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Abstract

We describe a sequence of methods to produce a partial differential equation model

of the electrical activation of the ventricles. In our framework, we incorporate the

anatomy and cardiac microstructure obtained from magnetic resonance imaging

and diffusion tensor imaging of a New Zealand White rabbit, the Purkinje structure

and the Purkinje-muscle junctions, and an electrophysiologically accurate model of

the ventricular myocytes and tissue, which includes transmural and apex-to-base

gradients of action potential characteristics. We solve the electrophysiology

governing equations using the finite element method and compute both a 6-lead

precordial electrocardiogram (ECG) and the activation wavefronts over time. We

are particularly concerned with the validation of the various methods used in our

model and, in this regard, propose a series of validation criteria that we consider

essential. These include producing a physiologically accurate ECG, a correct

ventricular activation sequence, and the inducibility of ventricular fibrillation. Among

other components, we conclude that a Purkinje geometry with a high density of

Purkinje muscle junctions covering the right and left ventricular endocardial

surfaces as well as transmural and apex-to-base gradients in action potential

characteristics are necessary to produce ECGs and time activation plots that agree

with physiological observations.
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Introduction

The clinical management of cardiac arrhythmia is largely empirical due to our

incomplete understanding of the underlying electrophysiology. Computational

models of cardiac electrophysiology enable us to explore the arrhythmogenic

impact of distinct causal factors, and to manipulate cardiac parameters that

cannot be accessed experimentally. As described in [1, 2], cardiac electrophysiol-

ogy can be modeled using a reaction-diffusion partial differential equation (PDE).

The spatio-temporal variation in transmembrane potential results from two

factors — cell-level ion channel-mediated ionic currents and current diffusion

through extracellular gap junctions. Ionic currents at the myocardial cell level are

described by non-linear ordinary differential equations (ODEs), which are then

coupled via a diffusion PDE to describe the flow of current from cell to cell. The

highly nonlinear ODEs, combined with the complex geometry and anisotropic

conduction of the heart, make it impossible to solve the equations analytically, so

numerical methods are required. The Finite Element Method (FEM) is widely

used (e.g., [3–8]), primarily because it is the most flexible numerical technique for

capturing the complex curved geometry of the heart. The use of FEM also allows

to easily couple electrophysiology and mechanics simulations of the heart, since it

is the method of choice for the mechanics problem. Furthermore, the numerical

accuracy of FEM has been thoroughly verified through mathematical analysis and

empirical benchmark testing on simple rectangular model geometries [9].

Recently, Pathmanathan and Gray [10] discussed the application of concepts of

‘‘Verification and Validation’’ to cardiac electrophysiology modeling. In many

fields of science and engineering, there is a need to develop and codify ‘‘best

practices for evaluating the reliability of computational models’’ [10, 11]. In fluid

dynamics, solid mechanics, and other fields, rigorous standards have been

developed to test models. This testing has two distinct dimensions: verification is

concerned with showing that the model and its computational implementation

have good convergence and error bounds in the calculation of ‘‘Quantities of

Interest’’ [9, 10]; validation, on the other hand, is concerned with the relation of

the model output to reality.

The criteria necessary for the verification of a model have been well accepted in

the scientific community and several benchmark problems have been provided in

the literature [9, 12] to assist with the model verification. The questions of

validation are however more difficult to standardize. Great emphasis has been

devoted to the validation of cell models but, until recently [13], less attention has

been paid to the validation of whole heart multiscale models.

In the same spirit as Pathmanathan and Gray [10] and others in the cardiac

modeling community [9], we have previously addressed the questions of

verification of our computational framework in rectangular blocks [12]. Here, we

aim to apply these verification criteria to the whole heart model and then focus on

the question of model validation. Our goal is to investigate a series of objective

criteria by which to evaluate whole heart models, specifically regarding the

activation sequence, the generated ECG and the ability to model arrhythmia.
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Toward this purpose we define a unified 3D imaging model construction and an

electrophysiology modeling framework for describing cardiac conduction. We

first describe the extraction of geometry and microstructure from DT-MRI.

Secondly, we provide a brief description of the tensor interpolation schemes used

to integrate the experimental DT-MRI data into the numerical model. Further, we

discuss the numerical solution of the monodomain equation for conduction and

the inclusion of the Purkinje conduction system in our model. Finally, we describe

the numerical computation of the ECG from the monodomain equation. We

develop a series of validation criteria that we consider to be essential in the

modeling of cardiac electrophysiology, including specific requirements on the

ECG and time-activation plots.

Materials and Methods

Rabbit Biventricular Model Construction

DT-MRI provides detailed images of cardiac gross anatomy, and simultaneously

provides quantitative microstructural (fiber orientation) information by esti-

mating the local self-diffusion tensor (DDT ) of water within each image voxel. DT-

MRI was used to acquire anatomical and microstructural images from an ex vivo,

healthy, female New Zealand White rabbit heart. Each subject was anesthetized

with ketamine (10mg/kg i.v.) and xylazine (3mg/kg) and euthanized with an

injection of B-euth (1mL/kg). The heart was excised, fixed in formalin, and

imaged with a 7T Bruker Biospin MRI system using a 150mm volume coil and a

3D RARE diffusion weighted pulse sequence (24 non-collinear diffusion gradient

directions, 6 null directions, TR/TE 5500=30ms, b-value 5 1000s=mm2,

bandwidth 5100 Hz per pixel, two-fold RARE acceleration, 0.560.560.75 mm

resolution). Animal handling and care followed the recommendations of the

Institutional Animal Care and Use Committee at the University of California, Los

Angeles (UCLA) and the National Institutes of Health Guide for the Care and Use

of Laboratory Animals. The animal protocol was approved by the UCLA

Chancellors Animal Research Committee (Protocol #2008-161-12).

An in-house MATLAB (The Mathworks, Natick, MA) code was developed to

process the diffusion weighted images and compute the diffusion tensors (this

code is provided in S1 File). Corresponding to each imaging voxel, we computed

both the eigensystem and the three invariants, i.e. trace, fractional anisotropy, and

mode [14], of the diffusion tensor. The eigensystem decomposition of DDT

provides direct information about the local three-dimensional myofiber

orientation (e1, the primary eigenvector of DDT ) and the orientation of

myolaminae (e3, the tertiary eigenvector of DDT ) throughout the heart [15, 16].

Graph-based segmentation of DT-MRI using tensor invariant distances

identified the myocardium [17]. A polyhedral mesh of the boundary surface was

generated from the volume segmentation by the Marching Cubes algorithm using

Paraview [18]. Surface mesh quality was improved using a windowed sinc filter

[19], thereby reducing cell aspect ratios, smoothing sharp geometric features.
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Tensor Interpolation

In DT-MRI, data are acquired at lattice points within a 3D imaging volume, but

numerical accuracy of FEM requires even finer mesh spacing, with nodes

positioned between lattice points. Therefore, tensor field interpolation is a

requirement. There are many methods to interpolate tensors including, but not

limited to, nearest neighbor, Euclidean, log-Euclidean [20], geodesic-loxodrome

[21], and linear-invariant tensor interpolation [22]. The advantage of geodesic-

loxodrome and linear-invariant tensor interpolation is the monotonic and linear

interpolation, respectively, of the tensor invariants (magnitude of isotropy,

magnitude of anisotropy, and mode of anisotropy), which are intuitively related

to salient microstructural features of the tissue [14]. The other tensor

interpolation methods introduce microstructural bias, especially to the shape of

the interpolated tensors [22].

Only the orientation information, the eigenvectors of the interpolated diffusion

tensors, was incorporated into the computational model, not the eigenvalues. This

is because the directions of water diffusion correspond with the principal axes of

the tissue microstructure, which in turn correspond to the directions of electrical

propagation [23]. But there is no reason to expect that the magnitudes of electrical

current diffusion are related to the magnitudes of water diffusion. For the

electrical current diffusion magnitudes, we used eigenvalues in the ratio 4:2:1 [24],

with the magnitudes scaled to reflect correct conduction velocities (see below).

The interpolated tensor produced a value for the principal fiber direction at each

integration point (Fig. 1A).

We compared different interpolation schemes (Geolox, log-Euclidean,

Euclidean, and nearest neighbor) by considering their voltage predictions at each

finite element node. We computed the Root Mean Squared Deviation (RMSD)

between two interpolation schemes J and K as

RMSDJ{K~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN
i~1 VJ,i{VK,ið Þ2

q
N

, ð1Þ

where N is the number of nodes i in the model, VJ is the voltage computed with

interpolation scheme J and VK is the voltage computed with interpolation scheme

K .

Finite Element Mesh Generation

Typical mesh generation software produces boundary conforming meshes, which

have a distribution of element edge sizes. Numerical convergence studies [12]

have concluded that elements must have edge lengths no larger than 200mm to

guarantee adequate accuracy. Hence numerical efficiency is best achieved with

meshes that have element sizes as close to 200mm as possible. The straightforward

way to do this would be a uniformly sized mesh, which will not be boundary

conforming. The question we have here is one of validation: will such ‘‘stair-
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stepped’’ (Fig. 1B) non-boundary-conforming models give the right physiological

results? We consider 2 different meshes, each constructed of hexahedral elements

with trilinear interpolation (Table 1): (a) Stair stepped mesh with element edge

size h~200mm, and (b) boundary conforming mesh with havg<200mm and 6% of

the elements with edge size greater than 200mm. The stair-stepped (uniform)

biventricular model is composed of 828,532 elements and 901,852 nodes (Fig. 1B)

and the boundary conforming (non-uniform) mesh with havg<200mm contains

991,705 elements and 1,055,649 nodes.

Electrophysiology Modeling: Governing Equations

In the monodomain equation [1] the transmembrane voltage V is governed by

x Cm
LV
Lt

zI ion(u)

� �
{+:(s+V)~I stim , ð2aÞ

du

dt
~f (u), ð2bÞ

where s is the conductivity tensor, Cm is the capacitance of a unit area of cell

membrane, x is the area of cell membrane per unit volume of tissue, and I stim is

the stimulus current. The conductivity tensor is related to the diffusion tensor as

s~xCmD, where D is the diffusion tensor. The set of internal cell state variables

and voltage V is represented by u, and its dynamic behavior is governed by the

ordinary differential equations (ODEs) given by f . The ODEs couple back to the

PDE through the ionic current I ion. The single-cell ionic current is commonly

modeled using a Hodgkin-Huxley framework [1], which describes the electrical

Fig. 1. Tensor field and finite element mesh. (A) Short-axis slice of the linear invariant interpolated tensor
field superposed on a coarsened surface mesh. (B) Hexahedral finite element mesh. The stair-stepped nature
of the mesh is shown in the zoomed-in view of the model.

doi:10.1371/journal.pone.0114494.g001
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activation potential of an excitable cell as the solution to a set of nonlinear ODEs.

The identities of the ionic variables describing the gating of specific channels, as

well as the choice of specific functional forms for f (u), are determined according

to experimental measurements of channel properties. We used the Mahajan et al.

cell model [25] (see Cell Model Validation, below) with the parameters values

defined in Table 2. We set Cm~1mF=cm2 and the diagonal entries of D to

½0:001,0:0005,0:00025�cm2=ms respectively along the fastest, medium, and slowest

diffusion direction.

The monodomain equation was approximated using a finite element

formulation [12], yielding the semidiscrete equations:

XN

b~1

Cab _VbzsabVb
� �

{Ia~0 , ð3Þ

where the capacitance matrix, conductivity matrix and ionic current vector

Cab~

ð
V

xCmNaNbdv , ð4Þ

sab~

ð
V

sijNa,iNb,jdv , ð5Þ

Ia~

ð
V

ImNadv ð6Þ

are integrals computed over the region of space V[R3 occupied by the

biventricular model and Im~I stim{xI ion. We employ ionic current interpola-

tion and reaction-diffusion operator splitting, using row-sum lumped approx-

imations of the capacitance matrices for both diffusive and ionic solution steps

and a consistent mass matrix (the C-LL scheme described in Krishnamoorthi et al.

[12]). The in-house C++ finite element code is provided at https://github.com/

wsklug/UCLA_CMG.

Table 1. Mesh statistics.

Mesh hmin hmax havg

Stair Stepped 200mm 200 200 200

Boundary conforming with seed
200mm

5 425 184

Edge length statistics for the non-boundary conforming stair stepped and boundary conforming meshes.

doi:10.1371/journal.pone.0114494.t001
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Purkinje Fiber and Purkinje Muscle Junction Modeling

Purkinje fibers physiologically form a specialized conduction system, which lies

just beneath the endocardial surface. This special conduction network is isolated

from the muscle except at its endpoints where it is connected to the ventricular

endocardial surface at special sites called Purkinje-Muscle Junctions (PMJs).

Modeling this network and its interaction with the muscle is crucial to build

realistic ventricle models. The PMJ is bidirectional meaning that it transmits

current from the conduction system to the myocardium and also from the

myocardium retrogradely back to the conduction system.

Ten Tusscher and Panfilov [26] reviewed previous Purkinje models and

highlight different approaches with respect to included anatomical details and

strategies for exciting the myocardium. There is common consensus regarding the

main anatomical features of the Purkinje network, i.e. a bundle of His that divides

in to left and right bundle branches. To date, however, there remain challenges to

Table 2. Mahajan Cell Model Parameters.

Parameter Description Value

xNao External Sodium Concentration 136.0 mM

xKi Internal Potassium Concentration 140.0 mM

xKo External Potassium Concentration 5.4 mM

Cao External Calcium Concetration 1.8 mM

gCa Strength of Ca Current Flux 182 mmol/(cm C)

gtos Peak Itos conductance 0.04 mS/mF

gtof Peak Itof conductance See Table 3

gKs Peak IKs conductance See Table 3

gNaCa Strength of exchange current 0.84 mM/s

gKr Peak IKr conductance 0.0125 mS/mF

gK1 Peak IK1 conductance 0.3 mS/mF

gNaK Peak INaK conductance 1.5 mS/mF

vup Strength of uptake 0.4 mM/ms

ts Submembrane-myoplasm diffusion time constant 4 ms

gNa Peak INa conductance 12.0 mS/mF

tr Spark lifetime 30.0 ms

ta Non-junctional SR and dyadic junctional SR relaxa-
tion time

100.0 ms

av Release slope 11.3 ms{1

cstar Threshold for steep release function 90 mM/1 cytosol

T Temperature 308 K

xxr Universal Gas Constant 8.314 J mol{1 K{1

xf Faraday constant 96.485 C/mmol

Mahajan cell model parameters used in the electrophysiology simulations. The description of each parameter is taken from Mahajan et al. [25]

doi:10.1371/journal.pone.0114494.t002
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incorporating accurate Purkinje networks into computational models, primarily

because there are limited reports on imaging of the Purkinje network [27, 28].

The Purkinje network was manually incorporated into our computational

model, as described in detail below, by assimilating the structure reported by

Atkinson et al. [28]. The guidelines found in [27, 28] provide critical input about

the placement of the Purkinje fibers. However, the precise segment lengths,

distribution, and PMJ density play an important role in the activation of the

model and hence the computed ECG. In general the conduction system has a

single fiber emanating from the atrioventricular (AV) node, which then branches

out into left and right bundles. The geometry of the conduction system beyond

this is not well characterized and may vary significantly among individuals.

To model the Purkinje fibers we used 1D ‘‘bar’’ elements with Lagrangian

isoparametric interpolation and linear shape functions

N1~0:5(1{j),N2~0:5(1zj) in terms of a parametric coordinate j. While

computing the matrices in the finite element equations, we need the derivative of

the shape function along global coordinate axis. Spatial (3D) gradients of the

shape functions as needed for finite element matrices are computed using the

chain rule

LN(j)

LX
~

LN(j)

Lj

Lj

LX
~

LN(j)

Lj
n ,

LN(j)

LXi
~

LN(j)

Lj
cos (hi) , ð7Þ

where n is the unit vector tangent to the fiber with the direction cosines as

components. The scalar volume Jacobian is computed as the product of the length

of the element with a specified cross sectional area A consistent with a circle of

radius R~400mm.

To model a Purkinje muscle junction (PMJ) we begin connecting 1D elements

to 3D myocardial nodes that lie within a search radius from a given terminal node

in the Purkinje cable. Kirchhoff’s law requires that the current out of the terminal

Purkinje node match the total current into the PMJ, regardless of the number of

branches from the terminal node. We choose to split this current evenly among

the branches in the PMJ, attributing to the branches equal conductivities and

equal fractions APMJ~A=N of the total cross-sectional area A~pR2. Conservation

of current by Kirchhoff’s law then gives

ITNA~
XN

i~1

Ii
PMJAPMJ~NIPMJAPMJ , ð8Þ

where ITN is the current density from the terminal node and Ii
PMJ is the current

density into the ith myocardium node. Shape function derivatives of the PMJ

elements are computed using direction cosines as described above for the 1D
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Purkinje elements. To ensure simultaneous PMJ activation, PMJ branches are

modeled with a fixed length of 200mm. To eliminate the variation in the direction

cosines of each 1D element in a PMJ, all the 1D elements are assigned the same

direction cosine value. The value of direction cosines chosen is the value of the

direction cosine of the 1D Purkinje element connected to the terminal node.

Physiologically we would expect the PMJs to spread in the direction of the

terminal node and hence this is an acceptable assumption.

The PMJ element thus takes on a standard isoparametric finite element

formulation, albeit with non-standard shape functions constructed as shown. In

this way the formulation retains complete mathematical consistency, without

resorting to ad hoc ‘‘node-tying’’ constraint techniques. To attain proper source-

sink matching at the 1D/3D interfaces, we selected PMJ myocardial nodes within a

search radius equal to the Purkinje cross-sectional radius of 400mm. We verified

that the formulation allows for successful bidirectional conduction (from Purkinje

to myocardium, and in retrograde) across the 1D/3D interface. Retrograde

activation of the Purkinje system is necessary to model Purkinje muscle reentry

and the heart’s response to Left or Right Bundle Branch Block (LBBB or RBBB)

[29], although we do not carry those out here. If there is LBBB or RBBB, the QRS

broadens, but not nearly as much as if there was only muscle-muscle conduction.

Consequently, the activation of the heart in BBB must use retrograde activation of

the Purkinje system.

Activation of the Purkinje network was initiated with a stimulus of

50,000mA=cm3 applied at the AV node for 5ms. For the Purkinje and PMJ

elements we use the rabbit Purkinje cell model developed by Corrias et al. [30]

(Fig. 2) and a diffusion D~½0:0032,0:0032,0:0032�cm2=ms. All simulations

spanned two heartbeats, with a pacing interval of 400ms.

Purkinje Structure

In order to evaluate the importance of Purkinje geometry, we considered three

different models.

N Low PMJ Model: This model has 54 PMJs. In both the LV and RV, a primary

fascicle branches near the mid-septum, with the resulting branches traveling

anteriorly and posteriorly. The posterior branch divides, continuing into the

posterior base and the ventricular free wall, while the anterior branch

terminates in the anterior base. There is a large region of the endocardial

surface which is not connected to PMJs, and hence here cell-to-cell diffusion is

the main mechanism of voltage propagation (Fig. 3A)

N High PMJ Model: This model has 514 PMJs and was generated by adding PMJs

to the low PMJ model in order to reduce the dependence on cell-to-cell

diffusion for voltage propagation. Here, the Purkinje network branches several

times to thoroughly envelop the ventricles from the septum to the free wall in

both the anterior and posterior directions.

Simulation Methods and Validation Criteria for Cardiac EP
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N We also considered a model without a Purkinje structure, in which the heart

was activated by simultaneous commanded activation of the endocardial

surface.

Fig. 2. Action Potential (AP) plots of the Purkinje and normal UCLA cell model (Apex/Epi). The Purkinje
AP shows a high upstroke velocity, a prominent early rapid repolarization, a negative plateau potential, an
increased action potential duration, and spontaneous diastolic depolarization.

doi:10.1371/journal.pone.0114494.g002

Fig. 3. Purkinje models. (A) Low and (B) high PMJ densities.

doi:10.1371/journal.pone.0114494.g003
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Cell Modeling and APD Gradients

The duration and morphology of the T wave in the ECG is determined by the

sequence of repolarization in the heart. This sequence depends largely on the

action potential duration (APD) gradients present in both the transmural and

apex-to-base directions. These gradients arise from the heterogeneity of

repolarizing currents within the heart, in particular the transient outward

potassium current, Ito, and the slow component of the delayed rectifier potassium

current, Iks.

To incorporate these characteristics in our model, we divided the ventricle into

transmural regions (endocardium, mid-myocardium or ‘‘M’’ cell, and epicar-

dium), as well as apex-to-base regions (apex, mid, and base). This resulted in nine

distinct regions. To each, we assigned a different variation of the Mahajan

ventricular cell model [25] by altering the maximum conductance values for the

Ito and Iks currents. These conductances (Gto and Gks respectively) were defined in

each region so as to produce the APD and current density gradients given in the

literature (Table 3) (Fig. 4).

Transmurally, Gto values were varied to match the data of Fedida et al. [31],

who found the Ito current density of endocardial cells to be 15% less than that of

epicardial cells. Gks values were then adjusted to attain the APD gradient found by

Idriss et al. [32], who reported the APD of endocardial cells and M cells to be 10%

and 12% greater, respectively, than those of epicardial cells [32]. Mantravadi et al.

[33] reported APD at the base to be 10% greater than at the apex. Because no data

has shown that Ito varies from apex to base, we only varied Gks to achieve this

(Table 3).

Modeling of ECG

From a numerical model, the ECG output can be represented as [34]

ECG(t)~
ð
V

+V(x,t): D(x):+
1

R(x)

� �� �
dV , ð9Þ

where R(x) denotes the distance between any point x in the myocardial domain V

and the lead position, and D(x) is the diffusion tensor. Only the elements defining

the ventricles were included in the domain V since the electrical mass of the

Purkinje conduction system is negligible in comparison with the electrical mass of

the ventricles.

ECG Lead Placement

We calculated ECGs for the six precordial leads V1 to V6 positioned in specific

positions on the chest wall. The six leads were placed according to the following

guidelines: V1 - right sternal border; V2 - left sternal border; V3 - midway

between V2 and V4; V4 - left midclavicular line; V5 - level with V4, left anterior

axillary line; and V6 - level with V4, left mid axillary line. The placement of these

leads is shown on a rabbit torso model (Fig. 5A); the torso itself was not part of

the computational domain.
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Activation Maps

Following the pioneering work of Durrer [35], we constructed activation maps

showing the temporal progress of the wavefront of activation. At each node in the

domain V, we linearly interpolated the voltage V to calculate the time T (from the

activation of the AV node) at which a critical voltage VCrit~{30mV is reached:

T~
tnz

VCrit{Vn(x)

Vnz1(x){Vn(x)
Dt if Vnz1(x)wVCrit§Vn(x)

Tmax otherwise,

(
ð10Þ

where Vnz1(x) denotes the nodal voltage at time step tnz1, Vn(x) denotes the

nodal voltage at time step tn, Dt~tnz1{tn.

Validation Criteria

The challenges of model validation are not unique to the field of cardiac

electrophysiology simulations [10, 11]. A limited number of measurable

parameters, complicated geometries and the inability to validate all simulation

results against experimental measurements make the task of validation even more

cumbersome. In this context, we propose the following list of validation criteria

regarding known features of cardiac electrophysiology that our model must

capture correctly:

1. Cell Model. A ventricular cell model should reproduce correct Action

Potential Durations (APDs) and Action Potential morphologies (rapid

upstroke <1ms, plateau phase, repolarization, epicardial ‘‘notch’’ where

Table 3. Apex-to-base and transmural gradients.

APD90’s(ms) Apex Center Base

Epi 168 177 186

M 195 205 216

Endo 189 199 209

Gto(mS=mF) Apex Center Base

Epi 0.11 0.11 0.11

M 0.11 0.11 0.11

Endo 0.094 0.094 0.094

Gks(mS=mF) Apex Center Base

Epi 0.61 0.45 0.32

M 0.24 0.17 0.11

Endo 0.31 0.22 0.16

APD90 and Gto, Gks conductance values.

doi:10.1371/journal.pone.0114494.t003
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Fig. 4. Apex-to-base and transmural APD gradients distribution. (A) Regional segmentation of the rabbit
ventricular model and (B) corresponding action potentials. The colors of the heart segments match the color of
the APD curves.

doi:10.1371/journal.pone.0114494.g004
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Fig. 5. Six lead placement and corresponding ECGs computed using different activation models. (A)
Six bipolar lead placement in the rabbit ventricular model. The model of the rabbit torso (Stanford Computer
Graphics Laboratory) is shown to illustrate the lead positions but it is not part of the computational domain. (B)
ECG obtained with the low PMJ density model shows slurring, fractionation and poor R-wave progression. (C)
ECG obtained with the high PMJ density model shows the correct physiological features. (D) ECG obtained
using instantaneous endocardial activation contains poor R-wave progression and slurring. Superimposed
animated version of the ECG is provided as supplementary material (S1 Figure).

doi:10.1371/journal.pone.0114494.g005
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appropriate). The calcium transient should have the right waveform, latency,

and duration. The cell model should also display marked APD shortening

when paced at short intervals, the property called APD restitution. Capturing

the correct action potential and calcium dynamics at rapid cardiac pacing is

fundamental for modeling conditions such as tachycardia and fibrillation. We

chose the Mahajan et al. cell model [25] because it meets these validation

criteria.

2. Wavespeed: Conduction velocity should be 40{50cm=s. This wavespeed

should not be sensitive to choices of numerical solution protocol, such as

mesh density, numerical integration scheme, etc.

3. Electrical wavebreak: Excitation waves should only break up when

encountering refractory tissue, not otherwise. Excitation waves must be free

of artifactual wavebreak due to numerical methods.

4. Activation sequence: The septum should activate earliest, with earliest

epicardial breakthrough in the RV, followed by the LV. There should be

roughly simultaneous activation of the left and right ventricles [36].

5. Surface electrocardiograms: QRS duration in a rabbit should be less than

<40ms (Fig. 6) without fractionation or slurring (in humans, QRS duration

is <80{90ms). There should be R-wave progression, with R-waves

becoming progressively more positive from V1 to V6 [37–39]. The T wave

should be positive in all precordial leads and should have a longer rising than

falling phase.

6. Response to stimuli: Multiple premature extrastimuli should initiate reentry.

Reentry thus initiated should be unstable and degenerate into multiple

repeated wavebreaks, simulating VF [40].

Results

Unless otherwise stated, the primary model used to generate the following results

includes the non-boundary conforming stair stepped mesh, the high density

Purkinje model, the fiber orientations computed using the Geolox tensor

interpolation, and the cell property gradients stated in Section ‘‘Cell Modeling and

APD Gradients’’.

Benchmark studies analyzing wave speed and wavebreak were previously

described in [12] for rectangular geometries. We discuss these results in this

section because of their importance in satisfying the validation criteria for full

heart simulations.

Wave Speed

The conduction speed of the wave of electrical depolarization in the rabbit heart is

known from experimental observation to be <50cm/s parallel to the fiber

direction [41]. Previous modeling studies have shown that accurate recovery of

the correct electrical wave speed in monodomain simulations is primarily an issue
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of convergence of the numerical solver [9, 12]. As noted above in Section ‘‘FE

Mesh Generation’’, we showed previously [12] in simple rectangular geometries

that the numerical solution protocol used here yields wave speeds accurate to

within 5% of the converged value so long as all elements in a mesh have edge

lengths that are less than or equal to 200mm. Based on these previous convergence

studies [12] the error in conduction velocity will be 5% for the uniform mesh and

as much as 20% for the boundary conforming mesh. It is especially important to

note that meshes such as the boundary conforming mesh have a nonuniform

distribution of element sizes, including some elements with edge lengths

significantly greater than 200mm, and so will yield artifactually nonuniform wave

speeds, since larger elements conduct faster than smaller elements. As shown in

Krishnamoorthi et al. [12] these errors can lead to artifactual curving or turning

of electrical wavefronts, which will introduce artifacts into the activation sequence

and ECG.

Fig. 6. 6-lead electrocardiogram of a normal adolescent White New Zealand male rabbit. The following
defining aspects of the ECG are visible (5th validation criteria): fast QRS upstroke, no QRS fractionation, R-
wave progressions from V1 to V6, positive T wave with longer upstroke than downstroke.

doi:10.1371/journal.pone.0114494.g006

Simulation Methods and Validation Criteria for Cardiac EP

PLOS ONE | DOI:10.1371/journal.pone.0114494 December 10, 2014 16 / 29



Wavebreak

We have also shown previously [12] that the wave speed errors produced in

unacceptably coarse (and especially nonuniform and coarse) meshes also can lead

to artifacts in simulation of electrical wave break in heart tissue. Specifically in

Krishnamoorthi et al. [12] we found that coarse meshes with elements of edge

length greater than 200mm produced artifactual corners and jaggedness in spiral

wavefronts, as well as spurious extinguishing of the activation.

Activation Sequence

The sequence of electrical activation in the rabbit heart has been observed in

electrical mapping experiments by Bordas et al. [36]. General features of the

observed activation are

1. Early activation in the septum

2. Epicardial breakthrough in the RV first, followed by the LV

3. Roughly simultaneous activation of the left and right ventricles.

These features represent the criteria by which we evaluated the validity of our

model. In particular we examined the impact on activation sequence of two model

components: 1) tensor interpolation, and 2) Purkinje structure.

Tensor Interpolation

Activation sequences for models constructed with Geolox, log-Euclidean,

Euclidean, and Nearest Neighbor tensor interpolation schemes were computed

over a single heartbeat. The voltage contours (Fig. 7) for all of the methods

showed negligible differences throughout the beat cycle. RMS differences among

the nodal voltages at every time step were at most 0:05mV (data not shown). This

maximum discrepancy was found between the models using Geolox and Nearest

Neighbor interpolation. The maximum RMSD between Geolox and Euclidean

interpolations was even smaller at 0:032mV. The maximum RMSD between

Geolox and log-Euclidean interpolations was also 0:032mV. Among the three

different Purkinje geometry models, the simulation with high PMJs shows

minimal difference between different tensor interpolation schemes. The smallest

differences in maximum RMSD were obtained when comparing Geolox, log-

Euclidean, and Euclidean tensor interpolation methods, which show minimal

differences in the primary eigenvector orientation [22]. However, although the

Nearest Neighbor interpolation method leads to a relatively small RMSD due to

the smoothing effects of diffusive coupling, it should be avoided due to large

biases associated with interpolating the primary eigenvector [42]. If other tensor

attributes (fractional anisotropy, etc.) were used in the computational model, then

further evaluation would be needed.

Purkinje Structure

Voltage space-time histories were computed using each of the three activation

models — (i) low PMJ, (ii) high PMJ, and (iii) instantaneous endocardial
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activation — to activate conduction in the uniform mesh with 200mm element

edges, and processed to construct activation maps (Fig. 8 - raw data available as

supplementary material in S1 Dataset) by eqn. 10. Geolox tensor interpolation

was used in all simulations. The low PMJ model differed from the experimental

observations, producing an overall delay in the initial septal activation (<30ms).

The complete activation of the myocardium was slower, with the basal region

activated more than 45ms after stimulus of the AV node. The high PMJ model

showed better agreement with experimental mapping results, showing synchro-

nous activation of the LV and RV endocardium, and earlier septal activation

(10{20ms). The high PMJ model also yielded complete depolarization of the

myocardium by about 40ms, consistent with experiments [36]. The activation

movie corresponding to the high PMJ model is provided as supplementary

material (S1 Movie).

The model with instantaneous activation of the RV and LV endocardium shows

activation comparable to the high PMJ model: it produces synchronous activation

of the LV and RV and a rather rapid depolarization of the entire myocardium

(<35ms). Overall, the activation patterns from the high PMJ and the

instantaneous activation models match best with experimental data. However, the

ECGs do not agree (see below and Fig. 5).

Fig. 7. Voltage contour plots obtained with ventricular models using different tensor interpolation
schemes. From top to bottom: Geolox, Log Euclidean, Euclidean, and Nearest Neighbor. Comparison of the
voltage propagation is reported here at three time steps. From left to right: 20ms, 120ms, and 210ms.

doi:10.1371/journal.pone.0114494.g007
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Electrocardiograms

Based on the activation sequence results, we set aside the effect of tensor

interpolation and focused instead on the effects of the Purkinje structure on the

ECG. We calculated the ECG (Fig. 5 - raw data and animated files provided as

supplementary material in S2 Dataset and S1 Figure) using eqn. 9.

QRS Duration

Since the QRS duration recorded at each individual ECG lead is slightly different,

we report an average QRS width and its standard deviation for each ECG obtained

with different activation models. The average width of the QRS over the 6 leads

was 36ms (standard deviation 5 1ms) for the low PMJ model, 32ms (standard

deviation 5 2ms) for the high PMJ model, and 27ms (standard deviation 5 3ms)

Fig. 8. Comparison of activation contour plots obtained using different models of activation. (A) Low
PMJ density model, (B) high PMJ density model, and (C) instantaneous activation of the LV and RV
endocardial surfaces.

doi:10.1371/journal.pone.0114494.g008
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for the instantaneous activation model. The high PMJ and instantaneous models

both produce a narrower QRS duration than the low PMJ model and this is

consistent with the rapid depolarization observed in the activation maps.

Conversely the wider QRS indicates that the low PMJ model is slower to

depolarize.

QRS Morphology

The low PMJ model shows a slow stunted rise (referred to as slurring) in the R-

wave in all leads, especially V1 through V3, and in the beginning of the ST

segment for leads V1 through V5 (Fig. 5B). The high PMJ model does not show

slurring in the R-wave, and we do not observe any fractionation in the ECG

(Fig. 5C). Fractionation and slurring are not present in a healthy rabbit ECG

(Fig. 6). The instantaneous activation model shows slurring, particularly in leads

V2 and V3 (Fig. 5D).

R-Wave Progression

The low PMJ and instantaneous activation models lead to poor R-wave

progression since the ratio between the amplitudes of the R and S waves is not

correct. For example, in lead 5 of the low PMJ model computed ECG, this ratio is

approximately one-to-one while in the experimental rabbit ECG, we notice that

the R-wave amplitude is much larger than that of the S-wave (Fig. 5B). In the

instantaneous activation model, the amplitude of the S-wave is much smaller than

that of the R-wave in leads V2 through V6 (Fig. 5D). The high PMJ model

produces a physiologically correct R-wave progression and has the correct ratio of

amplitudes (when compared to the experimental rabbit ECG Fig. 6) through the

six precordial leads (Fig. 5C).

T-Wave Morphology

The inclusion of the APD gradients (longer APDs in the endocardium and base

than in the epicardium and apex, respectively) in all three models creates a

repolarization wave traveling from the apical epicardium to the basal endocardial

surface. Because this is a repolarization vector moving away from the leads, it

generates an upright T-wave in all leads. Both transmural and apex-to-base

gradients are required to reproduce the T-wave morphology characteristic of the

ECG of a healthy heart. The presence of only apex-to-base or transmural gradients

produces a low amplitude T-wave and the presence of apex-to-base gradients

alone leads to symmetric T-waves (see supplementary material S1 Figure); neither

are observed in the healthy heart ECG.

Sensitivity of the Electrocardiogram to Boundary Surface Definition

As discussed above in Sections ‘‘FE Mesh Generation’’ and ‘‘Wave speed’’, the

mandates for computational efficiency and wave speed accuracy together suggest

the use of finite element meshes that have distributions of element sizes as close to

uniform as possible, with no element exceeding 200mm in edge length. However,

perfectly uniform hexahedral meshes (all elements are identical cubes) will

necessarily have non-smooth stair-stepped boundaries that do not conform to the
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smooth epi- and endocardial surfaces of the heart. To quantify the effect of this

non-conforming boundary approximation, we evaluate the time activation plots

and the ECGs obtained using the boundary conforming (nonuniform) and stair-

stepped (uniform) meshes described in Table 1. In these analyses we use the high

PMJ model. While the time activation plots (not shown here) are very similar, the

QRS waves in the ECG (Fig. 9) show significant differences. The uniform (stair-

stepped) mesh produces physiologically correct results, without slurring and

fractionation and with a correct R-wave progression. On the other hand, the

boundary conforming mesh (havg<200mm and hmax<400mm) leads to severe

fractionation and poor R-wave progression in the ECG.

Induction of Reentry

In a normal heart, one strong second stimulus (S2) delivered in the refractory tail

of the previous wave (stimulated by a normal S1) can initiate reentry [40, 43–45].

Under pro-arrhythmic conditions, once initiated, reentry is unstable, and, within

seconds, breaks up into a multi-wave chaotic state in which wavefronts are being

continually generated and extinguished [40, 43, 46]. In small electrical substrates

such as a rabbit heart, sustained chaotic wave break-up can be induced by

decreasing conduction velocity [43]. We observed sustained fibrillation in our

primary model (described in the beginning of the ‘‘Results" section) with D

reduced by 25%. Application of a 5ms stimulus of 50,000mA=cc in a 60-degree

wedge-shaped region of the LV freewall covering half the height of the heart (S2)

at 219ms following normal Purkinje activation (S1) initiated a reentrant wave.

This wave broke up into a sustained multi-wave state representing ventricular

fibrillation (Fig. 10 and voltage propagation video provided as supplementary

material as S2 Movie and S3 Movie).

Previously, Berenfeld and Jalife [47] have shown that retrograde activation of

the Purkinje system in a ventricular model is necessary in initiating and stabilizing

polymorphic tachycardia. In our study, we show that during ventricular

fibrillation, the Purkinje network is retrogradely activated starting in the right

ventricle at time < 1s (see supplementary material S2 Movie and S3 Movie).

From a physiological standpoint, this model prediction suggests that the Purkinje

network may play a role in the propagation of sustained VF after its onset.

Moreover, from a modeling point of view, this result indicates how a correct

model of the Purkinje system allowing for retrograde activation is important even

in absence of bundle branch block

Discussion

The use of models to investigate the electrophysiology of the heart must be

preceeded by verification and validation. Verification is concerned with answering

the question: are we solving the equations correctly? Validation asks: are we

solving the correct equations?
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Fig. 9. Six Lead ECG focusing on the QRS wave for non-boundary conforming (NBC) and boundary
conforming (BC) models with mesh size h<200mm. ECG computed using the boundary conforming model
shows severe fractionation and incorrect R-wave progression.

doi:10.1371/journal.pone.0114494.g009

Fig. 10. Sustained wave breakup and chaotic meandering during simulated Ventricular Fibrillation
(VF). VF was induced using an S1-S2 protocol with the second stimulus applied between 219ms and 224ms.
The voltage contour plot is shown at 1400ms.

doi:10.1371/journal.pone.0114494.g010
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While we emphasize the necessity of verification and validation, we acknowl-

edge that the experimental parameters governing electrophysiology vary among

different subjects and different sets of experiments. This experimental uncertainty

may have on the results an effect greater than the accuracy sought through

verification and validation. Nevertheless, an inherently inaccurate model impairs

our capability to scientifically investigate any phenomena, since the conclusions

drawn from such models with incorrectly solved equations cannot be trusted. On

the other hand, only an accurate model enables us to investigate the effect of

parameter variability. This crucial analysis falls under a third category alongside

verification and validation: model sensitivity and uncertainty quantification.

However, in this work, we primarily focus on proposing a series of important

verification and validation criteria and in applying those to our model.

In the evaluation of our model, the first question focuses on verification. Only,

a correct solution to the equations leads to an accurate wavespeed and no artificial

wavebreak. The choice of finite element parameters have a significant impact on

satisfying these verification criteria. Specifically, the maximum element edge

length - not the average - is a critical indicator of whether to expect mesh-related

artifacts in the physiological results. Even a few large elements will produce

artifactually high local wave speeds, leading to distortion of wavefronts, as shown

in [12, 48].

The second criterion in evaluating our model concerns validation. A correct

physical model will produce physiologically accurate activation sequences. Both

a high density Purkinje network and a simultaneous activation of the

endocardium satisfy this criterion. In contrast, a low density Purkinje network is

inadequate in activating the heart correctly. In evaluating the validity of a high

density Purkinje network and the simulaneous endocardial activation strategies,

the ECG is a more sensitive criterion. The ECG reveals that instantaneous

endocardial activation produces slurring and poor R-wave progression whereas

the high density Purkinje system leads to the correct QRS morphology.

Furthermore, the inclusion of a Purkinje network is more physiologically

realistic and enables, for example, the study of retrograde activation as occurs in

bundle branch block conditions.

Another validation criterion contained within the ECG concerns the T-wave

morphology. The cause of the T-wave is repolarization dispersion [49].

Although there is no consensus over the relative contributions of apex-to-base

versus transmural cell properties gradients [50], we use both in our model and

recover a physiologically correct T-wave morphology. Our findings that

transmural gradients are required to produce an asymmetric T-wave agree with

the discussion and ECGs shown in figure four of [49]. Further, we found that

both apex-to-base and transmural gradients are necessary for producing the

correct height of the T-wave. In this regard, Keller et al. observed that the

presence of both transmural and apex-to-base cell properties gradients lead to

the best agreement between computed and measured ECG. Although the

simulation setup in our study and the research of Keller et al. was different

(e.g., G K s gradients and cell model are different) both studies suggest the
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necessity of combining transmural and apex-to-base gradients to achieve

physiologically accurate ECGs.

The analysis of the ECG also allows us to compare stair-stepped and

boundary conforming meshes. We carry out this comparison using meshes

with equal average mesh size of < 200 mm, resulting in approximately the same

number of elements and nodes, and therefore roughly equal computational

cost. Both boundary conforming and non-boundary conforming models

produce similar activation plots but only the stair stepped mesh produces a

physiologically correct ECG. We believe that the physiologically incorrect ECG

obtained using the boundary conforming mesh is due to the presence of large

elements (w 200 mm) causing artifactual wave speed. Therefore, although we

intended it for validation, the ECG also provides an additional tool for

verification, showing the effects of large numerical errors. Based on the

analyses and comparisons presented herein, it appears that stair stepped

models satisfy both verification and validation criteria. However, a careful

study of the effect of boundary conformity on the accuracy of the results is

warranted, including a comparison between boundary and non-boundary

conforming models with equal maximum element size (boundary conforming

meshes with element size v 200 mm lead to a significant increase in

computational cost). Although this is an important subject of future research,

it falls outside the scope of the study presented here.

A last validation criterion that we consider is the ability to induce wave reentry

and ventricular fibrillation. Our model, based on physiologically accurate cell

models, microstructure, and activation mechanisms, is capable of capturing this

phenomenon. This result suggests that our model is suitable for analyzing normal

as well as abnormal conditions and may be applied not only to reproduce known

phenomena but also for predictive studies.

Naturally the list of validation criteria is not static but broadens with new

experimental findings and enhanced numerical capabilities. Herein, we have

presented a select series that we consider to be important.

A verified and validated model is an essential starting point if we want to

quantify the uncertainty related to parameter variability. Although a thorough

sensitivity analysis of our framework is outside the scope of this paper, the

construction of our model required the evaluation of different tensor

interpolation schemes. When quantifying the effect of these schemes on the

activation sequence of the full heart, we found that the various tensor

interpolation methods were not distinctly different. This is likely because the

Geodesic-loxodrome, Euclidean, and log-Euclidean interpolation methods have a

similar accuracy in recapitulating the myofiber orientation (e.g. fiber angle) [51].

Although the activation sequence looks comparable, it should be noted that

Nearest Neighbor interpolation has an increased bias in approximating the

primary eigenvector. Furthermore, Geodesic-loxodrome and linear invariant

schemes are more accurate in interpolating tensor shape attributes (fractional

anisotropy, etc.) than Euclidean and log-Euclidean methods [22]. For example, if

the electrical conductivities of the tissue were to be scaled by the eigenvalues of the
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water diffusion tensor obtained from DT-MRI, the use of Geodesic-Loxodrome or

linear invariant tensor interpolation methods is recommended due to the better

recovery of tensor shape. Whether a relationship exists between the magnitude of

the electrical conductivity and the diffusion tensor shape in cardiac tissue is

currently unreported, but has been explored in brain tissue [52].

Our focus here has been on a rabbit heart anatomical model, with models of the

electrophysiology of rabbit myocytes and Purkinje cells. We have validated this

model against rabbit ECGs and other physiological properties of the rabbit.

However, obviously, the long-term interest of any such modeling has to be on the

human heart and its properties. It is important to note that all of the validation

criteria we are using here would also pertain to a human heart, and therefore our

criteria are valid beyond rabbit-specific modeling. The analogy of rabbit to

human, and the use of the rabbit as a model for human ventricular physiology, is

also in keeping with the dynamical similarity of rabbit cardiac electrophysiology

to human. Indeed, using scaling arguments, Panfilov [53] has argued that the

‘‘effective size’’ of the human heart, scaled by electrophysiology properties, is

closer to the rabbit than to either pig or dog.

We conclude by pointing out some limitations in our model that we aim to

address in the future development of our framework. Mainly, we are concerned

with improving the calculation of the ECG, which has proven to be the most

sensitive tool in our model validation. In this regard, accounting for a torso model

and a bidomain formulation will allow us to compute a more physiologically

accurate ECG, which will include the Einthoven leads. Furthermore, we recognize

that we did not consider the electro-mechanical coupling in our cell model, e.g.,

stretch-activated channels. Another improvement of our model consists in varying

continuously the cell properties transmurally and from apex to base instead of

having nine distinct cell regions. While nine discrete regions are sufficient to

obtain correct APD gradients and T-wave morphology, the cell properties in the

myocardium are likely to vary continuously and the presence of discrete

boundaries (discontinuities) may, in principle, trigger artifactual wave breaks.

Although no spurious wave break was observed in any of the simulations

conducted in this study, this potential source of artifacts needs to be considered

and, if possible, eliminated using continuously varying cell properties.

Although numerous improvements in the calculation of the ECG are possible,

these do not diminish its importance. In this work, we have highlighted the

necessity and sensitivity of the ECG in the validation of an electrophysiology

model.

Supporting Information

S1 Figure. ECG Comparison. Differences in the computed ECG using the three

activation models and the different gradients.

doi:10.1371/journal.pone.0114494.s001 (ZIP)
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S1 Dataset. Activation Paraview visualization (.vtu format) files for high-, low-

PMJ model, and instantaneous activation model.

doi:10.1371/journal.pone.0114494.s002 (ZIP)

S2 Dataset. ECG raw data for the six lead ECG. Data was obtained at every

millisecond.

doi:10.1371/journal.pone.0114494.s003 (ZIP)

S1 File. Code for computing tensor interplation data.

doi:10.1371/journal.pone.0114494.s004 (ZIP)

S1 Movie. Normal activation. Time ~400ms.

doi:10.1371/journal.pone.0114494.s005 (MP4)

S2 Movie. Four-view ventricular fibrillation. Time <1000ms.

doi:10.1371/journal.pone.0114494.s006 (MP4)

S3 Movie. Open-view ventricular fibrillation. Time <1000ms.

doi:10.1371/journal.pone.0114494.s007 (MP4)
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