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Pioglitazone is used to treat type 2 diabetes, alongwith a proper diet in Hq mice. Rather, pioglitazone treatment restored the blood glucose

and exercise, to restore the sensitivity to insulin (Cippitelli et al., 2017).
In addition to diabetes, pioglitazone also shows benefit to attenuate al-
cohol-induced neurodegeneration and cognitive damage in animals
(Cippitelli et al. 2017). The work presented in this issue of EBioMedicine
by Benit et al. (2017) provides a new aspect of pioglitazone treatment to
potentially attenuate mitochondrial disease through inhibition of gly-
colysis. This is a new therapeutic target and initially appears to be a
counterintuitive approach to treatment.

Mitochondrial diseases are a group of disorders caused by dysfunc-
tional mitochondria, usually leading to decreased ATP production, im-
balanced metabolism, and cell death. Approaches to their treatment
are limited, though the traditional thought is to increase mitochondrial
energy production through restoration of or bypass of themitochondri-
al defect. Interestingly, the present work by Benit et al. shows that the
mitochondrial defect-induced behavioral phenotype in harlequin (Hq)
mice, which have a defect in electron transport chain complex I, can
be attenuated by pioglitazone treatment (Benit et al. 2017). In contrast
to traditional wisdom, pioglitazone improves behavioral ataxia in Hq
mice through inhibition of glycolysiswithout restoration of the complex
I defect and in the absence of an apparent increase in energy production.

The Hqmouse phenotype is attributed to genetic inactivation of ap-
optosis inducing factor (AIF), impairing mitochondrial respiration
through destabilization of complex I (Vahsen et al., 2004). The deficien-
cy of AIF leads to a behavioral problem in Hq mice starting from
5 months of age, thus serving as a model for human mitochondrial dis-
ease. Treatment of Hq mice using pioglitazone (a PPAR-γ agonist), but
not bezafibrate (PPAR- α agonist), or melatonin (an antioxidant) im-
proves the behavioral defect present in Hq mice (Benit et al. 2017).
Whereas pioglitazone decreased blood glucose and weight in wild
type mice, interestingly, pioglitazone did not decrease blood glucose
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level in Hq mice, which was lower than wild type mice at baseline, to
near untreated control levels (Benit et al. 2017). Although chronic pio-
glitazone treatment improves behavior in Hq mice, it was not found to
correct the AIF-dependent mitochondrial defect. As an adaptive re-
sponse to decreased mitochondrial complex I activity in Hq mice, gly-
colysis is increased to compensate for decreased ATP production.
Therefore, improved glycolysis is anticipated in pioglitazone-treated
Hq mice. However, the opposite result is presented in the article by
Benit et al. The authors show that pioglitazone decreases glycolysis in
Hq mice through direct inhibition of GAPDH and attenuates apoptosis
by decreasing translocation of GAPDH from cytosol to nucleus. These re-
sults indicate the complexity of themitochondrial disease-mediated re-
sponse. Although the complex I defect leads to decreased bioenergy
production, the current study shows an improvement in amitochondri-
al disease phenotypewithout improving energy production per se. Thus,
the restoration of energy production may not be a priority to treat the
mitochondrial disease phenotype, and further mechanistic studies
may help identify targets beyond those traditionally thought of inmito-
chondrial diseases.

The impaired complex I functionmay lead to increased oxidative in-
jury, calcium dysregulation and mitochondrial driven cell death
(Karamanlidis et al., 2013). Thus, a further downregulation of electron
transport flux through a damaged/diseased electron transport chain
may reduce cell injury (Szczepanek et al., 2012). This concept had pre-
viously only been considered in the context of acute cellular injury,
such as myocardial ischemia-reperfusion (Chen et al., 2007). The pres-
ent study raises the intriguing possibility that downregulation of flux
through the defective electron transport chain can be beneficial in
chronic mitochondrial disease. Furthermore, downregulation of the
flux by modulation of metabolism upstream of the electron transport
chain in the present study (Benit et al. 2017)might be as effective as di-
rect blockade of the electron transport chain itself (Chen et al., 2006). A
partial decrease in electron transport that ideally does not impair mito-
chondrial membrane potential appears to be a reasonable criterion for
protectivemodulation (Szczepanek et al. 2012) in contrast to greater in-
hibition that would essentially be an intensification of mitochondrial
disease.
ense (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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It is intriguing to consider the present findings in other contexts. AIF
deficiency affects not only the brain but also the heart. Cardiac injury is
increased in Hqmice following in vivo ischemia-reperfusion (van Empel
et al., 2005). Hq mice are also sensitive to heart failure development
(van Empel et al. 2005). Thus, it will be interesting to observe if pioglit-
azone can decrease cardiac injury in Hq mice. A complex I defect con-
tributes to Alzheimer's disease (Giachin et al., 2016). Given
pioglitazone's effects on neurological symptoms in Hq mice, whether
it is of benefit in dementia should be explored. Similar to pioglitazone,
metformin is another antidiabetic drug that shows protection in multi-
ple organs during stress conditions in part via downregulation of com-
plex I (El-Mir et al., 2008). Whether metformin could correct deficits
inHqmice remains an interestingquestion. Of course, the potential clin-
ical utility of pioglitazone in human patients with mitochondrial disor-
ders is perhaps the most pertinent remaining question.

Taken together, the present pioneering study may show a compli-
mentary approach to treating mitochondrial disease by focusing on re-
ducing potential cell death rather than improving mitochondrial
metabolic function.
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