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Mitochondria are organelles essential for tumor cell proliferation and

metastasis. Although their main cellular function, generation of energy in the

form of ATP is dispensable for cancer cells, their capability to drive their

adaptation to stress originating from tumor microenvironment makes them

a plausible therapeutic target. Recent research has revealed that cancer cells

with damaged oxidative phosphorylation import healthy (functional)

mitochondria from surrounding stromal cells to drive pyrimidine synthesis

and cell proliferation. Furthermore, it has been shown that energetically

competent mitochondria are fundamental for tumor cell migration, invasion

and metastasis. The spatial positioning and transport of mitochondria involves

Miro proteins from a subfamily of small GTPases, localized in outer

mitochondrial membrane. Miro proteins are involved in the structure of the

MICOS complex, connecting outer and inner-mitochondrial membrane; in

mitochondria-ER communication; Ca2+ metabolism; and in the recycling of

damaged organelles via mitophagy. The most important role of Miro is

regulation of mitochondrial movement and distribution within (and between)

cells, acting as an adaptor linking organelles to cytoskeleton-associated motor

proteins. In this review, we discuss the function of Miro proteins in various

modes of intercellular mitochondrial transfer, emphasizing the structure and

dynamics of tunneling nanotubes, the most common transfer modality. We

summarize the evidence for and propose possible roles of Miro proteins in

nanotube-mediated transfer as well as in cancer cell migration and metastasis,

both processes being tightly connected to cytoskeleton-driven mitochondrial

movement and positioning.
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Introduction

Mitochondria are cellular powerhouses, generating most

of the energy needed for metabolism of cells, as well as

orchestrating a number of biochemical reactions from ATP

production to amino acids generation or lipid biosynthesis.

Except for these pathways, mitochondria regulate cell death,

maintain calcium homeostasis and buffer reactive oxygen

species (ROS). Mitochondria are highly dynamic organelles

that constantly undergo cycles of fusion and fission, and,

depending on the cellular type or metabolic status, they

differ in size, shape or localization within the cell (Berridge

et al., 2016; Furnish and Caino, 2020; Nahacka et al., 2021).

They could be efficiently transported to the site of their need,

utilizing the system of molecular motors together with tubulin

and actin cytoskeleton (MacAskill and Kittler, 2010; Kittler,

2015; Eberhardt et al., 2020; Grossmann et al., 2020).

Furthermore, mitochondria communicate with other

organelles, often forming physical bridges with the

endoplasmic reticulum (ER) or the nucleus (Modi et al.,

2019; Desai et al., 2020).

For a long time it was thought that, mitochondria are not

essential for cancer cells due to the dependence of tumor energy

production on glycolysis (Warburg, 1956; Vander Heiden et al.,

2009; Porporato et al., 2018; Vaupel et al., 2019; Pavlova et al.,

2022). This misinterpretation has been corrected over the last

decades, such that now we know that while mitochondrial ATP

production is dispensable for tumorigenesis, mitochondria-

linked pyrimidine biosynthesis is important to drive

proliferation of cancer cells (Bajzikova et al., 2019; Boukalova

et al., 2020). Our research as well as research of others has shown

that cancer cells lacking mtDNA are able to form tumors only if

they acquire respiration-competent mitochondria from

neighboring cells of tumor stroma (Tan et al., 2015; Berridge

et al., 2016; Dong et al., 2017; Bajzikova et al., 2019). Additionally,

emerging evidence shows the importance of mitochondria in the

process of tumor cell migration, invasion of distant tissues and

formation of metastases (Jiang et al., 2012; Caino et al., 2016;

Furnish and Caino, 2020; Ghosh et al., 2022).

In this short review, we will briefly discuss the role of Miro

proteins in cancer and tumor microenvironment, especially in

intercellular mitochondrial transfer from donor stromal cells

to cancer cells focusing on tunneling nanotubes that are

important for mitochondrial transfer between cells; the step

that is necessary to initiate tumor cell proliferation and cancer

progression during aberrant respiration. Additionally, we will

also discuss the role of these proteins in spatial distribution of

mitochondria and mitochondrial network, plus their role in

the process of tumor cell invasion and metastasis. The

comprehensive review of structure and functions of

Miro1 and Miro2 is a focus of previous review articles by

others and us (Nahacka et al., 2021). For more information,

see Table 1.

Miro proteins, their structure and
function

Miro1 and Miro2 proteins (encoded by RHOT1 and RHOT2

genes, respectively) are main adaptors transporting

mitochondria inside cells (Saotome et al., 2008; MacAskill

et al., 2009a; Eberhardt et al., 2020). Miro proteins are

evolutionary conserved throughout the eukaryotes with one

homolog in yeasts (Gem1p) and lower metazoans (in

D.melanogaster dMiro) and two homologs Miro1 and

Miro2 in mammals (Frederick et al., 2004; Guo et al., 2005; Li

X. et al., 2015; Beljan et al., 2020). These proteins classified as a

specific subfamily of small GTPases comprise 620 amino acid

residues and share 60% of sequence homology (Wennerberg and

Der, 2004; Fransson et al., 2006; Reis et al., 2009). They are type II

trans-membrane proteins embedded in the outer mitochondrial

membrane consisting of the C-terminal trans-membrane domain

and two canonical Ca2+ binding EF hand motifs flanked by two

GTPase domains (the N-GTPase and the C-GTPase) (Fransson

et al., 2006; MacAskill et al., 2009a; Reis et al., 2009; MacAskill

and Kittler, 2010; Klosowiak et al., 2013). The C-terminal GTPase

domain forms together with two EF-hand motifs, a rigid

structure called MiroS (Klosowiak et al., 2013). While EF-

hand domains feature calcium binding function, the two

GTPase domains are both structurally and functionally

distinct. It is thought that the more evolutionary conserved

N-GTPase domain is of a greater importance for the function

of the protein than the C-GTPase domain, supported by

mutation studies showing a more severe impact on the

phenotype in the case of the N-terminal domain mutation

(Fransson et al., 2006; Reis et al., 2009; Smith et al., 2020).

Except for nucleotide binding and GTP hydrolase activity of

both domains, it was proposed that the C-GTPase domain

possesses also nucleoside triphosphatase (NTPase) function

(Peters et al., 2018; Smith et al., 2020). Miro exists in protein

complexes, its interacting partners are mostly dimers or

multimers (TRAK1/2, Kinesin-1, Mfn1/2), but the exact

stoichiometry of Miro complexes needs to be elucidated. It

was shown by crystallization studies that the N-GTPase

domain has potential binding interfaces, which mediate

homo-dimerization in the crystal (Smith et al., 2020).

Miro1 and Miro2 proteins are ubiquitously expressed with

high level of Miro1 in the heart and in skeletal muscles and high

level of Miro2 in the heart, liver, skeletal muscle, kidney and

pancreas (UniProt Consortium, 2019). Despite their homology,

they are able to compensate each other only to limited degree.

During embryogenesis, both proteins are needed in different

stages of development (Lopez-Domenech et al., 2016; Lopez-

Domenech et al., 2018). Miro1 knock-out (Miro1 KO) is

embryonically lethal while Miro2 knock-out (Miro2 KO) mice

were found to develop normally until adulthood (Lopez-

Domenech et al., 2016). Although Miro1 was able to

compensate for the loss of Miro2, this did not happen in the
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TABLE 1 Summary of review articles focusing on particular aspects of intercellular mitochondrial transfer, tunneling nanotubes and various functions
of Miro proteins in physiological conditions and in different pathologies.

Topic Author Note

Different modes of mitochondrial transfer Sinha et al. (2016) Intercellular mitochondrial transfer in organs and cells

Torralba et al. (2016) The physiological relevance and therapeutic application for treating mitochondrial-related diseases

Valenti et al. (2021) Intercellular mitochondrial transfer in physiological and pathological conditions

Vona et al. (2021) Mitochondrial dynamics in cancer and potential therapeutic approach

Zampieri et al. (2021) Different modes of mitochondrial intercellular transfer in cancer

Structure and formation of TNTs Dagar et al. (2021) Molecular mechanisms regulating TNTs formation

Drab et al. (2019) Molecular mechanism and biophysics of TNTs formation

Ljubojevic et al. (2021) Detail summary of actin-related molecules and transfer mechanisms

Sahu et al. (2018) Molecular pathways involved in TNTs formation

Comprehensive TNT-focused review Cordero Cervantes and Zurzolo
(2021)

Comprehensive review of various aspects of TNTs (methodology, signaling, cargos, structure)

Pinto et al. (2020) TNT-mediated transfer in cell lines and in tissues

Qin et al. (2021) Signaling and formation of TNTs, and actin-mediated transfer of mitochondria

Vignais et al. (2017) General review regarding mitochondrial transfer

TNTs in mitochondrial transfer in cancer Allegra et al. (2022) TNTs in leukemia, possible therapeutic approach

Berridge and Neuzil (2017) Mitochondrial transfer in vitro and in mouse models

Hekmatshoar et al. (2018) Role of mitochondrial transfer in metabolic plasticity of cancer cells and resistance to therapy

Pinto et al. (2020) TNT-mediated transfer in cell lines and in tissues

Roehlecke and Schmidt (2020) TNT-mediated transfer of various cargo and its impact on tumor progression and therapy
resistance

Sahinbegovic et al. (2020) Mitochondrial transfer in solid tumors and hematological malignancies

TNTs role in different pathologies Khattar et al. (2022) TNTs in physiological and pathological conditions in the brain

Mittal et al. (2019) Comprehensive summary of TNTs in various cell types and the use of inhibitors of TNTs and of
mitochondrial transfer

Tiwari et al. (2021) TNTs in various deseases

Miro and other GTPases in TNT formation Qin et al. (2021) Signaling and formation of TNTs, and actin-mediated transfer of mitochondria

Raghavan et al. (2021) Role of mitochondrial transfer via TNTs in various pathologies. Various roles of Rho GTPases
related to TNTs

Miro and its role in various pathologies Brunelli et al. (2020) Role of Miro proteins in Parkinson desease

Kay et al. (2018) The role of mitochondrial transport and Miro proteins in different neurodegenerative deseases

Kruppa et al. (2018) Role of Miro proteins and cytoskeletal motors in mitochondria homeostasis

Panchal and Tiwari (2021) Miro proteins and their role in the pathogenesis of various neurodegenerative deseases

Shanmughapriya et al. (2020) Miro, molecular motors, adaptors and transport of mitochondria in CNS

Comprehensive review focused on structure and functions of
Miro proteins

Eberhardt et al. (2020) Comprehensive review about Miro proteins

Nahacka et al. (2021) Various aspects of Miro proteins in cell physiology and mitochondrial movement

Ming Yang et al. (2020) Comprehensive review of ER and mitochondria contact sites and signaling molecules involved in
their formation

Zinsmaier (2021) Comprehensive review about Miro proteins

Miro proteins in cell migration Furnish and Caino (2020) Role of intracellular mitochondrial localization in cancer cell invasion

Metabolism of cancer cells Boukalova et al. (2020) Comprehensive review concerning DHODH role in cancer cells and potential therapeutic
intervences

Pavlova et al. (2022) Review on metabolism and regulation of gene and protein expression in tumor microenviroment

Porporato et al. (2018) Review on role of mitochondria in all steps of oncogenesis
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opposite situation (Lopez-Domenech et al., 2016).

Miro1 deletion led to disrupted mitochondrial trafficking and

aberrant distribution of the organelles in dendritic neurons

in vitro and in vivo, resulting in neurodegeneration.

Mitochondrial trafficking

It is known that Miro1 is a key regulator of mitochondrial

trafficking not only in neurons but also in other cell types

(Yamaoka et al., 2011; Kittler, 2015; Stephen et al., 2015;

Lopez-Domenech et al., 2016; Lopez-Domenech et al., 2018;

Kalinski et al., 2019; Eberhardt et al., 2020; Nahacka et al.,

2021). Both proteins were found to bind protein complexes

involved in tubulin (kinesin/dynein and TRAK1/2 complex)

and actin (myosin XIX or Myo19) movement, but their

participation in these processes is quite different (Brickley

et al., 2005; Fransson et al., 2006; Glater et al., 2006;

MacAskill et al., 2009a; Lopez-Domenech et al., 2018; Oeding

et al., 2018; Bocanegra et al., 2020). As mentioned, Miro1 has a

dominant function in mitochondrial localization and trafficking

at long-range transport utilized by tubulin cytoskeleton (Lopez-

Domenech et al., 2018). Bidirectional trafficking of mitochondria

along microtubules is considered the dominant type of

mitochondrial movement in metazoans (Schwarz, 2013).

When observing anterograde and retrograde mitochondrial

trafficking in hippocampal neurons or MEF cells in vitro,

Miro2 KO did not have a significant effect while Miro1 KO

decreased the extent of mitochondrial movement (Lopez-

Domenech et al., 2018). Overexpression of Miro2 was not able

to fully rescue the Miro1 KO phenotype (Lopez-Domenech et al.,

2016; Lopez-Domenech et al., 2018). Even though ablation of the

RHOT2 gene did not affect the localization of mitochondria in

MEF cells, Miro2 protein was found to be partially involved in

this process, since Miro1 and Miro2 double knock-out (DKO)

accentuated phenotype (Lopez-Domenech et al., 2018). Still

Miro2 cannot fully compensate for the loss of Miro1 and its

role seems to be somewhat redundant in the presence of Miro1.

Interestingly, both Miro proteins regulate actin-based movement

with more dominant role of Miro2 in the short-range transport

(Lopez-Domenech et al., 2018). Actin filaments were shown to be

involved not only in short-range transport of mitochondria but

also in dynamic processes such as fusion and fission or during

mitosis in the proper segregation of mitochondria to daughter

cells (Quintero et al., 2009; Korobova et al., 2014). The prevalent

role of Miro2 in actin movement was reflected also in unequal

segregation of mitochondria during mitosis (Lopez-Domenech

et al., 2018). Miro proteins not only bind Myo19, the molecular

motor moving mitochondria along actin filaments, but also

stabilize it and protect it from degradation (Lopez-Domenech

et al., 2016; Oeding et al., 2018). How Miro1 and Miro2 decide

between different protein complexes when binding TRAK1/2 or

Myo19 is still a question that needs to be answered. Interestingly,

even in the absence of both Miro proteins a movement of

mitochondria in a TRAK/kinesin-dependent manner could be

detected (Lopez-Domenech et al., 2018). Most probably there are

still unknown protein(s) anchoring mitochondria to tubulin at

least for anterograde movement along tubulin fibers that is

presumably also responsive to calcium regulation. Mitofusins

Mfn1/2 could possibly play this role, since they were found to be

bound in a complex with TRAK/Miro, and Mfn2 was shown to

be necessary for axonal transport of mitochondria in D.

melanogaster (Misko et al., 2010; Lee C. A. et al., 2018).

Furthermore, in a recent study on C. elegans metaxins (MTX-

1 andMTX-2), components of the protein import complex across

the outer mitochondrial membrane (OMM), were identified as

proteins capable to bind mitochondria to kinesin or dynein

motors and bypass (but not fully recover) Miro failure (Zhao

et al., 2021). Additionally, Myo19 was shown to be involved in

Miro-independent interaction with mitochondria via its

C-terminal membrane-association domain (MyMOMA)

(Bocanegra et al., 2020).

Two main reservoirs of Ca2+ ions in cells are the endoplasmic

reticulum and themitochondria (Chang et al., 2011). Calcium is a

general regulator of mitochondrial processes from trafficking to

mitophagy, also affecting mitochondria-ER contact sites

(MERCS) and processes such as apoptosis and mitochondrial

bioenergetics (Wan et al., 1989; Saotome et al., 2008; MacAskill

et al., 2009b; Stephen et al., 2015; Lee et al., 2016; Safiulina et al.,

2019a; Safiulina et al., 2019b; Modi et al., 2019; Romero-Garcia

and Prado-Garcia, 2019; Patergnani et al., 2020). Miro proteins

have two EF-hand Ca2+-binding motifs. When the cytoplasmic

concentration of Ca2+ increases, Miro binds calcium and changes

its conformation that results in the release of the adaptor/motor

complex from the cytoskeleton (Saotome et al., 2008; Klosowiak

et al., 2013). Additionally, not only cytoplasmic but also

mitochondrial calcium level probably impact on the frequency

of mitochondria movement (Chang et al., 2011).

Miro as interacting partner of
mitochondrial contact-site and cristae
organizing system complex

Miro proteins are tethered in the OMM, and one can

presume that their deletion will affect mitochondrial

morphology and architecture. Both proteins were shown to be

a part of the mitochondrial contact-site and cristae organizing

system (MICOS) complex that connects OMM and the inner

mitochondrial membrane (IMM) and that is important for the

cristae architecture maintenance (Hoppins et al., 2011; Tsai et al.,

2017; Modi et al., 2019; Yang M. et al., 2020; Stephan et al., 2020).

Interestingly both Miro proteins equally cooperate in the

regulation of mitochondrial morphology and, despite the

changes in the shape of mitochondria and altered cristae

organization; ablation of both genes does not affect the
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maximum respiratory capacity of the electron transport system

in vitro (Lopez-Domenech et al., 2016; Modi et al., 2019). One of

the reasons of this phenomenon could be that Miro DKO did not

change the expression of components of the MICOS complex but

rather altered its membrane distribution (Modi et al., 2019).

More experiments are needed to see how Miro DKO affects the

bioenergetics of cells and whether alteration of cristae

architecture results in changes of the respiratory protein

complexes composition.

In addition to movement of mitochondria along tubulin and

actin cytoskeleton, Miro proteins were found to have a function

in the process of mitophagy and regulation of MERCS (Kay et al.,

2018; Eberhardt et al., 2020). Interestingly here they seem to be

equally important and are able to mutually compensate each

other suggesting that functional differences in mitochondrial

trafficking would be more a question of different affinity to

bind to molecular motors or to participate in different protein

complexes involved in transport of mitochondria (Safiulina et al.,

2019a; Safiulina et al., 2019b; Modi et al., 2019).

Mitophagy regulation

Mitophagy is a specific type of autophagy occurring in the

case of energetic disbalance and defective mitochondria (Kittler,

2015; Pickles et al., 2018). One of the types of mitophagy was

shown to be regulated by PINK1 kinase that activates Parkin, a

ubiquitin ligase that ubiquitinates several downstream targets

located in the OMM, including Miro proteins (Greene et al.,

2012; Kane et al., 2014; Lazarou et al., 2015). These targets

comprise, for example, a group of import receptors and ion

channels such as TOM20, VDAC1 or VDAC3, and Mfn1 and

Mfn2 proteins involved in the process of fusion and fission to

block the fusion of defective mitochondria and Miro proteins

(Geisler et al., 2010; Wang X. et al., 2011; Sun et al., 2012; Bingol

et al., 2014; Birsa et al., 2014; Choubey et al., 2014). Parkin further

facilitates K48 and K63 ubiquitination of substrates and recruits

the autophagy machinery and complexes of lysosomal

degradation (Olzmann et al., 2007; Moore et al., 2008; Richard

et al., 2020; Park et al., 2021). Degradation of Miro by Parkin is a

prerequisite for the arrest of mitochondrial movement, so that

clearance of mitochondria can properly proceed (Wang X. et al.,

2011; Birsa et al., 2014).

Miro proteins were found to be more than mere downstream

targets for Parkin ubiquitination, themselves being active

regulators of this process. Miro1 directly interacts with

PINK1, whereby enhancing the catalytic activity of Parkin

(Wang X. et al., 2011; Park et al., 2017). Moreover, both Miro

proteins are required for proper Parkin translocation to OMM

and for initiation of mitophagy (Safiulina et al., 2019a; Safiulina

et al., 2019b). This process occurs independently of

PINK1 activity or their own degradation and is regulated by

calcium-binding ability of EF-hand domains of Miro proteins

(Safiulina et al., 2019a; Safiulina et al., 2019b). Higher

concentrations of calcium not only arrest mitochondrial

movement by decreasing the affinity of Miro for its binding

partners involved in mitochondrial transport but it also serves as

a switch, recruiting (by Miro) cytosolic Parkin to mitochondria;

priming mitochondria for the process of mitophagy (Yi et al.,

2004; Saotome et al., 2008; Safiulina et al., 2019a; Safiulina et al.,

2019b).

Dysregulation of mitophagy (and calcium signaling) is linked

to many pathologies, starting with neurological diseases such as

Parkinson disease (PD), heart failure, metabolic disorders, aging

and cancer (Lahiri and Klionsky, 2017; Kay et al., 2018; Pickles

et al., 2018; Cao et al., 2019; Kesharwani et al., 2019; Berenguer-

Escuder et al., 2020; Brunelli et al., 2020; Eberhardt et al., 2020;

Imai, 2020; Denisenko et al., 2021; Nahacka et al., 2021; Zhang

et al., 2021; Babula and Krizanova, 2022; Diao and Gustafsson,

2022; Lee et al., 2022; Shan et al., 2022). Miro proteins are

important regulators of the process of mitophagy, firstly prior

to mitochondrial damage where they serve as calcium sensors,

translocating Parkin to mitochondria, and then as Parkin

downstream targets where ubiquitination of Miro proteins

arrests mitochondrial trafficking needed for the organelle

removal (Nahacka et al., 2021).

Involvement of Miro in mitochondria-ER
contact sites

Connections between the endoplasmic reticulum and

mitochondria (MERCS) have been described for single cell

organisms as well as for metazoans (Vance, 1990; Frederick

et al., 2004). MERCS are involved in many cellular functions.

Both organelles serve as a reservoir of calcium; therefore, MERCS

are involved in the regulation of calcium signaling (Rizzuto et al.,

1998). Linked to this MERCS serve as a signaling hub for lipid

metabolism, insulin signaling, mitochondrial fission, autophagy

and apoptosis (Vance, 1990; Simmen et al., 2005; Friedman et al.,

2011; Hamasaki et al., 2013; Tubbs et al., 2014; Sala-Vila et al.,

2016; Rieusset, 2017). Gem1p, a homolog of Miro, was found to

be a binding partner of ERMES (ER-mitochondria encounter

structures) complex in yeasts (Frederick et al., 2004; Kornmann

et al., 2011; Koshiba et al., 2011). A deletion study showed that

the role of Gem1p is more in the regulation of ERMES than in the

architecture of these structures (Kornmann et al., 2011).

Interestingly calcium binding EF domains and N-GTPase

domain were found necessary for the association of this

protein with ERMES. Another example of Miro homolog with

a function in mitochondria-ER contact sites (MERCS) was found

in D. melanogaster (Lee et al., 2016; Lee K. S. et al., 2018). An

important study showed that localization and interaction of

dMiro with calcium transporters in MERCS and thus calcium

homeostasis is dependent on phosphorylation of Miro by Polo

kinase (Lee et al., 2016).
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Interaction of Miro with calcium uniporters was shown also

for humans (Niescier et al., 2013; Niescier et al., 2018). Calcium

levels in Drosophila and the dMiro status were found to be

important for proper brain development regardless of gain-of-

function or loss-of-function mutation of dMiro (Lee et al., 2016;

Lee K. S. et al., 2018). In both cases, mutations led to impaired

calcium signaling that resulted either in activation of

mitochondria-induced apoptosis or ATP depletion and cell

growth inhibition, respectively. Polo kinase was shown to be

important for brain development in not only lower organisms

such as Drosophila, but its impaired function could also be found

in humans in neurological diseases (e.g., PD) (Mbefo et al., 2010;

Elfarrash et al., 2021; Weston et al., 2021).

Interestingly deregulated activity of this kinase was shown to

be associated also with cancer (Naik et al., 2011; Craig et al.,

2014). Other genes participating in the regulation of MERCS

were shown to be related to PD in humans, such as PINK1,

Parkin, leucine-rich repeat kinase 2 (LRRK2), α-synuclein and

Miro. All of these genes are involved in regulation of

mitochondrial quality control and mitophagy, processes

connected by calcium signaling. Several studies showed a

connection between RHOT1 gene mutations and disruption of

Miro1 function in MERCS in PD patients (Berenguer-Escuder

et al., 2019; Grossmann et al., 2019; Berenguer-Escuder et al.,

2020; Grossmann et al., 2020). In all cases regardless of the type of

mutation of RHOT1 gene, this resulted in the decrease of MERCS

and eventually deregulated calcium signaling due to diminished

connections between two organelles serving as reservoirs of

calcium ions. Interestingly, gene-based association clustering

methods revealed correlation between RHOT2 gene mutations

and PD (Saeed, 2018). Moreover, equal contribution of

Miro1 and Miro2 in regulation of MERCS was observed in

MEFs isolated from knock-out mice (Modi et al., 2019). Re-

expression of either Miro1 or Miro2 was able to rescue the WT

phenotype, recover the extent of contacts between ER and

mitochondria, and restore calcium signaling.

Miro proteins and different modes of
mitochondrial transfer

The ability of cells to communicate via exchange of cellular

components such as mitochondria is crucial for maintaining

homeostasis in multicellular organisms. It has been shown that it

also plays an important role in pathological states such as cancer,

pulmonary disease, cardiomyopathy and brain damage (Islam

et al., 2012; Tan et al., 2015; Hayakawa et al., 2016; Moschoi et al.,

2016; Sinha et al., 2016; Torralba et al., 2016; Dong et al., 2017;

Paliwal et al., 2018; Nicolas-Avila et al., 2020; Valenti et al., 2021;

Vona et al., 2021; Zampieri et al., 2021). Mitochondrial transfer is

triggered in response to various signals, most likely originating in

the recipient cell; however, the molecular signals that initiate this

“cross-talk” are still not fully clear.

There are several mechanisms of mitochondrial movement

between cells, i.e., from the donor to the recipient cell. Tunneling

nanotubes, actin-based cytoplasmic bridges, are generally perceived

as the prevalent cellular structure that mediates intercellular

mitochondrial transfer (Rustom et al., 2004; Gerdes and

Carvalho, 2008; Vignais et al., 2017; Sahu et al., 2018; Drab et al.,

2019; Cordero Cervantes and Zurzolo, 2021; Ljubojevic et al., 2021).

Other proposed mechanisms include extracellular vesicles (EVs),

which are secreted into the extracellular milieu by most cell types.

EVs, ranging in size from 40 to 1,000 nm, can be divided into

microvesicles, exosomes and apoptotic bodies, depending on their

size, origin and molecular composition (Mittelbrunn and Sanchez-

Madrid, 2012; Amari and Germain, 2021; Lazar and Goldfinger,

2021; Levoux et al., 2021). Interestingly, it was recently shown that

EVs can be transported over longer distances as in inter-organ

transport of mitochondria between energetically stressed adipocytes

and cardiomyocytes (Crewe et al., 2021). Furthermore, the authors

showed formation of mitochondria-derived vesicles (MDVs) that

are packed into EVs and transport mitochondria to other cells

(Crewe et al., 2021). It has been reported that Miro proteins, as part

of outer mitochondrial membrane, are involved in the formation of

MDVs (Konig et al., 2021). These particles are formed by budding of

mitochondrial membranes and later fuse with either lysosomes or

late endosomes (Soubannier et al., 2012). MDV forming was

originally described for bacteria and serves as quality control of

mitochondria (Soubannier et al., 2012; Pickles et al., 2018).

Moreover, MDVs utilize communication between mitochondria

and other organelles within the cells, especially with peroxisomes

(Sugiura et al., 2017).

Other proposed mechanisms allowing for movement of

mitochondria between cells include gap junctions and cell fusion.

Gap junctions are clusters of intercellular channels that directly

connect the cytoplasm of two adjacent cells allowing for direct

diffusion of ions, small molecules and electrical pulses (Goodenough

et al., 1996; Paliwal et al., 2018; Qin et al., 2021; Zampieri et al., 2021).

Cell fusion is a process in which 2 cells fuse via their membranes,

sharing organelles and cytosolic components, while nuclei remain

intact (Aguilar et al., 2013; Valenti et al., 2021; Zampieri et al., 2021).

Finally, mitochondrial extrusion is another proposed mechanism

governing transfer of mitochondria between cells (Sinha et al., 2016;

Torralba et al., 2016).

Notwithstanding the various modes of intercellular transfer

of mitochondria, movement of the organelles between cells

occurs in many cases via tunneling nanotubes, which is

central for this review.

Tunneling nanotubes

Structure and formation of TNTs

TNTs were first described as several micrometers long actin-

containing membrane connections formed between PC12 cells
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in vitro, mediating transfer of vesicles and organelle (Rustom

et al., 2004). Since this initial observation, TNTs have been

observed in a number of both cancer and non-cancerous cell

types, both in vitro and in vivo (Islam et al., 2012; Jiang et al.,

2016; Berridge and Neuzil, 2017; Hekmatshoar et al., 2018; Mittal

et al., 2019; Pinto et al., 2020; Sahinbegovic et al., 2020; Tiwari

et al., 2021; Allegra et al., 2022; Khattar et al., 2022). Although

capable to move many different cargos (miRNA, lysosomes,

liposomes, Golgi vesicles, calcium, etc.) across connections

lasting for minutes to hours, most common cargo transferred

via TNTs are mitochondria. Under physiological conditions,

transfer of mitochondria from multipotent cells may serve as

a mechanism of “rejuvenation” of the recipient cells, e.g., shifting

them to more progenitor-like phenotype (Acquistapace et al.,

2011). Inversely, transport of mitochondria from differentiated

to multipotent cells can enhance their proliferation or trigger

their differentiation into another cell type (Plotnikov et al., 2010;

Vallabhaneni et al., 2012). Moreover, transfer of mitochondria

was also demonstrated in differentiated cells between

cardiomyocytes and cardiofibroblasts with TNTs being

detected both in vitro and in the tissue (He et al., 2011).

In cancer, the formation of TNTs and intercellular

exchange of mitochondria serves for maintaining the

metabolic homeostasis of cancer cells and could be the

reason of increased malignancy of cancer cells and cancer

drug resistance (Moschoi et al., 2016; Rustom, 2016; Marlein

et al., 2017; Hekmatshoar et al., 2018; Sahu et al., 2018;

Marlein et al., 2019; Raghavan et al., 2021). One of the first

pieces of evidences of TNT formation in malignant tissues

comes from solid tumors isolated from patients with lung

adenocarcinoma and pleural mesothelioma followed by

similar observations in patient-derived ovarian and

pancreatic cancer tissues (Lou et al., 2012b; Thayanithy

et al., 2014; Desir et al., 2018). Later on, mitochondrial

transfer via TNTs was observed in glioblastomas, multiple

myelomas or in an in vitro model of breast cancer, laryngeal

cancer, bladder cancer and others (Pasquier et al., 2013;

Antanaviciute et al., 2014; Osswald et al., 2015; Lu et al.,

2017; Marlein et al., 2019; Pinto et al., 2020; Salaud et al., 2020;

D’Aloia et al., 2021; Pinto et al., 2021). Similarly, cancer cells

have been shown to gain malignancy or enhanced resistance to

drug treatment, hypoxia or apoptosis via TNTs (Pasquier

et al., 2013; Ady et al., 2014; Wang and Gerdes, 2015; Desir

et al., 2016; Rustom, 2016; Desir et al., 2018; Hekmatshoar

et al., 2018; Sahu et al., 2018; Raghavan et al., 2021; Kato et al.,

2022). Moreover, TNTs were identified in hematological

malignancies, where inhibition of their formation improved

the survival of diseased mice in vivo and enhanced

chemosensitivity in vitro (Polak et al., 2015; Wang et al.,

2018; Marlein et al., 2019). Interestingly, recent work

illustrates that cancer cells transfer mitochondria via TNTs

from lymphocytes, depleting immune cells on top of gaining

metabolic advantage (Saha et al., 2022).

TNTs are classified as cell protrusions that 1) connect two (or

more) cells; 2) do not touch the substrate; and 3) contain F-actin

(Dupont et al., 2018; Roehlecke and Schmidt, 2020;

Shanmughapriya et al., 2020). TNTs can connect cells of

similar or different types, based on this they are referred to as

homo- or hetero-TNTs (Dubois et al., 2020). Reported length of

TNTs varies from tens to hundreds of micrometers and width

from fifty to fifteen hundred nanometers (Ady et al., 2014;

Austefjord et al., 2014; Dubois et al., 2020). There are two

groups of TNTs, the first category includes thicker tubes

(>700 nm) containing both tubulin and F-actin, whereas the

second thinner tubes are composed of actin only (Sahu et al.,

2018). This simple taxonomy was however recently challenged by

the observation that thick TNTs formed by thin individual TNTs

(or iTNTs) are bundled together by cadherin or spiraled up into

thick TNTs (Sartori-Rupp et al., 2019; Franchi et al., 2020).

Presence of intermediate filaments, the third main frequent

cytoskeletal component, is much less understood as was

reported in several studies, and most probably provides

mechanical support (Ady et al., 2014; Resnik et al., 2018;

Dubois et al., 2020; Latario et al., 2020).

There are several proposed mechanisms of TNT formation.

They can start forming as filopodia or similar cellular protrusion

from one of the cells, which will be connected with the other cell

or they can form as residues of cell membranes after migration of

cells away from each other (Sahu et al., 2018; Dubois et al., 2020;

Roehlecke and Schmidt, 2020). As TNTs improve cell fitness

under unfavorable conditions such as inflammatory

environment, hypoxia or metabolic stress, their induction is

connected to stress-related (p53, MAP kinase) and pro-

survival (EGFR, Akt, PI3K or mTOR) signaling pathways

promoting remodeling of the cell cytoskeleton and plasma

membrane (Lou et al., 2012b; Ahmad et al., 2014; Desir et al.,

2016; Sahu et al., 2018). Generally, there are three triggers

resulting in TNT formation, often acting together: chemical or

physical stressors (pH, hypoxia), inflammatory conditions

(infection, toxins—LPS, or cytokines) and metabolic stress

(starvation). Various inflammatory conditions have been

demonstrated to induce TNTs such as LPS in cardiomyocytes

or TNFα and IL-13 in epithelial cells. In both cases treatment

induces the formation of more TNTs by the surrounding MSCs,

which donate mitochondria (Ahmad et al., 2014; Yang Y. et al.,

2020). In another study, RAGE receptors and subsequent MAP

kinase signaling were shown to be involved in TNT formation in

response to inflammatory conditions (Sun et al., 2012; Ranzinger

et al., 2014). RAGE receptors are of exceptional interest as they

are involved in both inflammation and oxidative stress responses,

and they have been hypothesized to contribute to tissue

homeostasis via TNT formation under various stress

conditions (Rustom, 2016). Hypoxia, oxidative stress in the

form of hydrogen peroxide and metabolic stress induced by

serum depletion or mitochondrial damage induce or enhance

TNT formation, illustrating that they present most likely a
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general mechanism utilized by distinct cell types in response to

the various manifestations of mitochondrial malfunction (Wang

Y. et al., 2011; Lou et al., 2012a; Lou et al., 2012b; Ahmad et al.,

2014; Liu et al., 2014; Thayanithy et al., 2014; Desir et al., 2016;

Jiang et al., 2016; Kretschmer et al., 2019; Yang Y. et al., 2020).

Details of signaling molecules and pathways that bridge cellular

stress and formation of TNTs are far from being elucidated, and

our understanding is now rather contradictory. P53, a central

hub of stress-related signaling pathways, was first described as

essential for TNT formation, but later reported to be dispensable

for this process (Wang Y. et al., 2011; Andresen et al., 2013;

Zhang and Zhang, 2015). Other molecules reported to be

involved in TNT formation include ROCK, PAK, MAP/ERK,

PI3K, mTOR, and, thoroughly reviewed elsewhere (see Table 1).

Downstream from the above mentioned signaling pathways

are proteins involved in TNT formation via interaction with the

actin cytoskeleton or cell membrane. One such protein identified

in several human and mouse cells is M-Sec (TNFAIP2), that

regulates actin polymerization, filopodia formation and exocyst

complex recruitment via interaction with small GTPases from

the Rho (Cdc42) and Ral-like families (RalA) (Hase et al., 2009;

Kimura et al., 2016; Lotfi et al., 2020; Barutta et al., 2021). Other

proteins are the Arp2/3 complex branching actin,

LST1 recruiting exocyst, RalA and actin cross-linking protein

filamin or the unconventional motor protein Myo10 (Gousset

et al., 2013; Schiller et al., 2013; Hanna et al., 2017; Tasca et al.,

2017; Latario et al., 2020). Also, cell adhesion molecules and

receptors (FAK, ICAM-1, or CD38) are frequently reported to be

involved in TNT formation and maintenance or to correlate with

mitochondrial transfer via TNTs (Sáenz-de-Santa-María et al.,

2019; Wang et al., 2018; Marlein et al., 2019).

Mechanism of mitochondrial transfer via
TNTs and the role of Miro proteins

By definition, all TNTs contain actin cytoskeleton and, in

many cases, microtubules, both of these structures possibly acting

as “tracks” for movement of mitochondria. Microtubule-

associated motors dynein or kinesin mediate the movement of

mitochondria towards minus or plus ends of microtubules over

long distances, in contrast to short-range actin-mediated

transport (MacAskill and Kittler, 2010). Miro proteins provide

tethering of mitochondria to cytoskeletal motor proteins and

serve as regulators of transport of the organelles, based on their

calcium-dependent activity (Eberhardt et al., 2020; Nahacka

et al., 2021). Essential role of Miro in intercellular transfer of

mitochondria has been demonstrated by many studies reporting

a correlation between Miro expression and mitochondria

exchange with TNTs being the conduits for the transport

(Ahmad et al., 2014; Babenko et al., 2018; English et al., 2020;

Tseng et al., 2021; Wang et al., 2021). Except for one study,

presence of Miro was found essential for the transfer/movement

of mitochondria along TNTs rather than for their formation

(Babenko et al., 2018; Raghavan et al., 2021). Although direct

evidence connecting Miro to a particular alteration in TNT’s

dynamic or structure is still missing, the process of TNTs

formation via cytoskeleton and membrane remodeling is

energetically demanding, with positioning of mitochondria

(involving Miro) likely playing a role. It is still questionable,

whether Miro proteins are more important for transport

involving microtubules or actin structures as tracks for

movement of mitochondria. Notwithstanding this unresolved

question, given the notion that mitochondria move between cells

over relatively long distances, it is more probable that Miro

proteins are involved in tubulin-based transport. However,

rather infrequent and contradictory reports regarding the

importance of microtubules for TNT-mediated transfer

between cells and reports of presence of mitochondria in

TNTs lacking microtubules give rise to more questions that

need to be answered (Luchetti et al., 2012; Wittig et al., 2012;

Hanna et al., 2017; Sartori-Rupp et al., 2019).

Besides microtubule-associated motor proteins, Miro ensures

direct interaction also with the actin motor protein myosin XIX

that is hypothesized to be responsible for the movement of

mitochondria via TNTs along actin filaments (Oeding et al.,

2018; Qin et al., 2021). The same authors also mentioned the

possibility of mitochondrial “docking” with myosin V or VI

during their transition from the cytoplasm to TNTs. It would be

interesting to find out whether this docking function of Miro

proteins could be proved not only in the case of actin transport

but also in the case of tubulin transport. It should be noted that

mitochondria ought to “leave” TNTs on the side of the acceptor

cells at their “+” termini and associate with tubulin fibers at their

“+” termini. Mitochondria then move towards the “−” termini of

cytoplasmic microtubules toward the perinuclear space, being

propelled by dynein (see Figure 1). Here mitochondria can

establish functional connection with recipient cellular

organelles like the nucleus, ER or peroxisomes (Sugiura et al.,

2017; Castro et al., 2018; Okumoto et al., 2018; Modi et al., 2019;

Desai et al., 2020). Miro is involved not only in the “positioning”

of mitochondria within recipient cells, but also in establishing

functional connection of these organelles (Castro et al., 2018;

Castro and Schrader, 2018; Okumoto et al., 2018; Modi et al.,

2019; White et al., 2020; Guillen-Samander et al., 2021).

Mitochondria from cancer cells could be possibly transported

in opposite directions via TNTs (Caicedo et al., 2015; Lu et al.,

2017). Exact regulation of mitochondrial movement

directionality via Miro as well as the inner cytoskeletal

organization of TNTs (e.g., orientation of microtubules)

remains an intriguing topic for further investigation.

Concerning damaged mitochondria, it is known that Miro

plays an important role in the process of mitophagy,

i.e., selective degradation of damaged mitochondria (Shlevkov

et al., 2016; Lopez-Domenech et al., 2018; Safiulina et al., 2019a;

Safiulina et al., 2019b). Moreover, Miro-assisted pulling of
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mitochondria along microtubules was recently described as a

crucial step in the formation of mitochondrial-derived vesicles

important for their quality control (Konig et al., 2021). Although

much less common, intercellular transfer of damaged

mitochondria has been demonstrated (Davis et al., 2014;

Mahrouf-Yorgov et al., 2017; Wang et al., 2018; Crewe et al.,

2021). In one case, Miro expression in recipient MSCs correlated

with damage induced in donor cells by hydrogen peroxide

(Mahrouf-Yorgov et al., 2017).

Additionally Miro1 and partially Miro2 have been shown to

be important for mitochondrial transport towards the cell

periphery, especially in case of energy-demanding processes

such as migration and invasion of cancer cells (Caino et al.,

2016; Lopez-Domenech et al., 2018; Wang et al., 2021). Knock-

out of these two proteins results in perinuclear localization of

mitochondria, with more prominent phenotype in case of Miro1/

Miro2 double knock-out (Kittler, 2015). It can be expected that

successful displacement of mitochondria at the periphery of the

donor cell is a necessary step for the process of mitochondrial

transfer via TNTs; and, Miro proteins play an essential role in

this process. As mentioned above, Miro proteins have also been

shown to be part of the MICOS complex that connects outer

mitochondrial membrane and inner mitochondrial membrane,

whereby maintaining the integrity of cristae structure of

mitochondria during their transfer (Modi et al., 2019).

The role of Miro proteins in cell
migration and cancer metastasis

Recent findings show that localization of mitochondria

within the cell is important for eventual cellular responses in

the tumor niche (Senft and Ronai, 2016; Altieri, 2017; Alshaabi

et al., 2020; Furnish and Caino, 2020). Constant reprogramming

of cellular metabolism in order to meet the energetic demands of

cancer cells requires a flexible system of mitochondrial

FIGURE 1
Mechanism of mitochondrial transport between two cells connected via TNTs. (A) Tunneling nanotube (TNT) formation between donor and
acceptor cell could be pronounced by oxidative and metabolic stress or inflammatory conditions. Healthy mitochondria from the donor cell (left)
move to a cancer cell (right) with damaged mitochondria. Mitochondria from cancer cells are possibly transported in opposite directions via TNTs.
Mitochondrial transport in TNTs requiresmolecular motors that move the organelles along tubulin or actin filaments. It cannot be excluded that
filaments are continuous from the donor cell into the TNT. (B) In the donor cell, mitochondria have to be transported towards the cell periphery into
the base of TNTs. Peripheral localization of mitochondria is governed by kinesin or myosin motor proteins associated with microtubules or actin
filaments respectively, tethered by Miro proteins. (C) Inside TNTs, healthy mitochondria are transported presumably along microtubules by kinesin
motor with the assistance of TRAK adaptor and Miro, or along actin filaments bymyosin with the assistance of Miro proteins. Damagedmitochondria
could be possiblymoved in the opposite direction by dynein with the assistance ofMiro protein. (D) In the acceptor cell, importedmitochondria need
to “switch the tracks” to be transported further within the cell. After import, mitochondria can establish functional connections with the nucleus (by
means of nucleus-associated mitochondrial structures, NAMS), endoplasmic reticulum (ER-mitochondria encounter structures, ERMCS) and other
organelles. The figure was created utilizing elements from Servier Medical Art (Creative Common Attribution 3.0 Generic License, https://smart.
servier.com/).
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trafficking. Distribution/positioning of functional mitochondria

in cells can have an impact on energy-consuming processes such

as proliferation, cell plasticity, migration and the subsequent

metastatic capacity of cancer cells (Desai et al., 2013; Zhao et al.,

2013; Caino et al., 2015; Rivadeneira et al., 2015; Furnish and

Caino, 2020). During the process of migration and invasion of

tumor cells, mitochondria are present in the cortical cytoskeleton

and the whole mitochondrial network is positioned in the

direction of the movement of the cells (Desai et al., 2013).

Morphological changes, changes of the cell shape and

adhesion to extracellular matrix, together with the physical

forces occurring during cell migration, are generated by

F-actin cytoskeleton (Gardel et al., 2010). These processes are

coordinated by a number of signaling events and biochemical

reactions that have high demand for energy, which is provided by

mitochondria. Similarly, the leading edge of migrating cells needs

a supply of ATP that is produced by oxidative phosphorylation

rather than by glycolysis, which is supported by re-distribution of

mitochondria toward the leading edge regulated by AMP-

activated protein kinase (Cunniff et al., 2016). The importance

of ATP production at the leading edge of migrating cells was

manifested in tumor cells with deficient oxidative

phosphorylation (ρ0 cells lacking mtDNA) or in cells treated

with inhibitors of mitochondrial respiratory complexes I-III and

V (Caino et al., 2015).

Transport of mitochondria within cells occurs by means of

their movement along actin and tubulin cytoskeleton with

essential function of Miro proteins in this process. Several

papers reported that inhibition of actin using specific

inhibitors did not affect migration of the cells or focal

adhesion formation, but inhibition of tubulin using nocodazol

had a considerable effect on these processes, pointing to tubulin

transport of mitochondria as playing an important role in

positioning of mitochondria at the leading edge of migrating

cells (Nguyen et al., 2018; Alshaabi et al., 2021). It was reported in

several papers that knock-out of Miro1 results in perinuclear

localization of mitochondria and in restricted mitochondrial

network, but did not affect mitochondrial bioenergetics, most

probably due to the compensatory mechanism of Miro2 as both

proteins were shown to regulate mitochondrial morphology and

cristae architecture (Nguyen et al., 2014; Cunniff et al., 2016;

Schuler et al., 2017; Lopez-Domenech et al., 2018; Alshaabi et al.,

2021).

An interesting work of Schuler et al. (2017) reported that

intracellular position of mitochondria determines subcellular

energy gradients with the highest ATP/ADP gradient in the

perinuclear space that gradually declines towards the cell

periphery and from the ventral to dorsal surface of the cell.

These energy gradients correlate with the number and

distribution of mitochondria. In Miro1−/− mouse embryonic

fibroblasts (MEFs), this phenomenon was highly pronounced

due to restricted mitochondrial localization. Knock-out of

Miro1 led to increased level of ADP and reduced ATP/ADP

ratio with the highest ratio in the area of highest mitochondrial

density around the nucleus, rapidly declining towards the cell

periphery. This change of intracellular energy distribution in

Miro1−/−MEFs resulted in decreased leading edge protrusion and

membrane ruffling, impaired focal adhesion formation and

conclusively in reduced velocity of migrating cells (Schuler

et al., 2017). Additionally, mitochondrial localization and

density correlates not only with the ATP/ADP ratio but also

with the level of hydrogen peroxide affecting local cellular

responses to elevated mitochondrial ROS (Alshaabi et al.,

2021). Consistent with this, it is known that the level of

hydrogen peroxide is increased in the leading edge of

migrating tumor cells (Cameron et al., 2015).

MEF cells lacking Miro1 have significantly reduced levels of

peripheral hydrogen peroxide, which did not increase any further

after inhibition of mitochondrial respiratory complex I with

rotenone (Alshaabi et al., 2021). On the other hand, rotenone

treatment induced higher level of nuclear hydrogen peroxide that

was associated with elevated DNA damage response and

correlated with perinuclear localization of the mitochondria in

these cells (Alshaabi et al., 2021). These findings not only

document that ATP and hydrogen peroxide (or ROS in

general) are not simply diffused in the cell but form gradients

copying the subcellular position of mitochondria, affecting the

importance of the architecture of mitochondrial network and

their distribution towards the “site of need” during highly energy

demanding processes such as cellular migration. The importance

of mitochondrial motility as an active part of the process of cell

migration was demonstrated also in the model of atherosclerotic

vascular disease in vascular smooth muscle cells (VSMCs)

(Nguyen et al., 2018). Migration of VSMCs is regulated by

mitochondrial Ca2+ calmodulin-dependent kinase II

(mtCaMKII), the key regulator of the mitochondrial Ca2+

uniporter (MCU). Miro1 was found to be required for

mtCaMKII-mediated mitochondrial translocation and

Miro1 KO abolished migration of VSMCs cells (Nguyen et al.,

2018).

Although the findings mentioned above were mostly

acquired using non-cancerous cells (MEFs, VSMCs), several

other papers implied the role of Miro proteins in the process

of cell migration of cancer cells and their subsequent invasion

and metastasis (Jiang et al., 2012; Desai et al., 2013; Li Q. et al.,

2015; Caino et al., 2015; Caino et al., 2016; Mills et al., 2016; Qu

et al., 2019; Wang et al., 2019; Furnish and Caino, 2020; Ghosh

et al., 2022). Both proteins are expressed ubiquitously in various

tissues and are not cancer-specific. RHOT1 gene expression can

be found upregulated (pancreatic adenocarcinoma, cholangio

carcinoma, esophageal carcinoma, glioblastoma or acute myeloid

leukemia and thymoma) as well as downregulated

(adrenocortical carcinoma, ovarian serous

cystadenocarcinoma, skin cutaneous melanoma). On the other

hand, RHOT2 is overall downregulated in cancer compared to

normal tissue with exceptions being pancreatic adenocarcinoma,
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cholangio carcinoma and thymoma (as for Miro1) (Tang et al.,

2017). However, relevant functional studies are missing. Several

studies have shown a link between increased expression of

Miro1 and Miro2 and cell migration or metastasis (Li Q.

et al., 2015; Caino et al., 2016; Furnish et al., 2022).

Expression of Miro1 was significantly higher in pancreatic

ductal epithelial cells of pancreatic cancer from patients

comparing to pre-cancerous tissues, and knock-down of

Miro1 in SW1990 pancreatic adenocarcinoma cell line

resulted in inhibition of cell migration (Li Q. et al., 2015).

Interestingly, SMAD4 protein, a tumor-suppressor involved in

TGFβ signaling, has been shown to be negatively regulated by

Miro1 expression (Li Q. et al., 2015). Similarly, Miro2 expression

was found to be significantly higher in several types of tumors

compared to normal tissue and was upregulated in metastatic

cancer cells when compared to primary tumors (Caino et al.,

2016; Furnish et al., 2022). Downregulation of Miro1 expression

was found to regulate negatively tumor cell invasion in

syntaphilin knock-down cancer cells (Caino et al., 2016).

Syntaphilin is a negative regulator of tumor cell migration and

invasion, and the protein is connected with the tubulin transport

of vesicles and was formerly thought to play a role exclusively in

neurons; however, recent research revealed that it may be

functional in other cell types (Caino et al., 2016; Caino et al.,

2017; Seo et al., 2018; Hwang et al., 2019; Furnish and Caino,

2020; Chen et al., 2021). Although Miro2 did not have an effect

on tumor cell invasion in the model of syntaphilin knock-down

cells, it did effect, together with Miro1, mitochondrial trafficking

and invasion of cancer cells in the model of stress induced tumor

cell invasion, indicating a mechanism independent of the

syntaphilin protein (Caino et al., 2016; Lopez-Domenech

et al., 2018).

Discussion and conclusion

Miro proteins are important regulators of mitochondrial

dynamics emanating their function beyond acting as mere

adaptors that help movement of mitochondria along actin and

tubulin fibers. Involvement in regulation of mitochondrial

trafficking, regulation of mitophagy, an important tool of

quality control of mitochondria, communication with other

organelles such as peroxisomes, the endoplasmic reticulum or

the nucleus, support of integrity of cristae structures as part of the

MICOS complex, and regulation of calcium signaling that

controls positioning of mitochondria within the cell, plus

modulation of signaling pathways, makes the Miro proteins

highly important players of regulation of mitochondrial

metabolism and subsequent cellular responses (Yang M. et al.,

2020; Eberhardt et al., 2020; Nahacka et al., 2021; Zinsmaier,

2021). In this review, we support the notion that mitochondria

are indispensable for tumorigenesis and tumor progression

(Porporato et al., 2018; Boukalova et al., 2020; Furnish and

Caino, 2020). From in vitro and in vivo data we know that

intercellular mitochondrial transfer could be found in tumors

(Osswald et al., 2015; Tan et al., 2015; Moschoi et al., 2016; Dong

et al., 2017; Bajzikova et al., 2019). Horizontal transfer of

mitochondria between cells is a process that is still not well

characterized, especially in cancer where detailed information is

missing. The role of Miro in the process of intercellular

mitochondrial transfer is supported in other disease models,

where TNTs are involved (Kay et al., 2018; Kruppa et al.,

2018; Panchal and Tiwari, 2021). Overexpression of

Miro1 resulted in enhancement of horizontal transfer of

mitochondria and improved cell recovery after ischemic or

oxidative damage in different cell types (Ahmad et al., 2014;

Babenko et al., 2018; Li et al., 2020; Tseng et al., 2021). Another

paper showed that higher expression of Miro1 in iPSC-MSCs was

responsible for superior efficacy in mitochondrial transfer

compared to horizontal transfer of mitochondria observed in

MSCs isolated from bone marrow in the model of

cardiomyopathy (Zhang et al., 2016). This research points out

to a rather general mechanism behind the regulation of

mitochondrial “exchange” in different disease models, where

Miro1 plays an important role in recovery of different types

of cells after oxidative damage. Even though expression of both

proteins Miro1 and Miro2 was found elevated in different types

of patient tumors, crucial in vitro and in vivo data showing direct

involvement of these proteins in the process of horizontal

mitochondrial transfer in cancer are still missing. Available

data we have are of an indirect character via involvement of

Miro in the mitochondrial transport in TNTs (Qin et al., 2021;

Raghavan et al., 2021).

As Miro2 is more redundant in the presence of Miro1 in

terms of mitochondrial transport along tubulin and since it is not

able to compensate for the loss of Miro1, it is highly probable that

Miro2 would not be crucial for the process of horizontal transfer

via TNTs and till this date Miro2 has not been documented to be

involved in intercellular transfer of mitochondria. An example

implying the possible role of Miro2 in horizontal transfer could

be found in inter-mitochondrial communication in the heart,

where Miro2 facilitates “mitochondrial nanotunneling” (Cao

et al., 2019). Horizontal transfer of mitochondria is a complex

process and even thoughMiro2 may not be a crucial player in the

transfer of mitochondria per se, it could be important for the

reconstruction of the mitochondrial network and re-establishing

proper signalization (between mitochondria themselves or

between ER and mitochondria) and finally respiration in the

recipient cells. Since calcium signaling is fundamental for the

mitochondrial function and both Miro1 and Miro2 have been

found to equally contribute to calcium-regulated signaling

(except for the mitochondrial trafficking), it is highly probable

that the two proteins are equally involved in the process of re-

establishing of mitochondrial function in the recipient cells.

As mentioned, TNTs are considered the most frequent

means of intercellular mitochondrial transfer, but observation
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of their formation is limited to in vitro experiments. For this

reason, further investigation of the formation and function of

TNTs requires multimodal approaches. An example is the use of

spatially defined co-cultures using microfluidic devices allowing

quantitative assessment of TNTs formation as exemplified by the

work of Yang et al. (2016). Ultrastructure analysis of TNTs,

optimally using sophisticated microscopic methods such as FIB-

SEM microscopy or CLEM, will be essential for the correct

interpretation of structural details of TNTs as shown recently,

providing surprising description of the TNT complex, involving

smaller TNTs bundled together such that they appear as a single

TNT (Sartori-Rupp et al., 2019).

We showed in our previous experimental work that

mitochondrial transfer is necessary for tumor cell proliferation

due to the role of mitochondria in de novo pyrimidine synthesis

(Bajzikova et al., 2019). An interesting idea was proposed that

cancer cells switch between the proliferative state to highly

invasive and metastatic status by redistribution of

mitochondria from the perinuclear space to the cortical

cytoskeleton and the cell’s leading edge (Caino et al., 2017;

Furnish and Caino, 2020). Recent data showing physical

connections of the nucleus and mitochondria support this

idea (Desai et al., 2020). Therefore, Miro proteins could play

an important role in both mitochondrial transfer and cell

invasion/metastasis. Redistribution of energetically active

mitochondria to the cortical cytoskeleton was shown to be an

important step for cancer cells to migrate and invade distant

tissues. Even though the majority of data point to tubulin

transport and Miro1 protein as crucial in the process of

migration of cancer cells, as shown in the model of migration

induced by PI3 kinase inhibitors, the involvement of actin

transport and Miro2 remains questionable (Caino et al.,

2016). More data are needed to elucidate the role of these two

proteins in the process of migration and metastasis.

In this review, we discuss the notion that mitochondria

and Miro proteins are essential in the two important phases of

tumorigenesis. In cancer cells with aberrant oxidative

phosphorylation, mitochondrial transfer is necessary to

initiate tumor progression and, positioning of mitochondria

within the cancer cell is crucial for further invasion and

metastasis. This makes mitochondria an attractive target

for translational medicine as already shown for

chemotherapy of leukemia and radiotherapy of

glioblastoma, where mitochondrial transfer to cancer cells

from the stroma was documented to occur in the course of

the treatment, possibly contributing to tumor resistance

(Osswald et al., 2015; Moschoi et al., 2016).
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