recently reviewed [17–21]. In this paper the most recent dis-
coveries leading to inhibitors of this enzyme will be reviewed in
some detail.
Crystal and molecular structure of urease

Enzymes, especially those vital for pathogenesis, are considered
to be the most effective and promising targets for small molecule
interventions in human and animal therapy, as well for design of
pesticides [22]. The process of development of new inhibitor of
an enzyme is challenging, time consuming, expensive, and requires
consideration of many aspects. To fulfill these challenges, several
multidisciplinary approaches are required, which collectively
would form the basis of rational design. Structure-guided methods
are an integral part of such development with three-dimensional
structure of a target enzyme, bound to its natural ligand or an
effector of its activity (determined either by X-ray crystallography
or by NMR), serving as a template to produce new inhibitors.

Plant and fungal ureases are homo-oligomeric proteins of 90-
kDa identical subunits, while bacterial ureases are multimers of
two (ab) or three (abc) subunits of different molecular mass form-
ing various complexes. Number of urease subunits is varied
according to their sources. For example, Klebsiella aerogenes and
Sporosarcina pasteurii enzymes are composed of an (abc)3 trimer
with each a-subunit having an (ab)8-barrel domain containing a
Fig. 1. Structural scheme (left panel) and model (right panel) of urease from S. paste
bi-nickel active center [23]. Staphylococcus saprophyticus urease
consists of these three subunits of (abc)4 stoichiometry [24],
whereas urease from Helicobacter pylori consists of only two sub-
units (a and b) forming a spherical assembly of (ab)12 stoichiome-
try [25]. There are an impressive number of papers dealing with
determination of structures of ureases from various sources [26–
28]. They revealed that, despite the difference in number of sub-
units, the structure of the active site in the vicinity of the nickel
(II) ions is conserved and induces the same mechanism of catalytic
activity [27,29].

Also molecular modeling was used to understand better the
mechanism of action of this enzyme [30]. The studies on two bac-
terial enzymes (Klebsiella aerogenes and Helicobacter pylori) have
revealed experimentally unobserved wide-open flap state that,
unlike the well-characterized closed and open states of the
enzyme, allows ready access of inhibitors to the metal cluster in
the active site [31,32]. Molecular modeling was also used to predict
the three-dimensional structure of Arabidopsis thaliana enzyme
complexed with urea [33].
Crystal structures of ureases complexed with various ligands

Rational design of urease inhibitors is strongly enforced by the
knowledge of crystal structures of this enzyme in its complexes
with various inhibitors. Such structures have been determined
and deposited in Protein Data Bank. The most of them consider
Sporosarcina pasteurii urease complexes with the following ligands:
b-mercaptoethanol (PDB 1UPB) [34], acetohydroxamate (PDB
4UPB) [35], phenylphosphorodiamidate (PDB 3UPB) [36], phos-
phate (PDB 1 IE7) [37] (N-(n-butyl)thiophosphoric triamide (PDB
4CU) [38], fluoride (PDB 4CEX) [39], sulfite (PDB 5A6T) [28], citrate
(PDB 2UPB, Fig. 1) [27], boric acid (PDB 1S3T) [40], catechol (PDB
5G4H) [41] and 1,4-benzoquinone (PDB 5FSE) [42]. Other crystal
structures are scarce and consider acetohydroxamate inhibited
ureases from Helicobacter pylori urease complexed with acetohy-
droxamic acd (PDB 1E9Y) [25] and Klebsiella aerogenes (PDB
1FWE) [43] and jack bean urease complexed with phosphate
(PDB 3LA4) [26].

The crystal structures published recently indicate requirement
for three indispensable elements for effective inhibitor: presence
of nickel-complexing moiety alongside with properly placed
urii (pdb 4AC7) showing the requirements for the good inhibitor of the enzyme.
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network of hydrogen-bond donors and acceptors attached to flex-
ible scaffold. Additionally, special attention should be paid to the
proper protonation states of the designed ligands [27].

The process of design of urease inhibitors is also strongly
dependent on their possible role – if considering potential drugs
molecular scaffold of could be structurally complex since the drug
might be expensive, whereas in the case of inhibition of decompo-
sition of urea in soil inhibitor has to be of simple structure and thus
substantially cheap.
Inhibitors bearing fragment of urea in their structures

Urea is a small molecule and natural substrate of urease. On the
other hand, as indicated by crystallographic studies, the enzyme is
quite flexible and is able to bind big scaffolds [27]. Therefore, com-
pounds containing fragment of urea or thiourea are of natural
choice for the construction of inhibitors of this enzyme. Such an
example is 1-(4-chlorophenyl)-3-palmitoylthiourea (compound
1), the most potent amongst a series of effective inhibitors of jack
bean urease obtained recently [44]. It appears to be uncompetitive
inhibitor and its binding determined by molecular modeling is dif-
ferent than this expected since it is bound in a quite long distance
from nickel ions (Fig. 2).

Barbiturates and thiobarbiturates could be also treated as com-
pounds bearing urea fragment in their structures (see Fig. 3 for rep-
resentative structures: compounds 2, 3, 4 and 5). They appeared to
be moderate inhibitors, with inhibition constants in micromolar
range. They are bound by ureases from jack bean and S. pasteurii
in a manner analogous to the substrate with urea or thiourea frag-
ment being complexed by two nickel (II) ions [45–48].

Representative structures of iminothiazolines (compound 6)
[49], cyanoacetamides (compound 7) [50] and hydrazones (com-
pound 8) [51], possessing structural fragments mimicking urea,
are shown in Fig. 3. They appeared, however, to be weak to moder-
ate uncompetitive or mixed inhibitors of jack bean and Helicobacter
pylori enzymes, and have no practical value.
Quinolones

Quinolone antibiotics constitute an important class of large
group of synthetic broad-spectrum antibacterial agents, which
N
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Fig. 2. Structure of 1-(4-chlorophenyl)-3-palmitoylthiourea (1) and the mode
are nowadays the most successful clinically synthetic antibacterial
drugs [52]. They inhibit DNA synthesis. Nearly all quinolone antibi-
otics in modern use are fluoroquinolones. Their two popular repre-
sentatives – Levofloxacin and Ciprofloxacin (compounds 9 and 10,
Fig. 4) [53,54], as well as their analogs [55], appeared to be quite
promising inhibitors of Helicobacter pylori and Proteus mirabilis
enzymes. Molecular modeling suggests their binding with car-
boxylic group interacting with active site nickel ions. However,
mechanism of additional covalent interaction with the enzymatic
cysteine similar to this observed for simple quinones, cannot be
ruled out [56]. Acetohydroxamic acid is a prescription medicine
(Lithostat) that is used in patients with chronic urea-splitting uri-
nary infection to prevent the excessive build-up of ammonia in
the urine. It inhibits urease by complexing nickel ions and thus is
also one of the compounds most intensively studied as the poten-
tial therapeutics for the treatment of ulcer caused by H. pylori [57].
Therefore, it is not surprising that modification of carboxylic group
of fluoroquinolones by their conversion into hydroxyamic acid
(compound 11, Fig. 4), hydrazide and amide yielded interesting
classes of inhibitors of this enzyme [58].

Recently Moxifloxacin (compound 12) have been used for cap-
ping of silver and gold nanoparticles and appeared to be excep-
tional inhibitor of urease, more potent than antibiotic itself [59].
Flavonoids

It is well known that structural diversity and complexity within
natural products stimulates research on their use as lead com-
pounds for various diseases. Extracts of various plants, including
green tea and cranberries often have been used to treat gastritis
or urinary tract infections. This effect is believed to result from
the action of (+)-catechin and (�)-epigallocatechin gallate as
urease inhibitors [60]. Also flavonoids isolated from other plants:
Daphne retusa (daphnretusic acid), Pistacia atlantica (transilitin
and dihydro luteolin) and cotton (gossypol, gossypolone and
apogossypol) appeared to be micromolar inhibitors of urease from
jack bean [61–63]. These studies stimulated the efforts to analyze
inhibitory potential of flavonoids in some detail. Thus, 11 natural
and 19 synthetic compounds were screened against H. pylori
urease [64]. They appear to be moderate competitive (micromolar
range) to weak inhibitors of the enzyme with synthetic compounds
of its binding by jack bean urease as remodeled by authors of this paper.



Fig. 3. Inhibitors of various ureases, which might be considered as expanded analogs of urea.

Fig. 4. Fluoroquinolones – inhibitors of urease.
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13 and 14, and quercetin (compound 15) (Fig. 5) [65] being the
most active. Docking of the most active compound (13) into the
crystal structure of H. pylori urease performed by the AutoDock
program revealed the mode of binding of this inhibitor. In detail,
the compound is oriented with its benzopyrone moiety in proxim-
ity to urea binding cavity, letting phenyl ring to locate at the mouth
of the cavity. The channel to the active site for urea is therefore
blocked off. Since catechol moiety of flavonoids does not bind
nickel ion(s) there is a possibility of covalent interaction of this
fragment of the molecule with one of cysteine residues present
in the binding site. Such a mechanism has been determined and
detail studied in the case of simple catechol [41].

Radix Scutellariae, known as ‘‘Huang-Qin” in Chinese, is origi-
nated from the dried root of Scutellaria baicalensis. Its major bioac-
tive compounds are flavone glycosides baicalin and scutellarin
(Fig. 5, compounds 16 and 17). Baicalin was found to be a compet-
itive, slow-binding and concentration-dependent inhibitor of jack
bean and H. pylori ureases [66–68]. Kaempferol-3-O-b-D-glucopyr
anoside (compound 18) and kaempferol-3-O-a-L-rhamnopyrano
side (Fig. 5, compound 19), isolated from the fruits of Syzygium
alternifolium, appeared more potent inhibitors of H. pylori enzyme
[69].

Molecular modeling revealed that these compounds are bound
differently than flavonoids, with catechol being involved in com-
plexation of nickel ion. However, the most important for inhibition
seems to be interaction with cysteine located at the mobile flap
covering the active site through its SAH. . .p interactions with aro-
matic fragment of these molecules (Fig. 6). The active site of
ureases is of relatively small volume (related to the size of urea)
and is covered by a movable flap. This flap contains a cysteine resi-
due that could be targeted by inhibitors. This cysteine, besides
being directly involved in the architecture of the active site, plays
a vital role in positioning other key residues in the active site
appropriately for the catalysis.
Other natural products

Natural products (mostly secondary metabolites) have been the
most successful source of potential drug leads so far. Even if these
efforts somewhat decline in interest they continue to provide
unique structural diversity of potential enzyme inhibitors. This is
also the case if considering research on urease. In last several years
there are several reviews on action of plant extracts [70–72] and
isolated natural compounds [20,73] towards this enzyme.

Representative examples of natural products of recently deter-
mined inhibitory action against urease are: boswellic acid (Fig. 7,
compound 20) a component of African medicinal plant Boswellia
carterii [74], palmatine (compound 21) and epiberberine (com-
pound 22) from Coptis chinensis [75–77], a plant traditionally used
in China for the treatment of gastrointestinal diseases, andro-
grapholide (compound 23), the major diterpenoid lactone and
the primary effective constituent of Chinese medicinal plant Andro-
graphis aniculata [78] and a popular antibiotic from garlic – allicin
(compound 24) [79,80].



Fig. 5. Structures of flavonoid glycosides – inhibitors of H. pylori urease.
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Docking of palmitine to the ureases from jack bean and H. pylori
revealed that this alkaloid well fills the active pockets of these
ureases, tightly anchoring the helix-turn-helix motif over the
active-site cavity (Fig. 8). This prevents the flap of the urease
active-site cavity from backing to the close position, which results
in the inhibition of its activity.

It is worth to mention that there are quite intensive studies on
influence of various honeys [81–83], honey fractions [84] and their
combination with plant extracts [85] on the activity of urease from
H. pyliori. These papers seem to indicate that regular daily con-
sumption of these honeys can prevent gastric ulcers.
Heterocyclic compounds

The practice of random testing of a large number of newly syn-
thesized molecules in hope to find a new drug candidate is still the
most popular approach. This process of screening, though ineffi-
cient, has led to the identification of many new lead compounds.
Aromatic heterocycles yielded the most interesting activity against
ureases. All the compounds reported recently appear to be micro-
molar inhibitors of H. pylori or jack bean ureases. As suggested by
molecular modeling, they are bound within the active site of the
enzymes and their activity results from interaction of side chain
of cysteine or methionine with p electrons of aromatic fragment
of the molecule. In Fig. 9 the most representative examples of inhi-
bitory benzimidazole (compound 25) [86], oxadiazole (compound
26) [87], ethyl tiazolidine-4-carboxylate (compound 27) [88] and
dihydropyridone (compound 28) [89,90]. Also thiadiazoles were
considered as inhibitors of H. pylori urease, however enzymatic
studies have not been carried out and this assumption was derived
from their antibacterial activity supported by molecular modeling
against this enzyme [91]. The combination of two inhibitory scaf-
folds, namely of benzimidazole with triazole (compound 29) or
oxadiazole (compound 30) [92], as well as aminopyridine with car-
bazole (compound 31) [93] did not result in elevation of inhibitory
activity.
Inhibitors, which bind covalently to urease

These inhibitors are compounds designed to bind covalently to
a specific molecular target and thereby suppress its biological func-
tion. They exhibit crucial advantage resulting from strong binding
to the target and thus higher potency, extended duration of action
and lower dose. However, they are also often considered as less
attractive drug candidates because of drawbacks as general toxic-
ity, immunogenicity and problems associated with degradation



Fig. 6. Mode of bonding of baicalin (16) to H. pylori urease as remodeled by authors
of this paper.

Fig. 7. Representative examples of recently described natural products urease
inhibitors.

Fig. 8. Docked conformation of palmitine in active site of H. pylori urease
remodeled by authors of this paper.

Fig. 9. Heterocyclic inhibitors of urease.
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of inhibited proteins, issues that are of great concern. Therefore, it
is not surprising that such inhibitors of urease have been scarcely
studied.

Good candidates for such inhibitors are Michael acceptors.
Thus, forty relatively simple molecules containing functional
groups of various geometries (E and Z isomers) of substituted dou-
ble bonds or containing linear triple bonds or allenes were
screened for their inhibitory activities against S. pasteurii urease.
This led to several compounds exhibiting potency in the nanomo-
lar range [94]. All groups that are controlling the chemical reactiv-
ity of double/triple bonds contained carbonyl groups (carboxylic
acids, their esters or ketones), with compounds 32 and 33
(Fig. 10) being the most potent. As shown by molecular modeling,
compound 33 is the first example of an interesting mode of bind-
ing, which combines the formation of a covalent bond with the cys-
teine residue and interactions with two nickel ions (Fig. 10). Such a
mode of binding seems to promote selectivity of the inhibitors
toward this enzyme.



Fig. 10. Two most potent Michael acceptor inhibitors of S. pasteurii urease and the
mode of binding of compound 32.
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Another example of covalent inhibitor of urease is Disulfiram
(compound 34, Fig. 11), a drug used to support the treatment of
chronic alcoholism by inhibiting acetaldehyde dehydrogenase.
Kinetic experiments suggest that it carbamylates Citrullus vulgaris
urease active site flap Cys695 in a manner similar to its action on
dehydrogenase (Fig. 11) [95].

Also novel selenoorganic bacterial urease inhibitors based on a
1,2-benzisoselenazol-3(2H)-one scaffold are acting by binding this
sensitive cysteine in H. pylori and S. pasteurii enzymes [96]. The
most active appeared to be ebselen (Fig. 12, compound 35), an
agent of anti-inflammatory, anti-oxidant and cytoprotective activ-
ity studied as a potential drug against reperfusion injury, stroke,
hearing loss, tinnitus and bipolar disorder. Molecular modeling
had shown its preferable binding resulting from both complexation
of nickel ion by carbonyl atom of the molecule and formation of
sulfur-selenium bond with cysteine 322 (Fig. 12).
Organophosphorus compounds as transition state analogs

Competitive inhibition of urease by phosphate was first
described as far as in 1934 [97] and intensively studied up to
2001 when its binding mode to urease from S. pasteurii was deter-
Fig. 11. Structure of Disulfiram and its react
mined by crystallography [37]. It is a relatively weak inhibitor,
whereas its amides (phosphoramidates) rank amongst the most
active ones with their high efficiency being well justified by the
crystal structures of complex of diamidophosphoric acid with S.
pasteurii urease (compound 36, Fig. 13) [35]. This analysis had
shown that high activity of this compound is apparently related
to its close similarity to the transition state of the enzymatic reac-
tion and tight binding to the active metallocenter.

Urea is a primary solid nitrogen fertilizer in the market because
of the restriction against the use of ammonium nitrate, which may
be employed as explosives, and the high price of ammonium sul-
fate. Its hydrolysis by bacterial ureases results in the loss of ammo-
nia, which, besides the economic significance for the farmers, may
have negative ecological impact on atmospheric quality. Since
phosphoramidates are relatively cheap compounds they are con-
sidered as agents reducing the losses of ammonia from urease fer-
tilizers. This is well exemplified by introduction of new
formulation of an old inhibitor – N-(n-butyl)thiophosphoric tri-
amide (NBPT, compound 37, ARM UTM) to agriculture in 2017
[98,99]. Recently evaluated binding of this inhibitor to S. pasteurii
urease showed that NBPT, after binding to the enzyme, is hydro-
lyzed yielding monoamidothiophosphoric acid (MATP, compound
38), which is effectively bound to the two Ni(II) ions in the active
site (Fig. 13) [38]. Thus, NBPT may be classified as suicide substrate
of this enzyme.

Quite recently a big library of structurally variable phospho-
ramidates was prepared and studied against jack ban urease. Struc-
ture–activity relationship analyses suggest that the presence of
cyclohexylamine group (see the structure of representative com-
pound 39, Fig. 13) is an important feature associated with
enhanced activities [100].

Unfortunately, the phosphoramidate PAN bond is not stable in
aqueous solutions, which limits their further applications.
Recently, compounds containing a carbon-to-phosphorus bond
linkage (phosphonates and phosphinates) emerged as an alterna-
tive to overcome this hydrolytic liability. If considering that simple
phosphoramidate (36) mimics the tetrahedral transition state of
urea hydrolysis aminomethyl(P-methyl)phosphinic acid (Fig. 14,
compound 40) might be treated as its extendent analog. Similarly
to phosphoramidate 36 it appeared to be weak inhibitor of ureases
from Proteus vulgaris and S. pasteurii. Further, enhanced by molec-
ular modeling, modifications of its structure were done by deriva-
tization of its amino moiety [101]. Indeed, Simple N-methylation of
the parent structure to compound 41 gave a 20-fold increase in the
ion with active site cysteine of urease.



Fig. 12. Structure of ebselen and the mode of its binding by S. pasteurii urease.

Fig. 13. Structures of phosphoramidates 36, 37, 38 and 39 and the mode of the binding of compound 36 by S. pasteurii urease.
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Fig. 14. Phosphinic acid inhibitors of urease.
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inhibitory activity. Further modifications of the parent structure 40
resulted in several big libraries of phosphinate inhibitors with
compounds 42, 43, 44 and 45 (Fig. 14) being the most potent, sub-
micromolar inhibitors of the enzyme [102–105].

The biological relevance of these inhibitors was verified in vitro
against an ureolytically active Escherichia coli Rosetta host that
expressed H. pylori urease and against a reference strain, H. pylori
J99 [104]. The majority of the studied compounds exhibited
urease-inhibiting activity in these whole-cell systems with bis(N-
methylaminomethyl)phosphinic acid (Fig. 14, compound 46) being
the most effective.

Basing on the results presented in a study describing the crystal
structure of S. pasteurii urease complexed with citrate [27] a new
scaffold of phosphonate (phosphinate)/carboxylate was proposed.
It imitates the 1,2-dicarboxylate portion of citrate (Fig. 1). As a
result, one of the most potent organophosphorus inhibitors of
urease, a-phosphonomethyl-p-methylcinnamic acid (Fig. 15, com-
pound 47), was identified [106].

Molecular modeling has shown that it is so highly complemen-
tary to the enzyme active site that any modification of its structure
resulted in diminished activity (Fig. 15).
Fig. 15. Compound 47, an inhibitor of S. pasteurii urease and its binding to active
site of the enzyme.
Coordination complexes

Complexes of simple organic molecules with metal ions are
applied as inhibitors of enzymes on the premise that they may
either act through substitution of one of the ligands by specific
amino acid side chains of the enzyme or by such preorganization
of relatively simple molecules into complex scaffold that is
complementary to the structure of binding sites of the enzyme.
Most likely, in the case of urease, only this second mean has been
used.

Complexation of copper (II) and zinc (II) ions by Schiff bases
formed between simple analogs of salicylic aldehydes and
phenylethylamines resulted in formation of either polymeric struc-
tures (these are not useful as inhbitiors) or dimeric ones, in which
two molecules of ligand are bound to central copper ion (see the
representative structure 48 in Fig. 16) [107]. The latter ones
appeared far more effective inhibitors of jack bean urease than par-
ent Schiff bases. Simple ternary cobalt (II) complexes with 1,2-bis
(2-methoxy-6-formylphenoxy)ethane (obtained by reacting of
vanillin with 1,2-dribromoethane) and phenylalanine, tryptophan
(compound 49, Fig. 16) or methionine also appeared to be moder-
ate inhibitors of jack bean urease [108]. Molecular modeling
proved that they are well fitting to the binding cavity of this
urease.

Quite complex structure is a ternary chelate composed of two
copper (II) ions with four molecules of ((E)-3-(2,3-dihydrobenzo[
b][1,4]dioxin-6-yl)acrylic acid (simple derivative of cinnamic acid)
and two molecules of DMSO. It is potent, submicromolar inhibitor
of jack bean urease [109].

For the construction of various supramolecular structures, silver
as a d10 metal is quite frequently used because of its flexible coor-
dination sphere and the fluid nature of interaction between silver
and multifunctional ligands. Recently silver (I) carboxylate com-
plexes based on the substituted trans-cinnamic acids, 1,4-
benzodioxane-6-carboxylic acid and propyl-substituted
imidazole-4,5-dicarboxylic acid (compound 50), which are the
promising candidates for urease inhibitors [110–112]. In solution
they form a polymeric structure and the mode of their binding
do the enzyme was not evaluated.



Fig. 16. Metal ion complexes as inhibitors of urease.

110 P. Kafarski, M. Talma / Journal of Advanced Research 13 (2018) 101–112
Conclusions

Because of medicinal and agricultural importance of ureases the
search for their inhibitors is quite extensive. In order to achieve
this goal all he standard techniques of inhibitor design were
applied. In many cases they were enforced by the application of
computer-assisted inhibitor design. Despite of the detailed knowl-
edge of the architecture of active and binding sites of ureases, the
design, synthesis and evaluation of new inhibitors is still challeng-
ing and difficult. It is well illustrated by the fact that the most
active ones exhibit submicromolar inhibitory constants. This
results from that the binding sites are quite spacious and flexible
and thus variable and difficult to predict mechanisms of inhibition
might be utilized. The future perspective seems to relay on better
understanding of binding preferences of the enzymes from differ-
ent sources and on the application of computer-aided prediction
of potentially active compounds.
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[94] Macegoniuk K, Kowalczyk R, Rudzińska A, Psurski M, Wietrzyk J, Berlicki Ł.
Potent covalent inhibitors of bacterial urease identified by activity-reactivity
profiling. Bioorg Med Chem Lett 2017;27:1346–50.

[95] Díaz-Sánchez ÁG, Alvarez-Parrilla E, Martínez-Martínez A, Aguirre-Reyes L,
Orozpe-Olvera JA, Ramos-Soto MA, et al. Inhibition of urease by Disulfiram,
an FDA-approved thiol reagent used in humans. Molecules 2016;21:1628.

[96] Macegoniuk K, Grela E, Palus J, Rudzińska-Szostak E, Grabowiecka A, Biernat
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