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Rainfall and temperature are important climatic inputs for agricultural production, especially in the context of climate change.
However, accurate analysis and simulation of the joint distribution of rainfall and temperature are difficult due to possible
interdependence between them. As one possible approach to this problem, five families of copula models are employed to model the
interdependence between rainfall and temperature. Scania is a leading agricultural province in Sweden and is affected by a maritime
climate. Historical climatic data for Scania is used to demonstrate the modeling process. Heteroscedasticity and autocorrelation
of sample data are also considered to eliminate the possibility of observation error. The results indicate that for Scania there are
negative correlations between rainfall and temperature for the months from April to July and September. The student copula is
found to be most suitable to model the bivariate distribution of rainfall and temperature based on the Akaike information criterion
(AIC) and Bayesian information criterion (BIC). Using the student copula, we simulate temperature and rainfall simultaneously.
The resulting models can be integrated with research on agricultural production and planning to study the effects of changing

climate on crop yields.

1. Introduction

Weather is the key source of uncertainty affecting crop
yield especially in the context of climate change [1-3]. For
example, Vergara et al. studied the potential impact of catas-
trophic weather on the crop insurance industry and found
that 93% of crop loss was directly related to unfavorable
weather [4]. Accurate modeling of multivariate weather
distributions would allow farmers to make better decisions
for reducing their exposure to weather risk or take advantage
of favorable climatic relationships [5]. Among variables
relevant to weather, rainfall and temperature are two impor-
tant factors which have a large effect on crop yield [6—
9]. Typically, temperature affects the length of the growing
season and rainfall affects plant production (leaf area and the
photosynthetic efficiency) [10, 11].

There is a lot of literature studying the effects of
temperature and rainfall on crop yield. Erskine and El Ashkar
quantified the effect of rainfall on lentil seed yield and found

that rainfall accounted for 79.8% of the variance of seed yield
[12]. Lobell et al. studied 12 major Californian crops and
found rainfall was able to explain more than 60% of the
observed variability in yields for most crops [13]. Cooper
et al. found that not only the seasonal rainfall totals and their
season-to-season variability were important, but also the
“within season” variability had a major effect on crop pro-
ductivity [14], which implies that monthly data is needed in
crop production analysis.

Muchow et al. found that lower temperature increased
the length of time that the maize could intercept radiation
and hence grow [15]. Lobell and Asner found a roughly 17%
relative decrease in both corn and soybean yield in the USA
for each degree of increase in growing season temperature
[16]. In summary, it is well established that rainfall and tem-
perature are two important climatic factors affecting agricul-
tural production [17-19].

Since temperature and rainfall are critical determinants
of crop yield, accurate simulation of temperature and rainfall
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is important not only for meteorology but also for agricul-
tural economics. However, in reality it is difficult to simulate
rainfall and temperature simultaneously due to the interde-
pendence (correlation) between them [20-22]. Spatially, it
is generally believed that there exists significant correlation
between rainfall and temperature over tropical oceans and
land [23]. For example, Aldrian and Dwi Susanto examined
the relationship between rainfall and sea surface temperature
and found that Indonesian rainfall variability revealed some
sensitivity to sea-surface temperature variability in adjacent
parts of the Indian and Pacific Oceans [24]. Black also
studied the relationship between Indian Ocean sea surface
temperature and East Africa rainfall and concluded that
strong East African rainfall was associated with warming in
the Pacific and Western Indian Oceans and cooling in the
Eastern Indian Ocean [25].

Temporally, it is generally believed that the correlation
between rainfall and temperature changes between months.
For example, Rajeevan et al. examined the temporal rela-
tionship between land surface temperature and rainfall [26].
They found that temperature and rainfall were positively
correlated during January and May but negatively correlated
during July. Using annual data Huang et al. also found a
negative correlation between rainfall and temperature in
Yellow River basin of China [27].

To take the interdependence between rainfall and tem-
perature into account, multivariate probability simulation
is needed. Traditionally multivariate probability density
functions, however, are generally limited to the multivariate
normal distribution or mixtures of it [28]. A possible method
that provides an alternative is the copula method. Copulas
are advantageous because they can model joint distributions
of random variables with greater flexibility both in terms of
marginal distributions and the dependence structure [29].
Copulas have been used in financial economics for quite
some time [30-32]. However, there are relatively few appli-
cations to agricultural weather simulation.

In respect to temperature and rainfall, AghaKouchak
et al. applied two different elliptical copula families, namely,
Gaussian and t-copula, to simulate the spatial dependence
of rainfall and found that using the t-copula might have
significant advantages over the well-known Gaussian copula
particularly with respect to extremes [33]. Serinaldi also
studied the spatial dependence of rainfall and confirmed that
only positive contemporaneous pairs of rainfall observations
correctly described the intersite dependence [34]. Laux et al.
highlighted the importance of pretreatment of meteorologi-
cal data in the copula modeling process [35]. Laux et al. used
the Clayton copula to construct the bivariate distribution of
drought duration and intensity [36]. Similar applications of
the Clayton copula can also be found in the studies of Favre
et al. and Shiau et al. [37, 38]. Furthermore, they raised the
question as to which copula model best fitted the empirical
data. The only literature concerning the application of copula
simulation to model the interdependence between tempera-
ture and rainfall up to now is that of Scholzel and Friederichs
[39]. They used a simple statistical model based on the cop-
ula approach to describe the phenomenon that cold periods
were accompanied by small precipitation amounts.
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Figure 1: Monthly average temperature in Scania, Sweden, from
1961 to 2010. Note: the boundary of the box closest to zero indicates
the 25th percentile, a line within the box marks the median, and the
boundary of the box farthest from zero indicates the 75th percentile.
Whiskers (error bars) above and below the box indicate the 90th and
10th percentiles.

Inspired by Dupuis’s study on hydrological random vari-
ables [40], the purpose of this paper is to illustrate the pre-
treatment process of meteorological data, demonstrate the
application of different copulas to modeling of joint distri-
butions of rainfall and temperature, select the most suitable
copula function according to information criteria, and finally
simulate rainfall and temperature simultaneously.

2. Materials and Methods

2.1. Study Area. Scania is Sweden’s southernmost province
and one of Northern Europe’s most fertile farming districts
with the main crops being winter wheat, rapeseed, sugar
beets, and barley. As Scania is surrounded by water on three
sides (the Baltic Sea, the Kattegat Sea, and the Oresund
Sound), it has a maritime climate, especially along the south
and east coasts. The winters are mild (few days of snow),
but the summers are similar to those in the rest of southern
Sweden.

2.2. Data Collection and Preliminary Analysis. Monthly tem-
perature and rainfall data for Scania from 1961 to 2010 was
obtained from the Swedish Meteorological and Hydrological
Institute.

2.2.1. Temperature. Monthly average temperature in Scania
shows a clear seasonal cycle from 1961 to 2010 (Figure 1).
The average temperature usually reaches its peak in July and
its bottom in February. From April to November, the average
temperature is always above 0°C. The variability of average
temperature in January and February is though relatively

large. Some descriptive temperature statistics are listed in
Table 1.
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TaBLE 1: Descriptive statistics for monthly average temperature from 1961 to 2010 (unit: °C).

Jan. Feb. Mar. Apr. May June
Maximum 5.10 5.20 5.80 8.30 13.10 18.00
Minimum -5.20 -5.20 -2.30 1.90 8.40 12.00
Mean 0.83 0.54 2.21 5.68 10.58 14.78
Standard deviation 2.48 2.39 1.85 1.36 1.20 1.07
Variation coefficient 2.99 4.44 0.84 0.24 0.11 0.07

July Aug. Sep. Oct. Nov. Dec.
Maximum 21.00 21.50 16.90 13.20 8.30 7.10
Minimum 13.90 14.60 11.60 7.60 2.70 —-2.80
Mean 16.99 17.04 13.98 10.03 5.80 2.49
Standard deviation 1.59 1.45 1.20 1.33 1.27 1.88
Variation coefficient 0.09 0.09 0.09 0.13 0.22 0.76

TaBLE 2: Descriptive statistics for monthly total rainfall from 1961 to 2010 (unit: mm).

Jan. Feb. Mar. Apr. May June
Maximum 70.00 50.00 73.50 87.90 90.60 123.3
Minimum 1.00 5.00 3.30 3.80 6.30 0.1
Mean 35.19 25.14 30.07 32.20 39.74 46.28
Standard deviation 17.07 11.38 16.25 18.86 20.46 26.82
Variation coefficient 0.49 0.45 0.54 0.59 0.51 0.58

July Aug. Sep. Oct. Nov. Dec.
Maximum 147.60 189.90 161.90 106.30 95.00 106.00
Minimum 7.40 5.70 7.30 4.50 17.00 4.80
Mean 51.15 58.33 49.20 45.90 45.73 40.80
Standard deviation 30.76 39.97 31.48 24.26 19.65 19.03
Variation coefficient 0.60 0.69 0.64 0.53 0.43 0.47
2.2.2. Rainfall. Compared with temperature, monthly total 200
rainfall in Scania does not show a clear seasonal cycle from
1961 to 2010. From June to November, the average monthly 150 4
total rainfall is relatively high (Figure 2). Some descriptive
rainfall statistics are listed in Table 2. _
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2.2.3. The Relationship between Rainfall and Temperature. =
The physical rationale behind the relationship between £
rainfall and temperature is that rainfall may affect soil g 307 %I él é é %l
moisture which may in turn affect surface temperature by I;l
controlling the partitioning between the sensible and latent 0
heat fluxes [41]. Because the sample data is non-Gaussian
distributed and skewed, the Kendall correlation coefficient is

employed to calculate the correlation between monthly rain-
fall and temperature. It is found that there are negative cor-
relations between rainfall and temperature from April to July
and in September (at the 10% confidence level) (Table 3).

2.3. Methods. Here we use the copula functions to model
the interdependence between the probability distributions
of a certain month’s temperature and rainfall. Let X and Y
be continuous random variables representing temperature
and rainfall, with cumulative distribution functions Fx (x) =
Pr(X =< x) and Gy(y) = Pr(Y < y), respectively. Following
Sklar [42], there is a unique function C such that

Pr(X <x,Y < y) = C(F(x),G(y)), (1)

. . > W > b S > J
s 2 =8 & = £ = &= 0

] - 5 ©

S g s <=2 B 2 2 B Oz oA

FIGURE 2: Monthly total rainfall in Scania, Sweden, from 1961 to
2010. Note: the boundary of the box closest to zero indicates the
25th percentile, a line within the box marks the median, and the
boundary of the box farthest from zero indicates the 75th percentile.
Whiskers (error bars) above and below the box indicate the 90th and
10th percentiles.

where C(u,v) = Pr(U < u, V < v) is the distribution of the
pair (U, V) = (F(X),G(Y)) whose margins are uniform on
[0, 1]. The function C is called a copula. As argued by Joe [43]



TasLE 3: Correlation analysis for monthly temperature and rainfall from 1961 to 2010.
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Jan. Feb. Mar. Apr. May June
Kendall correlation coefficients 0.12 0.13 0.07 -0.27 -0.3 —-0.17
P value 0.22 0.19 0.49 0.007 0.002 0.08
July Aug. Sep. Oct. Nov. Dec.
Kendall correlation coefficients -0.3 —-0.02 —-0.19 —-0.13 —-0.02 0.09
P value 0.002 0.84 0.06 0.19 0.85 0.37
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FIGURE 3: Temperature and rainfall in April from 1961 to 2010.
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FiGure 5: Sample autocorrelation function (ACF) of AR adjusted temperature and rainfall in April.
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FIGURE 6: Residuals for AR adjusted temperature and rainfall in April.
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FIGURE 7: Scatters of residuals for trend adjusted temperature and rainfall in April.

and Nelsen [44] among others, C characterizes the depen-
dence in the pair (X,Y). There are many parametric copula
families available, which usually have parameters that con-
trol the strength of dependence. Among these, five families
of commonly used copulas are considered. They are listed
in Table 4, along with their parameter ranges. The first three
are Archimedean [43] and the last two are metaelliptical [45].

After calculating the parameters of each copula, it is
necessary to decide which family is the best representation of
the dependence structure between the variables of interest.
There are a few techniques to select the best copula. One of
them is based on distance measures pertaining to the distri-
butions of the candidate models (copulas) and the empirical
distribution of the data [46, 47]. Alternative methods include
likelihood ratio tests and approaches related to information
criteria [31], such as Akaike [48] and Schwarz’s Bayesian [49]

Information Criteria. Information criteria are adopted here
because they can describe the tradeoff between bias (accu-
racy) and variance (complexity) in model construction. The
Akaike information criterion (AIC) is a measure of the
relative goodness of fit of a statistical model. Its definition
is

AIC = 2k — 2In(L), (2)

where k is the number of parameters in the copula and L
is the maximized value of the likelihood function for the
copula. The Bayesian information criterion (BIC) was devel-
oped by Schwarz using Bayesian formalism. Its definition is

BIC = —21In(L) + kIn(N), (3)

where N is the sample size.



The Scientific World Journal

0.6

0.2

-0.2 |

rrain

—0.6

-0.8 |

-04 -03

-0.2

-0.1 0 0.1 0.2 0.3

rtempe

0.8

0.6

04} o

02

-0.2 ¢

-0.4

—0.6 |

(b)

FIGURE 8: Scatter plots of real residuals (a) and student-based copula simulated residuals (b).

3. Results and Discussion

Temperature and rainfall data in April from 1961 to 2010
is employed as an example to demonstrate the modeling
process (Figure 3). There is a significant negative relationship
(Kendall correlation coefficient is —0.27, P-value = 0.007)
between temperature and rainfall in April. Temperature has
negative skewness (—0.35) and rainfall has positive skewness
(1.07), which may cause a heteroscedasticity problem when
fitting the model [50]. Following Kim and Ahn [51], the
temperature and rainfall data are log-transformed to remove

this effect. The logarithmic transformation for the data is
invertible, which will not affect the fitting results.

Following Benth and Saltyte-Benth’s instructions [52],
the time series of temperature and rainfall are tested for auto-
correlation using the Q-statistics (Figure 4). Autocorrelation
describes the correlation between values of temperature (or
rainfall) at different points in time, as a function of the
time difference. The presence of autocorrelation increases
the variances of residuals and estimated coefficients, which
reduces the model’s efficiency. The Ljung-Box Q test is a type
of statistical test of whether autocorrelations of a time series
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TasLE 4: Five families of copulas.

Family C(u,v) Range of 0
Normal N (O Hw), 1 (v)) [-1,1]
Student To,y (Ty’l(u), T,'(v)) [-1,1]
Clayton (v —1) (0, )
Frank —0"'In{l1+ (e 1) - 1)/(e ¥ - 1)} (-0, 00)
Gumbel exp]=[(-Inw)’ + (- Inv)"]"’} (1, 0)

®: cumulative distribution function (CDF) of a N(0,1).

Ny: CDF of a standard bivariate normal distribution with Pearson
correlation 6.

Ty: CDF of a student distribution with y degrees of freedom.

Tp,y: CDF of a bivariate student distribution with y degrees of freedom.
Source: [46].

are different from zero [53]. The Q-statistics is defined as
follows:

h 1/7\2
= NWN+2)Y £ 4
Q=N +2Y P @
where p? is the sample autocorrelation at lag a, and h is the
number of lags being tested. The first-order autocorrelations
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TABLE 5: Results of different copula models for temperature and
rainfall in April.

Normal Student Clayton  Frank  Gumbel
0 —0.34 —-0.31 0.001 0.001 1.1
Log likelihood  3.05 4.11 —0.0007 -0.0002 -1.86
AIC —6.06 -8.15 0.042 0.041 3.75
BIC —6.02 —-8.07 0.081 0.08 3.79

are found to be strong both for temperature (Q-stat = 6.32,
P value = 0.01) and rainfall (Q-stat = 4.52, P value = 0.03), as
shown in Figure 4.

Therefore, an AR(1) model is used to eliminate the auto-
correlation in the series as follows:

tempe, = 0.48 + 0.35 X tempe,_; + &
(4.7%%)(2.56™%),
(5)

rain; = 1.85 — 0.29 X rain,—1 + p;

(9.06%*)(=2.1%%).
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Note that the numbers in the bracket are t-values and
**stands for the statistical significance at the 95% confidence
level.

Residuals ¢ and y; are tested where only weak autocorre-
lations are found (Figure 5).

In addition to autocorrelation, time trends are also found
in the series of & and y,. Based on Manton et al’s research
[54], the time trends should be removed from the series to
obtain a stationary process. The functions used to detrend
the time series are

& = —0.08+0.0032 X t + ¢;
(—2.65%%)(3.04"%),

e = 0.17 = 0.007 X £+ y;
(2.3%%)(—2.65"%).

(6)

We find that temperature has an increasing trend and
rainfall has a decreasing trend in April from 1961 to 2010
(Figure 6). The annual rate of increase in temperature in
April is 0.0032°C and decrease in rainfall is 0.007 mm per
year. The trend adjusted data are shown in Figure 7 where
rtempe, and rrain; are used to represent the corrected values
of ¢; and y;, respectively.

The residuals for the trend adjusted variables have neg-
ative skewness: temperature (—1) and rainfall (—0.7). Based
on the inference for the margins (IFM) [55], the parameter
estimates and model evaluation indices for each copula for
rtempe, and rrain, are presented in Table 5.

The log-likelihood ratio is largest and the AIC and BIC
are smallest for the student copula, which means that the
student copula is the most suitable model.

A comparison of the real and simulated residuals of
temperature and rainfall is shown in Figure 8.

Since the purpose of this paper is to develop a copula
model of the bivariate distribution of rainfall and temper-
ature that can be used in simulation studies, the accuracy
of the resulting model is of utmost importance. Although
Table 5 has provided some statistical support for the model
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and Figure 8 has given some visual evidence, the contours
of the cumulative distribution functions can best show the
difference between the real and simulated data.

In Figures 9, 10, 11, 12, and 13, the contours of the
cumulative distribution functions (CDFs) for the real and
simulated data from the five copula models are plotted to
visualize the difference or similarity in the distributions as
the case may be. It is found that the student copula model fits
the real data best according to the similarity of the contour
lines. Consequently the student copula is the best choice of
model according to all our criteria.

Based on the estimated parameters, 1,000 draws are made
from the Student copula model. The simulated data is then
transformed to the original scale and compared with the real
data in Figure 14.

4. Conclusions

This paper presents a copula-based methodology for model-
ing the joint distribution of temperature and rainfall, which
are of utmost importance for agricultural production espe-
cially in the context of climate change. Copulas have been
used extensively in the financial literature, but have not been
widely used in weather simulation. The copula approach
provides a powerful and flexible method to model multi-
variate distributions and thus goes beyond joint normality,
regression, and mean-variance criterion. Accurate simula-
tion of weather events may help to improve risk management
in agricultural planning.

A shortcoming of the copula method is the arbitrariness
of the selection of a particular copula. The main purpose of
this paper is to present a complete copula modeling frame-
work to model the interdependence of rainfall and temper-
ature. In contrast to Scholzel and Friederichs [39], we com-
pare different copulas and show how to select the optimal
copula based on information criteria (AIC and BIC). The
advantage of this approach is that it does not require any
assumptions and is primarily data driven thus minimizing
the subjectivity introduced by the researcher. The model
selection criteria indicate that the Student copula produces
the best model to simulate the dependence structure between
rainfall and temperature in Scania, Sweden.

Although the month of April was chosen as our working
example, we have also tested the data for other months with
similar results. The study is only based on meteorological
data for a single region. The most suitable copula family
for rainfall and temperature might change from one region
to another due to differences in geographical and geophysical
conditions. Our approach however can be applied in studies
of other parts of the world to select the most appropriate cop-
ula model. A potentially valuable extension of this research is
to connect the analysis with crop production planning and
agricultural economics. If the relationship among tempera-
ture, rainfall, and crop yield can be determined, then it could
be used in developing risk reducing strategies for farmers,
something which will become increasingly important in the
face of climate change. This is the focus of our ongoing
research.
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FIGURE 14: Real (a) and student-based copula simulated (b) temperature and rainfall data for Scania in April.
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