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Protein compartmentalization in the frame of a liquid-liquid phase separation is a key mechanism 
to optimize spatiotemporal control of biological systems. Such a compartmentalization process 
reduces the intrinsic noise in protein concentration due to stochasticity in gene expression. Em-

ploying Flory-Huggins solution theory, Avramov/Casalini’s model, and the Grüneisen parameter, 
we unprecedentedly propose a cellular Griffiths-like phase (CGLP), which can impact its func-

tionality and self-organization. The here-proposed CGLP is key ranging from the understanding 
of primary organisms’ evolution to the treatment of diseases. Our findings pave the way for an 
alternative Biophysics approach to investigate coacervation processes.

1. Introduction

It has been known for decades that Physics and Biology are closely linked [1]. Indeed, E. Schrödinger proposed in his seminal 
book entitled “What is life? The Physical Aspect of the Living Cell” [2] that the most essential part of a living cell, the chromosome fiber, may 
suitably be called an aperiodic crystal, opening a new avenue in molecular Biology [3]. Nowadays, the so-called cellular liquid-liquid 
phase separation (LLPS), i.e., protein compartmentalization [Fig. S1a)], is of broad interest since it can be related to disease control, 
genome stability, and even to the immunity control in plants, cf. Refs. [4–7]. It has been proposed that LLPS is a key mechanism to 
reduce the noise strength [8]. A deep understanding of the LLPS dynamics is also relevant for unveiling the possible formation process 
of primordial organisms in prebiotic Earth, and the consequent evolution to more complex cellular constituents. Making use of an 
adapted version of Avramov/Casalini’s model [9,10], usually employed for glassy systems, we investigate the dynamics associated 
with the LLPS in terms of the Flory-Huggins solution (FHS) theory and the Grüneisen parameter (GP). We present a new approach to 
investigate cell criticality in terms of the here-proposed cellular Griffiths-like phase, hereafter CGLP, cf. Fig. 1a). It is worth recalling 
that in the canonical magnetic Griffiths phase either magnetized or non-magnetized rare regions are embedded in a paramagnetic or 
a ferromagnetic matrix, respectively [11,12]. In the present case, we consider the random spatially distributed protein droplets as the 
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Fig. 1. a) Schematic representation of the temperature 𝑇 versus protein concentration 𝜙𝑝 phase diagram depicting the single and the two phases regions separated by 
the binodal line, which is governed by a critical point (orange color). The spinodal line is also depicted (blue line). In the two-phases region, protein droplets emerge 
within the cell. A cell containing various protein droplets (green circles) embedded in a solvent (blue color) is schematically depicted zoomed in within the two-phases 
region. The blue and green color gradient background represents the increasing of proteins inside the cell. b) Schematic representation of the 𝑇 versus 𝑈∕𝑊 ∝℘−1

phase diagram of the molecular system 𝜅-(BEDT-TTF)2Cu2(CN)3 [14], where 𝑈 is the on-site Coulomb repulsion, 𝑊 the bandwidth, and ℘ pressure, showing the 
coexistence region between Fermi-liquid F.L. (metal) and Mott insulator. The finite-𝑇 critical end point is depicted (orange color). The blue and green background 
gradient represents the metallic and Mott insulating phases, respectively. In the coexistence region, insulating puddles (green) embedded in a metallic matrix (blue 
background) with their corresponding volumes, namely, 𝑣𝑀 and 𝑣𝐼 , are depicted. The interaction parameter 𝛿𝜀 is indicated. Panel b) is adapted from Ref. [14].

rare ferromagnetic regions in a direct analogy to the magnetic Griffiths phase [11]. Hence, the protein droplets (rare regions) can be 
naturally regarded as colloid-rich while the diluted phase as colloid-poor [13], cf. Fig. 1a). The idea of Griffiths-like phases has been 
recently flourished to the Mott transition with the so-called electronic Griffiths-like phase [14–16], cf. Fig. 1b), which motivated the 
present work. A Griffiths-like phase was also reported for other biological systems, e.g., brain criticality [17,18]. It is well-known that 
the FHS theory was built in a mean-field approximation [19], being the Thermodynamic conditions to determine, for instance, the 
spinodal and binodal lines, as well as the behavior of particular physical quantities in these regions, universal [20,21]. Our proposal 
is not strict to the FHS theory and can be employed to other models, such as the Voorn-Overbeek [22], random-phase approximation 
[23], and the Poisson-Boltzmann cell [24]. We only make use of the FHS theory as a working horse to showcase an universal behavior 
of the Grüneisen parameter in the two-phases region, as well as its implications in terms of the LLPS dynamics within living cells.

2. Results

The so-called Grüneisen ratio Γ represents the singular contribution to the effective Grüneisen parameter, i.e., the ratio of the 
isobaric thermal expansivity 𝛼℘ to the isobaric heat capacity 𝑐℘, being extensively employed as a smoking-gun to explore critical 
phenomena, phase transitions, as well as to quantify caloric effects [25–29,14,30]. The definition of Γ reads [31]:

Γ =
𝛼℘
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= − 1
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(
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where 𝑉𝑚, 𝑆 , ℘, and 𝑇 are, respectively, the molar volume, entropy, pressure, and temperature.

We consider that 𝑉𝑚 = 𝑉𝑡𝑜𝑡∕𝑛, being 𝑉𝑡𝑜𝑡 the total volume of the cell and 𝑛 the total number of protein and solvent particles 
embedded in the cell. Assuming that 𝑉𝑡𝑜𝑡 is fully composed by the sum of protein and solvent particles, 𝑉𝑡𝑜𝑡∕𝑛 yields the generic volume 
𝑣𝑝 occupied by a single protein/solvent particle inside the cell. In our calculations, we make use of 𝑣𝑝 ≃ 10−25 m3, which represents the 
typical volume associated with a single protein, cf. Ref. [4]. Hence, employing the temperature and protein concentration dependences 
of the free energy of mixture Δ𝐹 [32], we compute Γ in the frame of the FHS theory on the verge of the binodal line and critical point 
as a function of the protein concentration 𝜙𝑝 [32]. Considering the dimensionless molecular lengths of both protein 𝑁𝑝 and solvent 
𝑁𝑠 [32], the Ginzburg criterion must be obeyed in order to determine the region close to the critical point, in which the mean-field 
character regarding the FHS theory is no longer valid [19]. Essentially, the Ginzburg criterion for a symmetric polymer mixture is 
given by (𝑇 − 𝑇𝑐)∕𝑇𝑐 ≈ 1∕𝑁 [19], where 𝑇𝑐 is the critical temperature and 𝑁 =𝑁𝑝 =𝑁𝑠 the molecular length, i.e., the bigger 𝑁
the closest to the critical point the FHS theory is applicable. Hence, in our analysis we have employed a textbook example regarding 
a symmetric polymer blend of hydrogenated/deuterated polybutadiene with 𝑁 =𝑁𝑝 =𝑁𝑠 = 2000, being for this case the 𝑇 range 
of validity of the FHS theory given by Δ𝑇 ≈ 0.9995 𝑇𝑐 , cf. horizontal red dashed line in Fig. 2a). By using such a textbook example, 
𝑇𝑐 ≈ 100 ◦C and phase separation occurs at a high-temperature, which is clearly deleterious for biological systems. However, we have 
employed the physical parameters of such polymer blend solely as an example of application of our proposal, which can be adapted 
to suit the biological problem in hand. Employing Δ𝐹 [32], we have:
2

℘(𝑇 ,𝜙𝑝) = 𝑘𝐵𝑇 [𝑁𝑝 −𝑁𝑠 − 𝜒𝑁𝑝𝑁𝑠 + 2𝜒𝑁𝑝𝑁𝑠𝜙𝑝 +𝑁𝑝 log(1 −𝜙𝑝) −𝑁𝑠 log(𝜙𝑝)] × (𝑁𝑝𝑁𝑠𝑉𝑡𝑜𝑡)−1, (2)
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Fig. 2. a) Density plot of the temperature 𝑇 versus protein concentration 𝜙𝑝 versus effective Grüneisen parameter 𝛾 depicting both the solvent rich, protein rich, and 
the two phases region governed by a critical point (orange color). The red dashed line depicts the Ginzburg criteria for the FHS theory considering 𝑁 = 2000. b) 
Logarithm of the protein diffusion time 𝜏 versus 𝜙𝑝 (green solid line) for 𝑇 = 350 K, where the cellular Griffiths-like and both solvent and protein rich phases are 
depicted. c) Density plot of 𝑇 versus 𝜙𝑝 versus the coefficient of variation 𝐶𝑉 2 (noise strength). The white solid line is the binodal line. d) Brownian displacement 𝜆𝑥
in the 𝑥 direction versus time 𝑡 for 𝑇 = 350 K [32]. Upon crossing the binodal line and 𝜙𝑝 = 0.5, 𝜆𝑥 → 0. The cyan dotted line represents a typical 𝜆𝑥 ∝

√
𝑡 behavior. 

e) Schematic representation of the cellular Griffiths-like phase (CGLP). In the single-phase region, the proteins (green spheres) diffuse in the solvent matrix with a 
characteristic diffusion time 𝜏0 . As 𝜙𝑝 is increased and the vicinity of the binodal line is achieved, there is a phase separation and protein droplets emerge and start 
to grow, so that 𝑘𝑖𝑛 > 𝑘𝑜𝑢𝑡 . The diffusion time 𝜏 →∞ and the CGLP is achieved. Also, at 𝜙𝑝 = 0.5 the CGLP sets in, where 𝑘𝑖𝑛 , 𝑘𝑜𝑢𝑡 → 0 and 𝜏 →∞. More details in the 
main text.

where 𝑘𝐵 is Boltzmann constant and 𝜒 the Flory interaction parameter [32]. In the present case, ℘ is the osmotic pressure, i.e., the 
Δ𝐹 variation upon increasing the total volume of the proteins, which in turn dictates diffusion processes within the cell [19,32]. 
Employing Eq. (2) and the typical 𝑇 -dependence of 𝜒 , namely 𝜒 ≅ 𝐴 + 𝐵∕𝑇 [19,8], where 𝐴 and 𝐵 represent, respectively, the 
entropic and enthalpic contributions to 𝜒 [32], Γ reads:

Γ(𝑇 ,𝜙𝑝) = (𝑁𝑝𝑁𝑠𝑉𝑡𝑜𝑡) × {𝑘𝐵𝑣𝑝[−𝐵𝑁𝑝𝑁𝑠 + 2𝐵𝑁𝑝𝑁𝑠𝜙𝑝 +𝑁𝑝𝑇 −𝑁𝑠𝑇 −𝐴𝑁𝑝𝑁𝑠𝑇 +

+2𝐴𝑁𝑝𝑁𝑠𝜙𝑝𝑇 +𝑁𝑝𝑇 log (1 −𝜙𝑝) −𝑁𝑠𝑇 log (𝜙𝑝)]}−1. (3)

In the vicinity of the binodal line, Γ is enhanced and changes sign [32] indicating that phase separation takes place and protein 
droplets begin to be formed. Also, for 𝜙𝑝 = 0.5, Γ presents a divergent-like behavior and changes sign, being such a feature in Γ
reminiscent of a first-order-type phase transition [14]. This is a key result of the present work, being an analogous situation found on 
3

the verge of the Mott metal-to-insulator transition [14,27]. It is worth mentioning that, according to the FHS theory, upon considering 
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distinct protein/solvent molecular lengths, the shape of the binodal and spinodal lines can become asymmetric, which in turn affects 
the value of 𝜙𝑝 in which Γ is enhanced and changes sign. Now, we discuss the dynamics of the protein compartmentalization in the 
frame of Avramov’s/Casalini’s model [9,10]. The latter considers an inherent random spatial disorder, being the volume-dependent 
relaxation time 𝜏 given by [10,28,14]:

𝜏 = 𝜏0 exp
(

𝐶

𝑇𝑣𝛾

)
, (4)

where 𝜏0 is a characteristic time-scale, 𝐶 a non-universal constant [32], and 𝛾 = 𝑣𝛼℘∕𝜅𝑇 𝑐𝑣 the effective GP [25], with 𝑣 the volume, 
𝜅𝑇 the isothermal compressibility, and 𝑐𝑣 the isovolumetric heat capacity. We consider that the random spatial disorder is associated 
with the presence of droplets in the two-phases region [Fig. S1d)]. Indeed, protein droplets are randomly distributed within the cell, 
giving rise to spatially disordered protein conglomerates [33]. The relaxation time is usually defined as the time-scale for a system 
to reach back its equilibrium after the removal of a perturbation [14]. In practice, the relaxation time of living organisms can be 
accessed, for instance, employing fluorescence recovery after photobleaching measurements [34]. Following discussions in Ref. [19], 
we consider 𝜏 as the time-scale required for a synthesized protein to diffuse within the cell. The droplets dynamics is governed by 
the rate 𝑘𝑖𝑛 (𝑘𝑜𝑢𝑡) in which proteins enter (leave) the droplets, being 𝑘𝑖𝑛, 𝑘𝑜𝑢𝑡 ∝ 𝜏−10 , with 𝜏0 ≃ 102 s a typical time scale for biological 
systems [4]. In the frame of the FHS theory, it is considered that there are no total volume changes on mixing, so that the volume 
variation in our case lies solely on the protein molecules added into the system upon increasing 𝜙𝑝 , so that 𝜅𝑇 = −1∕𝑉𝑝(𝜕𝑉𝑝∕𝜕℘)𝑇 , 
where 𝑉𝑝 = 𝜙𝑝𝑉𝑡𝑜𝑡 is the volume associated with the total number of proteins. Employing basic Thermodynamics [32], 𝛾 can be 
obtained:

𝛾 = 𝜙𝑝𝑉𝑡𝑜𝑡[𝑁𝑝𝜙𝑝 +𝑁𝑠(𝜙𝑝 − 1)(2𝜒𝑁𝑝𝜙𝑝 − 1)] ×

×{(𝜙𝑝 − 1)(𝜙𝑝𝑉𝑡𝑜𝑡 − 𝑣𝑝)[𝑁𝑝 −𝑁𝑠 − 𝜒𝑁𝑝𝑁𝑠 + 2𝜒𝑁𝑝𝑁𝑠𝜙𝑝 +𝑁𝑝 log (1 − 𝜙𝑝) −𝑁𝑠 log𝜙𝑝]}−1, (5)

which is key in our analysis. In Fig. 2a), 𝛾 versus 𝜙𝑝 versus 𝑇 is depicted. Note that 𝛾 is also enhanced and changes sign in the same 
way as Γ [32]. Employing Eqs. (4) and (5), 𝜏 can be computed. Note that in the analytical computation of all physical quantities 
obtained in the present work, we have fixed 0.01 < 𝜙𝑝 < 0.99, so that a positivity-preserving constrain is fulfilled.

3. Discussion

Remarkably, 𝜏 → ∞ for values of 𝜙𝑝 in which both Γ and 𝛾 are anomalous [32], namely for 𝜙𝑝 = 0.5 and in the vicinity of 
the binodal line, cf. Fig. 2b). This is reminiscent of experimental observations employing static and dynamic light scattering, which 
demonstrated that on the verge of the binodal line the so-called fast relaxation rates disappear and the system is dominated by slow 
relaxation rates [36]. Such a peculiar behavior of 𝜏 can be interpreted as a slowing down of the protein diffusion dynamics. This 
is an analogous situation as the “creation of mass” observed on the verge of critical points [35]. Note that the dynamics of phase 
separation is usually obtained employing the Cahn-Hilliard equation given by 𝐹𝐶𝐻 = ∫ [𝑓 (𝜙𝑝) + 𝜅(∇𝜙𝑝)2]𝑑𝑣 [37,38], where 𝑓 (𝜙𝑝)
is the free energy density of a homogeneous system and 𝜅 a positive constant. The so-called surface diffusion energy term (∇𝜙𝑝)2
accounts for diffusion processes associated with phase separation. Interestingly enough, such a term is reminiscent of the phase 
bending energy (∇𝜙∗)2 in the frame of generalized rigidity and the famous Higgs mechanism [39], where 𝜙∗ is the phase. Recently, 
we have proposed the concept of Higgs-like stiffness, in analogy to the Higgs mechanism [40]. The latter can be extended to any 
complex physical quantity. In the case of protein compartmentalization, the refractive index might be the suited physical quantity, 
since it is reported that on the verge of phase separation, enhanced refractive index fluctuations take place, being linked, for instance, 
to the development of cataracts [41]. Hence, although our proposal to compute the protein diffusion time in the frame of a CGLP 
does not explicitly consider a surface diffusion term, it properly extracts the dynamics in both metastable and unstable regimes of 
phase separation. Such a divergent-like behavior of 𝜏 minimizes the so-called noise strength 𝑁𝑆 given by the coefficient of variation 
squared 𝐶𝑉 2 [Fig. 2c)] [32]. Upon continuously increasing 𝜙𝑝 from the two phases region at a fixed 𝑇 , first the metastable and, 
eventually, the single phase region is achieved, cf. Fig. S1d). Following Landau and Lifshitz’s discussions, metastability can be inferred 
by a negative ℘ [42,43], giving rise to the spontaneous formation of cavities, in the present case, protein droplets [32]. We now 
analyze 𝑁𝑆 [4] in terms of 𝜏 [32]. Fig. 2c) depicts 𝐶𝑉 2 as a function of 𝑇 and 𝜙𝑝. Note that 𝐶𝑉 2 is minimized upon approaching 
the binodal line and 𝐶𝑉 2 → 0 for 𝜙𝑝 = 0.5, being that 𝜏 →∞ in these regimes. The minimization of 𝑁𝑆 implies that stochastic 
fluctuations associated with Δ𝐹 are dramatically reduced [4]. Such a reduction, together with the enhancement of 𝜏 , demonstrates 
the slow-dynamics, which can be also analyzed in terms of the average protein displacement 𝜆𝑥 in the frame of a Brownian motion 
[32], cf. Fig. 2d). Note that 𝜆𝑥 → 0 upon crossing the binodal line and for 𝜙𝑝 = 0.5, being the CGLP more robust to 𝜙𝑝 fluctuations 
around 𝜙𝑝 = 0.5 given the broad range of the unstable regime observed for Δ𝐹 [Fig. S1c)]. This is in line with the fact that 𝐶𝑉 2 → 0
only for 𝜙𝑝 = 0.5. Next, we discuss our findings under the light of the CGLP. Upon reaching the unstable equilibrium condition, i.e., 
at 𝜙𝑝 = 0.5, the entropy of mixture Δ𝑆 is maximized, 𝛾 →∞ and, as a consequence, 𝜏 is dramatically enhanced. Upon approaching 
the binodal line, where the two-phases region is established [Fig. 2c)], both 𝛾 and 𝜏 →∞, which corroborates our proposal of a CGLP 
in the vicinity of the binodal line, as well as for 𝜙𝑝 = 0.5. This is because ℘ = 0 at the binodal line and for 𝜙𝑝 = 0.5, corroborating 
our proposal of a slowing-down of the cell dynamics for such particular values of 𝜙𝑝 [32]. Considering the two key-ingredients for 
the establishment of a Griffiths phase [12], namely intrinsic random spatial disorder associated with the protein droplets distribution 
[33] and 𝜏 →∞ for particular values of 𝜙𝑝, cf. Fig. 2b), we introduce unprecedentedly the concept of CGLP. It is worth mentioning 
4

that, upon varying 𝑁𝑝 and 𝑁𝑠, the concentration 𝜙𝑝 in which the CGLP sets is simply shifted as a consequence of the change of the 
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maximum of Δ𝑆 [Fig. S1e)], leading to the distortion of the 𝑇 versus 𝜙𝑝 phase diagram [19]. The concept of the CGLP can be also 
extended to other mixtures with more than two components [44]. As pointed out in Ref. [17], Griffiths-like phases play an important 
role in bringing local order to globally disordered systems, which is key in improving the functionality of biological systems, such 
as self-organization and the mechanisms for adaptation and evolution itself. Also, the here-proposed CGLP is a possible explanation 
to the so-called slow relaxation mode, being its underlying origin still under debate in the literature [45]. Thus, our work paves the 
way to understand compartmentalization in terms of a CGLP, which can be linked with the origin of primary organisms since only 
the coacervates with slow-dynamics survived and evolved, which in turn might be related to the key-role played by homochirality in 
the evolution process of life [32]. The enhancement of the protein diffusion time occurs concomitantly with the reduction of the 𝑁𝑆 , 
which in turn is key in optimizing gene expression [4]. In summary, we provide an alternative approach to investigate the dynamics 
of protein compartmentalization, which is applicable to other biological systems [32] and can be extended to nematics [32]. It is 
challenging to understand the impact of the here-proposed CGLP in the establishment and temporal evolution of various biological 
processes regarding the impact of LLPS on the treatment of various diseases [8,32]. Our analysis is universal and can be extended 
taking into account, for instance, surface tension and a concentration-dependent 𝜒 [46,47].
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