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Explainable machine learning 
predictions of dual‑target 
compounds reveal characteristic 
structural features
Christian Feldmann1,2, Maren Philipps1,2 & Jürgen Bajorath1*

Compounds with defined multi‑target activity play an increasingly important role in drug discovery. 
Structural features that might be signatures of such compounds have mostly remained elusive thus 
far. We have explored the potential of explainable machine learning to uncover structural motifs that 
are characteristic of dual‑target compounds. For a pharmacologically relevant target pair‑based test 
system designed for our study, accurate prediction models were derived and the influence of molecular 
representation features of test compounds was quantified to explain the predictions. The analysis 
revealed small numbers of specific features whose presence in dual‑target and absence in single‑
target compounds determined accurate predictions. These features formed coherent substructures 
in dual‑target compounds. From computational analysis of specific feature contributions, structural 
motifs emerged that were confirmed to be signatures of different dual‑target activities. Our findings 
demonstrate the ability of explainable machine learning to bridge between predictions and intuitive 
chemical analysis and reveal characteristic substructures of dual‑target compounds.

Given the strong interest in artificial intelligence (AI), especially machine learning (ML) and deep learning, 
across chemical  disciplines1–3 and the notorious “black-box” character of many ML  models4,5, much attention 
is currently paid to explainable or interpretable  AI5–7. Understanding predictions in chemical terms is often 
critical for the acceptance of computational modeling for experimental design. This also applies to the practice 
of medicinal chemistry where the discovery and further development of new active compounds represents the 
central task. These medicinal chemistry efforts have for long been supported by different types of compound 
activity  predictions3. However, chemists are typically reluctant to synthesize newly predicted compounds if the 
predictions cannot be rationalized. In addition to predicting novel active compounds, ML might also be applied 
to better understand chemical characteristics of different types of compounds, as further discussed below. Such 
ML applications bridge between property predictions and explanatory or diagnostic modeling.

In medicinal chemistry and drug discovery, the concept of polypharmacology states that many active com-
pounds and drugs elicit their therapeutic effects through interactions with multiple targets, for which experi-
mental evidence has been mounting over the past  decade8–10. During the post-phenotypic and molecular science-
driven era of drug discovery, efforts have mostly concentrated on rendering active compounds as target-selective 
as possible. On the contrary, the notion of polypharmacology has triggered rising interests in generating multi-
target compounds beyond serendipitous  discovery11–13.

However, a prerequisite for designing such compounds is understanding how they might differ in structure 
and/or molecular properties from single-target compounds such that they become capable of specifically interact-
ing with more than one target. In this context, ML can make important contributions. For example, if structural 
features exist that set multi-target compounds apart from corresponding single-target molecules, ML models 
trained on the basis of molecular structure representations should be able to distinguish between these compound 
classes. This was demonstrated for single- and multi-target compounds from medicinal  chemistry14 and biological 
 screening15, providing evidence for the existence of such structural features. Furthermore, ML models for many 
different target pairs were derived and shown to be highly predictive in distinguishing dual- from corresponding 
single-target  compounds16. However, these models generally failed in cross-predictions on target pairs for which 
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they were not derived, clearly indicating that distinguishing structural features were not a general signature of 
compounds with multi-target activity, but depended on individual targets and their  combinations16.

Insights into the molecular basis of multi-target activities are indispensable for deriving design strategies for 
polypharmacological compounds. However, the studies referred to above only provided evidence for the exist-
ence of characteristic features of multi-target compounds, but did not reveal them. Accordingly, the next logical 
step should be the identification of those features that determine accurate predictions of single- vs. multi-target 
compounds. If such features can be identified, their potential chemical relevance can then be examined.

The feature identification task leads directly to approaches for ML model explanation. Interpretation methods 
applicable to ML activity predictions are for the most part model-dependent. Relevant approaches include fea-
ture weighting techniques for kernel-based or Bayesian classification  models17–19, which reveal highly weighted 
representation features that strongly influence positive or negative predictions. Going beyond model-dependent 
approaches, explanatory methods that are generally applicable to ML models regardless of the algorithms that 
are used are principally preferred, but difficult to develop. As an ML model-independent technique, sensitiv-
ity  analysis20 was applied to investigate the influence of feature value perturbations on activity  predictions21,22. 
Accordingly, sensitivity analysis indirectly assesses feature relevance and becomes computationally demanding 
with increasing model dimensionality. As a different model-independent approach for a quantitative assessment 
of ML predictions, we have adopted the Shapley value (SV)  concept23 from game  theory24 that was originally 
developed to quantify contributions of individual players to the performance of a  team23,25. In feature analysis 
and ML model interpretation, SVs quantify contributions of individual features of a given representation to a 
prediction outcome. For large features sets, the explicit calculation of SVs for all possible feature combinations 
also becomes computationally demanding. However, this limitation can be circumvented by deriving a local inter-
pretation model for individual predictions that approximates the original ML model in corresponding regions of 
feature space. This approach is termed Shapley Additive exPlanations (SHAP)26 and can be conceptualized as an 
extension of the Local Interpretable Model-agnostic Explanations (LIME)  approach27. For different compound 
activity prediction tasks, SHAP calculations made it possible to quantify the contributions of individual molecular 
features to a correct or incorrect prediction, independently of the complexity of an ML  model28,29. Hence, SHAP 
is applicable to any ML algorithm including deep learning methods. Importantly, for decision tree methods, an 
algorithm for the exact calculation of local SVs has recently been  introduced30. We have shown that SHAP and 
exactly determined local SVs strongly correlated in compound activity prediction for both tree-based classifica-
tion and regression models (> 80%)29.

In this work, we have made a first attempt to systematically identify structural features that determine accurate 
ML predictions of dual-target compounds (DT-CPDs) vs. corresponding single-target compounds (ST-CPDs) 
and evaluated these features in chemical terms. For this purpose, exact local SV values were calculated and a 
global SV feature importance analysis scheme was devised. This approach was applied to DT- and ST-CPDs with 
activity against structurally and mechanistically unrelated targets (which best embody the polypharmacology 
paradigm) including monoamine oxidase B (MAOB)31, the  A2a adenosine receptor (A2aR)32, and acetylcholinest-
erase (AChE)33. All three proteins are popular pharmaceutical targets and implicated in various central nervous 
system (CNS) diseases, a major therapeutic area for polypharmacology. For target pairs including MAOB, ML 
models were derived that distinguished with high accuracy between DT- and ST-CPDs and features determin-
ing accurate predictions were identified and mapped onto compound structures. In DT-CPDs, features forming 
coherent substructures were driving their correct prediction and it was shown that the absence of these features 
in corresponding ST-CPDs was largely responsible for their correct prediction. Substructures identified by formal 
computational analysis represented confirmed signatures of different DT activities. The results presented herein 
should be of interest both from an ML and polypharmacology perspective.

Results
Study design. Data sets were assembled comprising DT-CPDs with activity against MAOB and A2aR (tar-
get pair 1), MAOB and AChE (target pair 2), and corresponding ST-CPDs (see “Methods” for details). Target 
pair-based data sets were prioritized because features determining predictions of multi-target compounds were 
previously shown to depend on specific target  combinations16. The pairs were selected to share a target (MAOB), 
which made it possible to compare compounds with activity against related yet distinct target pairs (which did 
not share any DT-CPDs). Furthermore, the targets investigated herein were chosen for in-depth analysis because 
they belong to different protein classes with distinct ligand binding characteristics but are implicated in diseases 
falling into the same therapeutic area. Given these selection criteria, it is difficult to identify pairs of unrelated 
targets for which sufficient numbers of DT-CPDs have been reported. However, the pairs including MAOB met 
all criteria for our proof-of-principle investigation.

MAOB is an enzyme of the outer mitochondrial membrane that catalyzes the oxidative deamination of 
biogenic amines including neurotransmitters such as dopamine in the  CNS31. A2aR is a G-protein coupled 
receptor and member of the adenosine receptor family involved in cAMP synthesis and a variety of intracellular 
signaling  events32. AChE is a hydrolytic enzyme that degrades the neurotransmitter acetylcholine and is thus 
involved in CNS  regulation33.

For each target pair, we constructed balanced random forest (BRF) classification models to distinguish 
between DT- and corresponding ST-CPDs (see “Methods”). The use of BRFs enabled the calculation of accurate 
local SVs for model  explanation30. While the SV formalism is primarily applicable to explain individual predic-
tions, we also performed global analysis of predictions by determining important features across different com-
pounds. For accurately predicted DT- and ST-CPDs, representation features (i.e., layered atom environments; 
see “Methods”) were identified that were responsible for the predictions. These features were then mapped onto 
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compounds to examine whether they formed meaningful substructures, leading to the detection of structural 
motifs characteristic of DT-CPDs.

Figure 1 illustrates SV-based feature importance assessment. Exact local SVs were calculated using the publicly 
available Path Dependent Tree Explainer30. For an individual compound, SV calculations yield quantitative feature 
contributions that support (positive SV) or oppose (negative) a given prediction. The sum of positive and nega-
tive contributions including the base value of the model (also termed expected value, representing the average 
SV for the training set) results in a class label probability (here probability of DT activity). Depending on the 
compound, different numbers of features might make positive or negative contributions of varying magnitude, 
as accounted for by SVs. Importantly, SV analysis also quantifies contributions of features that are absent in a 
compound to its  prediction28. This ability is of critical relevance because the absence of specific features might 
also be responsible for a given prediction.

Model performance. BRF models were trained on the basis of chemical structure only (see “Methods”). 
For each target pair, BRF models classified DT- and ST-CPDs with high accuracy (native predictions), as assessed 
on the basis of balanced accuracy (BA) and Matthews correlation coefficient (MCC) measures (see “Methods”) 
and reported in Table 1. Predictions over different trials were stable, yielding only very small standard devia-
tions. Hence, ML consistently detected structural features distinguishing between DT- and corresponding ST-
CPDs. As a control, BRF models derived for one target pair were applied to predict DT- and ST-CPDs of the 
other (cross predictions). In contrast to native predictions, these calculations  failed, essentially yielding random 
accuracy, as also reported in Table 1. The control calculations confirmed that distinguishing structural features 
depended on each target pair and were not transferable. Highly accurate native predictions provided a meaning-
ful basis for the quantitative feature analysis and model explanation.

Table 2 reports the composition of the confusion matrix for training and test sets of single trials for both target 
pairs that are further discussed below. Only few DT-CPDs were misclassified. Due to high data imbalance, the 
number of false positives exceeded the number of true positives, which emphasizes the need to apply balanced 
performance measures such as BA and MCC.

Shapley value‑based feature exploration. Feature analysis aimed to identify features of the molecular 
representation (in this case, circular atom environments) that made large contributions to correct predictions 
and was carried out on the basis of individual models. Importantly, for compound classification, not only the 
presence, but also the absence of structural features is relevant. For example, frequent features in DT-CPDs 

Figure 1.  Shapley value analysis. For a test compound, positive (red) and negative (blue) SV feature 
contributions yield a probability P of DT activity. In this case, contributions from all but one feature present in 
the compound are positive. The sum of the base value of the classifier (0.5) and all feature importance values 
results in a probability of DT activity of 0.98.

Table 1.  Accuracy of classification models. For native and cross predictions using BRF models, prediction 
accuracy is reported as the mean and standard deviation over 10 independent trials.

Trained on Tested on Prediction task BA MCC

MAO B–A2aR MAO B–A2aR Native 0.95 ± 0.04 0.41 ± 0.03

MAO B–A2aR MAO B–AChE Cross 0.48 ± 0.02 − 0.02 ± 0.03

MAO B–AChE MAO B–AChE Native 0.90 ± 0.04 0.34 ± 0.04

MAO B–AChE MAO B–A2aR Cross 0.47 ± 0.01 − 0.02 ± 0.01
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that are not present in an ST-CPD might make strong contributions to its correct prediction (and vice versa). 
However, only features that are present in a compound can be analyzed within their structural/chemical context. 
Hence, features that are present in one (positive) compound class and absent in the other (negative) and whose 
respective presence and absence strongly contribute to correct predictions represent signature features of the 
positive class. The ability of SV analysis to quantify the contribution of features that are present or absent in a 
class sets the approach apart from other (model-dependent) feature weighting techniques.

Feature contributions. Test and training instances for both target pairs were subjected to global SV analy-
sis. For each correctly predicted compound, the sum of SVs was calculated separately for features that were 
present or absent. The SV distributions for DT- and ST-CPDs in Fig. 2a indicate that correct predictions of DT-
CPDs of the MAOB-A2aR target pair were largely determined by features present in these compounds, whereas 
predictions of corresponding ST-CPDs were mainly determined by features that were absent. Very similar obser-
vations were made for MAOB-AChE target pair compounds (Fig. 2b); a key result from global SV analysis. Thus, 
DT-CPDs shared features driving predictions, in contrast to ST-CPDs where the absence of these features was 
decisive for prediction accuracy.

Feature extraction. On the basis of these findings, we next set out to identify features that were indicative 
of DT-CPDs. Therefore, the design of a feature extraction scheme was essential, taking into consideration that 
SVs of features represent contributions to individual predictions and thus differ from compound to compound. 
Hence, instead of applying a pre-defined threshold value for feature selection, which might only be met by a 
subset of correctly predicted compounds, features were extracted by rank. Therefore, the top N features with 
highest SVs were pre-selected from all features present in correctly predicted DT-CPDs. Then, each of these 
features was ranked by its occurrence across DT-CPDs, selecting the top most frequent M features. The approach 
is illustrated Fig. 3.

For determining N, the number of features present across all DT-CPDs was considered. Figure 4a,b show that 
DT-CPDs for the MAOB-A2aR and MAOB-AChE target pair contained a median value of 47 and 51 features, 
respectively, and we thus pre-selected the N = 5 most important features with largest SV per compound (~ 10%). 
The top N = 5 features included 35 and 41 unique features for the MAOB-A2aR and MAOB-AChE target pair, 
respectively, from which the M = 10 most frequent features were prioritized for further analysis.

Figure 5a shows that only eight of the MAOB-A2aR DT-CPDs did not contain any of these features, three of 
which were incorrectly predicted in the single trial summarized in this figure. By contrast, each of the remaining 
training and test compounds contained at least three of the prioritized features (while no compound contained 
all 10 features) and all feature-containing compounds were correctly predicted. As shown in Fig. 5b, the feature 
distribution MAOB-A2aR DT-CPDs included the same feature range but differed in its details, as to be expected. 
Here, only five DT-CPDs did not contain prioritized features but were correctly predicted in the single trial. By 
contrast, four DT-CPDs with one, two, or four features were incorrectly predicted. As observed for the MAOB-
A2aR target pair, the majority of DT-CPDs contained five to seven features and all of these compounds were 
correctly predicted for both target pairs.

Mapping of features determining predictions. Prioritized features making largest contributions to 
the correct prediction of MAOB-A2aR DT-CPDs were mapped on compound structures. Figure 6 shows four 
exemplary DT-CPDs with different numbers of most important features. The compound in Fig. 6a contains 
seven such features that delineate a caffeine substructure. The compound in Fig. 6b is a caffeine analogue in 
which a nitrogen atom is substituted by a carbon. It contains five prioritized features that also delineate the caf-
feine framework. Importantly, in both instances, features determining the correct prediction of DT-CPDs form 
a coherent substructure, thus indicating a moiety that might be characteristic of DT-CPDs, as further discussed 
below. However, this substructure is not an exclusive criterion for DT-activity, as illustrated by the compounds 
in Fig. 6c,d, which do not contain caffeine or an analogous substructure. Rather, the three prioritized features 
in these DT-CPDs outline the thiazine ring in the benzothiazine-4-one and the thienothiazine-4-one substruc-
ture, respectively. As a control, features absent in ST-CPDs that determined their correct prediction were also 
mapped to DT-CPDs. These features fully reproduced the caffeine moiety, but only marked the carbonyl group 
of the thiazine ring. Thus, high relevance of the caffeine substructure was emphasized by a larger number of 
prioritized features compared to thiazine whose absence was also of critical importance for the correct predic-
tion of ST-CPDs.

Table 2.  Elements of the confusion matrix for test and training sets.

MAOB–A2aR MAOB–AchE

Test set Training set Test set Training set

True positives 23 26 31 35

False negatives 3 0 4 0

True negatives 2664 2675 1660 1688

False positives 85 74 164 134



5

Vol.:(0123456789)

Scientific Reports |        (2021) 11:21594  | https://doi.org/10.1038/s41598-021-01099-4

www.nature.com/scientificreports/

In Fig. 7, contributions of features defining the caffeine substructure in DT-CPDs to predictions are compared 
to others. The magnitude of SV feature contributions is comparable across different compounds. Positive contri-
butions of caffeine-related features were much larger than of features mapping to other parts of the structures. 
Furthermore, features absent in DT-CPDs either made positive or negative contributions of small magnitude, 
which essentially cancelled out. This was in contrast to ST-CPDs where the absence of caffeine-related features 
was often critically important for correct predictions.

The caffeine moiety was present in 27 of 52 DT-CPDs (51%) and found in only 135 of 5498 corresponding 
ST-CPDs (2%), nearly all of which were incorrectly classified as DT-CPDs. Many of these 135 putative ST-CPDs 
may not have been tested against both targets and hence represent false negatives due to data incompleteness. 
For 17 of these compounds, we found literature records of weak activity against the second target of the MAOB-
A2aR (falling below our 10 µM potency threshold for compound selection; see “Methods”).

The purine ring contained in the caffeine substructure was found in 16% of correctly predicted ST-CPDs in 
different structural contexts distinct from caffeine, thus further emphasizing the critical relevance of the more 
specific caffeine substructure for accurate prediction of MAOB-A2aR DT-CPDs.

Specificity of features. The analysis of feature importance also revealed prioritized features determining 
the prediction of DT-CPDs for the MAOB-AchE target pair. Moreover, most important features were found to 
delineate another specific coherent substructure in DT-CPDs, i.e., an ether-substituted coumarin depicted on 
the left in Fig. 8a. This coumarin substructure was present in 32 DT-CPDs (45%). In non-coumarin DT-CPDs, 

Figure 2.  Global contributions of present and absent features. For each correctly classified DT- and ST-CPD, 
the sum of SVs was calculated separately for representation features that were present (bit status on, black) 
or absent (off, white). (a) Shows results for the MAOB-A2aR and (b) for the MAOB-AChE target pair. SV 
distributions are captured as box plots. The upper and lower whiskers indicate maximum and minimum values, 
the boundaries of the box represent the upper and lower quartiles, and the median is depicted as a horizontal 
line.
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prioritized features preferentially encompassed an acrylamide connecting two aromatic and aliphatic ring sys-
tems (Fig. 8b). However, corresponding to the caffeine substructure for the MAOB-A2aR target pair, the cou-
marin moiety dominated correct predictions of MAOB-AchE DT-CPDs. For coumarin-containing DT-CPDs, 
cumulative SV contributions were similar to those observed for caffeine-containing DT-CPDs from the other 
target pair in Fig. 7.

The results showed that for DT-CPDs of two different target pairs containing MAOB, i.e., target pairs with 
overlapping yet distinct activity, features responsible for high prediction accuracy differed and defined distinct 
structural motifs; an interesting finding of our analysis, as further discussed below.

From predictions to characteristic substructures. It must be emphasized that the model explanation 
analysis presented herein identified features that determined correct predictions of DT-CPDs. Of course, from 

Figure 3.  Feature extraction scheme. On the basis of SVs, the N most important features present in correctly 
predicted DT-CPDs were pre-selected and the M features occurring most frequently across these compounds 
were identified and prioritized.

Figure 4.  Feature distributions. Boxplots show the number of features per (a) MAOB-A2aR and (b) and 
MAOB-AChE DT-CPD.
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a polypharmacology perspective, the ultimate goal is the identification of structural signatures of DT-CPDs 
that set them apart from corresponding ST-CPDs and can be used to guide compound design. The question is 
whether or not ML and in-depth analysis of predictions can aid in this process. As shown herein, features driving 
accurate predictions formed coherent substructures in DT-CPDs, hence providing an attractive basis for follow-
up analysis in medicinal chemistry. At least in this case, the substructures identified by formal computational 
analysis indeed represented characteristics of different DT-CPDs. Literature searches confirmed that caffeine 
derivatives are active against both MAOB and  A2aR34 and, in addition, coumarin derivatives  active against 
MAOB and  AchE35.

Methods
Target selection. Distinct targets from different families and classes were selected following the  UniProt36 
and Gene  Ontology37 classification schemes. Target pairs were also required to share at least 50 DT-CPDs (see 
below). MAOB (UniProt ID: P27338), A2aR (P29274), and AChE (P22303) were selected, yielding two overlap-
ping target pairs (MAOB-A2aR and MAOB-AChE). These targets are relevant for polypharmacology-oriented 
drug discovery since they are implicated in CNS pathologies such Alzheimer’s or Parkinson’s disease.

Compounds and activity data. Compounds with a molecular weight of less than 1000  Da and their 
bioactivity data were obtained from ChEMBL (version 28)38. Only compounds with direct interactions (target 
relationship type: “D”) with human targets at the highest confidence level (target confidence score: 9) were con-
sidered. In addition, standard potency measurements  (Ki  IC50, and  Kd) with an exact value (“=”) were required 
(and recorded as negative decadic logarithmic values). Measurements flagged as “inactive”, “not active”, “incon-
clusive”, or “potential transcription error” were disregarded. In addition, weakly potent (borderline active) com-
pounds (less than 10 µM) and potential assay interference compounds were removed using public  filters39–41 to 
avoid potential false positive activity annotations.

On the basis of these data curation criteria, 52 DT-CPDs were obtained for the MAOB-A2aR target pair and 
70 DT-CPDs for the MAOB-AChE pair. As expected, only limited numbers of DT-CPDs with high-confidence 

Figure 5.  Distribution of prioritized features. The histogram reports the number of prioritized features in 
DT-CPDs for the (a) MAOB-A2aR and (b) MAOB-AChE target pair. Predictions are summarized for the two 
single trials reported in Table 2.
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activity annotations were available. For first target pair, 1932 and 3566 ST-CPDs were obtained for MAOB and 
A2aR, respectively, and for the second target pair, 1793 ST-CPDs for MAOB and 1853 ST-CPDs for AChE. The 
number of ST-CPDs for MAOB differed for these pairs because small numbers of compounds active against 
MOAB with additional reported activities against targets related to A2aR or AChE were not selected.

Figure 6.  Feature mapping onto dual-target compounds from the first pair. Prioritized features are mapped 
onto to the structures of MAOB-A2aR DT-CPDs. Atoms are color-coded according to the number of features 
containing them, as indicated by the insert at the bottom of (d). Accordingly, the color code ranges from 
light yellow for atoms contained in one feature to dark red for atoms contained in seven features. Features 
determining the prediction of the compounds in (a) and (b) delineate a caffeine substructure while features 
contained in the compounds in (c) and (d) define a thiazine moiety.

Figure 7.  Contributions of caffeine-delineating features and others. For caffeine-containing DT-CPDs, 
cumulative SV contributions of features defining the caffeine moiety (green), features mapping elsewhere in the 
compound (blue), and absent features (red) are reported. The height of each bar accounts for the sum of feature 
SVs per compound.
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Molecular representation. For ML, compounds were encoded as a binary feature vector using the public 
 RDKit39 implementation of the Morgan fingerprint with bond radius of  242, which consists of molecule-specific 
layered atom environments (neighbor atom connectivity paths up to a bond radius of 2 for each atom in a com-
pound). Hashed features were mapped to unique vector positions to avoid bit collisions. For feature analysis, 
this representation is principally preferred because recorded atom environments are partly overlapping, which 
provides a control for feature consistency of feature importance (i.e., mapping of prioritized overlapping features 
typically delineates coherent substructures in test compounds). Given our focus on structural characteristics of 
DT-CPDs, we did not consider simple physicochemical or other numerical descriptors for ML model building.

Balanced random forest calculations. For compound classification, BRF models were derived. BRF 
is a supervised ML algorithm based upon an ensemble of decision trees, in which each tree is trained using 
an independently selected bootstrap sample from the training  set43,44. Training samples selected for each tree 
are adjusted for class imbalance by randomly under-sampling the majority class; an important methodological 
aspect, given the intrinsic imbalance of DT- vs. ST-CPDs. Estimates of class probabilities for predicted instances 
are calculated as the mean class probabilities over individual trees. In decision trees, the probability for a class is 
equal to the fraction of samples of the given class in the final leave node. Optimal hyperparameters such as num-
ber of decision trees (’n_estimators’: 25, 50, 100, 200, 400), minimal number of samples for a split (’min_sam-
ples_split’: 2, 3, 5, 10), and minimum number of samples for a leave-node (’min_samples_leaf ’: 1, 2, 5, 10) were 
determined via  10-fold training set internal cross validation. The best performing hyperparameter combination 
was then used to generate the final classifier was trained with the complete training set. For predictions, the 
remaining DT- and ST-CPDs were used as test instances. Model performances were estimated as the average 
over 10 independent trials. As performance measures,  BA45 and  MCC46 values were calculated:

TP, TN, FP, and FN stand for true positives, true negatives, false positives, and false negatives, respectively.

BA =
1

2
(TPR+ TNR)

MCC =
TP× TN− FP× FN

√
(TP+ FP)(TP+ FN)(TN+ FP)(TN+ FN)

Figure 8.  Feature mapping onto dual-target compounds from the second pair. Prioritized features are mapped 
onto MAOB-AChE DT-CPDs. The representation is according to Fig. 6. Atoms are color-coded according to 
the number of features containing them, as indicated by the insert at the bottom of (b). Accordingly, the color 
code ranges from light yellow for atoms contained in one feature to dark red for atoms contained in six features. 
Features determining the prediction of the compounds in (a) and (b) mostly delineate a coumarin substructure 
and an acrylamide linker fragment, respectively.
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Conclusion
In polypharmacology-oriented drug discovery, structural motifs that are signatures of compounds with well-
defined activity against more than one target are of prime interest. However, only little is currently known about 
structural features determining multi-target activity, which hinders the implementation of compound design 
strategies for polypharmacology. ML studies have provided evidence that structural features differentiating 
DT- and corresponding ST-CPDs exist and that they depend on given target combinations. However, the nature 
of such structural features has thus far remained largely elusive. We have reasoned that the identification of 
molecular representation features that determine ML predictions of DT- vs. ST-CPDs provides a basis for the 
exploration of structural characteristics of DT-CPDs. Therefore, we have devised a pharmacologically relevant 
overlapping target pair-based test system for a proof-of-concept investigation reported herein. Highly accurate 
ML prediction models were derived for this test system enabling an in-depth analysis of successful predictions. 
The SV concept from game theory was used for model explanation and extended for global feature analysis. This 
made it possible to quantify the influence of representation features that were either present or absent in test 
compounds, a unique aspect of the analysis concept, and identify most important features determining correct 
predictions. Quantifying the relative influence of feature presence and absence revealed small numbers of features 
whose presence in DT-CPDs and absence in corresponding ST-CPDs was decisive for accurate predictions, thus 
providing a possible rationale for DT activity. These features were specific for overlapping yet distinct DT activi-
ties. Moreover, they formed coherent substructures in DT-CPDs. Two structural motifs, caffeine and coumarin 
fragments, emerged that largely determined accurate predictions of DT-CPDs and that were both confirmed to 
represent characteristic substructures conferring different DT activities.

The analysis generally depends on the availability of compounds with known activity and ST- or DT-CPDs 
might also be active against additional targets for which no experimental data are currently available. However, 
this does not limit the potential of the approach because it is applicable to any ML models that accurately classify 
compounds according to known activity. If compounds with different activity profiles can be correctly classified, 
structural features driving the predictions can likely be identified and interpreted. If additional targets emerge 
for designated ST- or DT-CPDs, new prediction tasks can be formulated.

Taken together, the results of our study establish proof-of-concept for the ability of explainable ML to pro-
gress from the analysis of predictions to the identification of chemically relevant characteristics of DT-CPDs. 
The analysis scheme is fully reproducible and applicable to other target combinations and compound features.

Data availability
All calculations were carried out with public domain data and programs.
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