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Abstract: Osteosynthesis resorbable materials made of uncalcined and unsintered hydroxyapatite
(u-HA) particles, poly-L-lactide (PLLA), are bioresorbable, and these materials have feasible
bioactive/osteoconductive capacities. However, their strength and stability for fixation in mandibular
condylar head fractures remain unclear. This in vitro study aimed to assess the biomechanical
strength of u-HA/PLLA screws after the internal fixation of condylar head fractures. To evaluate their
biomechanical behavior, 32 hemimandible replicas were divided into eight groups, each consisting
of single-screw and double-screw fixations with titanium or u-HA/PLLA screws. A linear load was
applied as vertical and horizontal load to each group to simulate the muscular forces in condylar
head fractures. Samples were examined for 0.5, 1, 2, and 3-mm displacement loads. Two screws were
needed for stable fixation of the mandibular condylar head fracture during biomechanical evaluation.
After screw fixation for condylar head fractures, the titanium screws model was slightly more resistant
to vertical and horizontal movement with a load for a small displacement than the u-HA/PLLA
screws model. There was no statistically significant difference with load for large displacements.
The u-HA/PLLA screw has a low mechanical resistance under small displacement loading compared
with titanium within the limits of the mandibular head fracture model study.

Keywords: titanium screw; bioactive resorbable screw; biomechanical loading evaluation; fracture
fixation; intracapsular condylar head fracture

1. Introduction

Mandibular condylar fractures are one of the most common types of maxillofacial fractures,
and mandibular head fractures are a frequent disease that accounts for about half of all mandibular
condylar fractures [1]. Neff et al. [2] classified mandibular condylar head fractures into three types:
type A (a fracture line through the medial portion of the condylar head), type B (a fracture line through
the lateral portion of the condylar head), and type C (a fracture line is near the attachment of the lateral
capsule). Mandibular condylar head fractures are alternatively treated either by closed treatment or
open reduction and internal fixation (ORIF) [3]. Surgical treatment recommended ORIF for types B
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and C condylar fractures with the shortening of mandibular ramus height [4,5]. Various forms of
titanium osteosynthesis for the internal fixation of condylar head fractures have been applied such as
microplates, miniplates, screws, and small-fragment positional screws [4–7].

Among a large number of available types of fixators for the surgical treatment of condylar head
fractures, screw fixation is the most widely used technique. It is minimally invasive, anatomically based,
and has a number of advantages compared with the use of a plate system [8,9]. Surgical treatment with
titanium screws is very helpful. However, this osteosynthesis remains in the human body and may need
to be removed later due to complications [7]. Secondary surgery for removal is stressful for patients
and surgeons, so it is desirable to avoid this as much as possible.

Since resorbable osteosynthesis material is degraded in vivo [10], secondary surgery for removal is
basically unnecessary. Many resorbable osteosynthetic materials are currently commercially available.
In recent years, osteosynthesis materials having bioactivity as well as absorption characteristics have
been developed and used in clinical practice. In particular, bioactive/osteoconductive and bioresorbable
osteosynthesis devices made from a composite of uncalcined and unsintered hydroxyapatite (u-HA)
particles and poly-L-lactide (PLLA) are excellent [11]. This device has biocompatible and osteoconductive
characteristics and is very advantageous as an osteosynthesis material [12,13]. However, both the strength
and stability of the osteosynthesis material for fixation to the mandibular condylar head fracture are still
unclear. Thus, the aim of this in vitro study was to assess the biomechanical strength of u-HA/PLLA
bioactive, resorbable osteosynthesis systems after the fixation of mandibular condylar head fracture.

2. Materials and Methods

2.1. Materials

In this study, we used the bioactive resorbable osteosynthesis systems, Super FIXSORB MX®

(Teijin Medical Technologies Co., Ltd., Osaka, Japan). Forged composites of u-HA/PLLA were processed
by machining or milling treatments to form screws, which contained 30% weight fractions of u-HA
particles. u-HA is raw HA that contains neither calcined nor sintered material. Composite screws
were filled with 30% weight fractions of u-HA particles. The screws used in this study were 2.0 mm in
diameter. A 2.0-mm screw system (MatrixMANDIBLE™; DePuy Synthes, Raynham, MA, USA) was
used as the titanium screw. These titanium screws are alloys and titanium grade 4.

2.2. Evaluation of Shear Strength of Titanium and Bioresorbable Screw

Sample Preparation and Measurement

The shear test jig in this study contained three parts. In the shear test, a hole of 2.5 mm diameter
was used, and three parts were combined so that the holes cooperate with each other. The screw was
first inserted to measure into the hole. Since the screws are sheared on both sides of the loading jig,
the total test force at the two locations was measured. Therefore, the shear strength of the screw was
half the test force. Using the method illustrated in Figure 1, the measured screws were as follows:
(1) u-HA/PLLA bioresorbable screw (diameter, 2 mm; length, 12 mm); (2) titanium screws (diameter,
2 mm; length, 12 mm). The shear strength test was performed five times each. The maximum stress
and the displacement at the maximum stress were recorded.
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Figure 1. Machine set for measuring screw shear strength. The center hole of the measuring machine 
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AG, Laudquart, Switzerland). Although a polyurethane mandible replicates the property of 
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osteosynthesis system for fractures of the condylar head, which is dominated by cancellous bone [15]. 
For modeling mandibular condylar head fractures, we used the Neff classification: the most 
recognized and adopted by the Strasbourg Osteosynthesis Research Group [2]. Type B fracture 
patterns usually lead to shortening and malocclusion of the associated mandibular ramus, which 
usually requires ORIF [3]. For an ordinary mandibular condylar head fracture type B model, we used 
a fracture line that starts slightly outside the attachment of the lateral capsule and continues outside 
the condyle and created a fracture in the left condyle of each model. These mandibular condylar head 
fracture models were created using a computer-controlled program with cutting guides. A partial cut 
was made in each hemimandibular model using diamond disks (KG Sorensen, Cotia, São Paulo, 
Brazil). A silicone mold of the condylar head of the osteosynthesis was created in the mandible and 
guide holes were created with a drill; then, using the mold as a guide, we completed the cut. This 
method was used to create identical cuts and perforations in all the left hemimandibular condylar 
head fracture models, thus guiding the positions for screw fixation for each study group (Figure 2A). 

2.3.2. Fixation Method for Mandibular Condylar Fracture 

Osteotomized mandibles were randomly divided into the following four groups and used for 
different fixation systems: (1) single titanium screw, (2) single u-HA/PLLA bioresorbable screw, (3) 
double titanium screws, and (4) double u-HA/PLLA bioresorbable screws. 

Figure 1. Machine set for measuring screw shear strength. The center hole of the measuring machine
has a diameter of 2.5 mm.

2.3. Biomechanical Loading Evaluation

2.3.1. Sample Preparation

We used 32 polyurethane replicas of human hemimandibles (Mandible, Code #8900; SYNBONE
AG, Laudquart, Switzerland). Although a polyurethane mandible replicates the property of cancellous
bone [14], this model is useful to obtain preliminary results on the stability of the osteosynthesis
system for fractures of the condylar head, which is dominated by cancellous bone [15]. For modeling
mandibular condylar head fractures, we used the Neff classification: the most recognized and adopted by
the Strasbourg Osteosynthesis Research Group [2]. Type B fracture patterns usually lead to shortening
and malocclusion of the associated mandibular ramus, which usually requires ORIF [3]. For an ordinary
mandibular condylar head fracture type B model, we used a fracture line that starts slightly outside
the attachment of the lateral capsule and continues outside the condyle and created a fracture in the
left condyle of each model. These mandibular condylar head fracture models were created using a
computer-controlled program with cutting guides. A partial cut was made in each hemimandibular
model using diamond disks (KG Sorensen, Cotia, São Paulo, Brazil). A silicone mold of the condylar
head of the osteosynthesis was created in the mandible and guide holes were created with a drill; then,
using the mold as a guide, we completed the cut. This method was used to create identical cuts and
perforations in all the left hemimandibular condylar head fracture models, thus guiding the positions
for screw fixation for each study group (Figure 2A).
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sagittal fragment. 
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the other was inserted (Figure 2B). 

 
Figure 2. (A) A mandibular condylar head fracture type B model, using a fracture line that starts 
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as shown in Figure 1. 1) The upper end of the mandible condylar fracture line, 2) The medial inferior 
point of the fracture surface, and 3) The innermost point of the sagittal fragment. The direction of 
passing through the midpoint of points 1 and 2 toward 3 was the direction of screw insertion. (B) 
Double-screw fixation was moved parallel to the caudal side from this direction, and the other was 
inserted. 

2.3.3. Biomechanical Loading Test 

After screw fixation of the fracture segment, replicas were mounted on a testing machine (AG-
20KNX; Shimazu, Kyoto, Japan) based on a biomechanical cantilever-bending model that simulates 
masticatory forces. Then, the mandibular ramus and angle areas of each replica were stabilized. The 
adaptation of the semi-fixed polyurethane to the machine was guaranteed by the metal support. 
Based on past biomechanical evaluation methods [16], the replicas were then subjected to linear 
loading in two directions: from lateral to medial (horizontally; Figure 3A) and from anterior to 
posterior (vertically; Figure 3B). These forces simulated functional masticatory forces applied to an 
actual fractured condylar head. Thus, this material testing unit created linear displacement at a rate 
of 1 mm/min, and loading continued until the maximum load was reached. The peak load and 
displacement for each fracture model were recorded. All fracture models were analyzed for 
displacements of 0.5, 1.0, 2.0, and 3.0 mm by loading and for the amount of displacement by the 
maximum load. Means and standard deviations were derived from each test and evaluated for 
statistical significance. 

Figure 2. (A) A mandibular condylar head fracture type B model, using a fracture line that starts
slightly outside the attachment of the lateral capsule and continues outside the condyle, was created as
shown in Figure 1. 1) The upper end of the mandible condylar fracture line, 2) The medial inferior point
of the fracture surface, and 3) The innermost point of the sagittal fragment. The direction of passing
through the midpoint of points 1 and 2 toward 3 was the direction of screw insertion. (B) Double-screw
fixation was moved parallel to the caudal side from this direction, and the other was inserted.

2.3.2. Fixation Method for Mandibular Condylar Fracture

Osteotomized mandibles were randomly divided into the following four groups and used for
different fixation systems: (1) single titanium screw, (2) single u-HA/PLLA bioresorbable screw,
(3) double titanium screws, and (4) double u-HA/PLLA bioresorbable screws.

The screws used were titanium (2.0 mm diameter × 12 mm long) or u-HA/PLLA (2.0 mm diameter
× 12 mm long). The fracture line and screw insertion direction were set according to the report of
Guo et al. [5]. The points were fixed as follows: (1) the upper end of the mandible condylar fracture line,
(2) the medial inferior point of the fracture surface, and (3) the innermost point of the sagittal fragment.

The direction of passing through the midpoint of points 1 and 2 toward 3 was the direction of
screw insertion. Double-screw fixation was moved parallel to the caudal side from this direction,
and the other was inserted (Figure 2B).

2.3.3. Biomechanical Loading Test

After screw fixation of the fracture segment, replicas were mounted on a testing machine (AG-20KNX;
Shimazu, Kyoto, Japan) based on a biomechanical cantilever-bending model that simulates masticatory
forces. Then, the mandibular ramus and angle areas of each replica were stabilized. The adaptation
of the semi-fixed polyurethane to the machine was guaranteed by the metal support. Based on past
biomechanical evaluation methods [16], the replicas were then subjected to linear loading in two
directions: from lateral to medial (horizontally; Figure 3A) and from anterior to posterior (vertically;
Figure 3B). These forces simulated functional masticatory forces applied to an actual fractured condylar
head. Thus, this material testing unit created linear displacement at a rate of 1 mm/min, and loading
continued until the maximum load was reached. The peak load and displacement for each fracture
model were recorded. All fracture models were analyzed for displacements of 0.5, 1.0, 2.0, and 3.0 mm
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by loading and for the amount of displacement by the maximum load. Means and standard deviations
were derived from each test and evaluated for statistical significance.Materials 2020, 13, x FOR PEER REVIEW 5 of 12 
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Figure 3. Biomechanical loading test. (A) Horizontal (lateromedial) linear loading. (B) Vertical
(anteroposterior) linear loading.

2.4. Statistical Analysis

Data were recorded and entered into an electronic database throughout the study using Microsoft
Excel (Microsoft Inc., Redmond, WA, USA). Means and standard deviations (SD) were used where
distribution was compatible with normality. The database was transferred to JMP version 14.2.0
software for Macintosh computers (SAS Institute Inc., Cary, NC, USA) for statistical analysis. Student’s
t-tests for independent samples were performed to investigate whether the significance of differences
between the mean values of the each groups. A p-value of <0.05 was considered statistically significant.

3. Results

3.1. Strength Evaluation

The shear test force was 1156.0 N (SD, ±386 N) for the titanium screw and 184.6 N (±18.7 N) for
the u-HA/PLLA screw (Figure 4). In the shear test, the titanium screw was significantly stronger than
the u-HA/PLLA bioresorbable screw (p < 0.05). The u-HA/PLLA bioresorbable screw shear resistance
was only 16.0% that of the titanium screw.
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Figure 4. Comparison of titanium screw and unsintered hydroxyapatite (u-HA)/poly-L-lactide (PLLA)
bioresorbable screw in the shear test.
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3.2. Biomechanical Loading Evaluation

3.2.1. Horizontal Loading Test

Compared with u-HA/PLLA screws, both double-fixed screws showed statistically significantly
higher strength at large displacements (Figure 5). In all cases, rotation of the fractured piece occurred
near the maximum force used in the test. On the other hand, double-fixed screws did not cause
the rotation of the fractured piece (Figure 6). The measured values were most prominent at 3-mm
displacement: u-HA/PLLA double-fixed screws had 1.25 times higher resistance than single-fixed
screws, whereas titanium double-fixed screws had 1.32 times higher resistance than single-fixed screws.
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A comparison of titanium and u-HA/PLLA screws with two screws in a horizontal load test is
shown in Figure 7. Similar to the vertical load test, the resistance value of the titanium screw was higher
than that of the u-HA/PLLA screw at 0.5-mm and 1-mm displacements. The maximum resistance
values were 0.5 and 1 mm, which were 1.24 and 1.17 times that of u-HA/PLLA, respectively. However,
there was no significant difference between the two screws at 2-mm and 3-mm displacements.
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Figure 7. Comparison between titanium and u-HA/PLLA screws with double fixation in the
horizontal test.

3.2.2. Vertical Loading Test

The results of this experiment demonstrated that the mechanical resistances among osteosynthesis
screws remained proportional to the amount of displacement. When comparing the single and double
titanium screws and the u-HA/PLLA screw, the double-fixed screws showed significantly higher
strength in titanium than the u-HA/PLLA screws (Figure 8). The measured values were most prominent
during the initial displacement; the u-HA/PLLA double-fixed screw had 1.36 times higher resistance
than the single-fixed screw and the titanium double-fixed screw had 1.30 times higher resistance than
the single-fixed screw at 0.5-mm displacement. Figure 9 shows a comparison between titanium and
u-HA/PLLA screws with double fixation. The resistance value of the titanium screw was significantly
higher than that of the u-HA/PLLA screw at displacements of 0.5 mm and 1 mm. However, there was
no significant difference between the two screws at displacements of 2 mm and 3 mm.
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4. Discussion

This study is the first report of an in vitro biomechanical evaluation using bioresorbable screws
for the osteosynthesis of mandibular condylar head fractures. In this study, the bioactive u-HA/PLLA
screw was lower in strength than conventional titanium screws. On the other hand, in a comparison
after two-screw fixations for mandibular condylar head fractures, the bioresorbable screw model had
slightly lower resistance to the vertical and horizontal loads for initial displacement than that for the
titanium screw model in biomechanical evaluation. By contrast, there was no statistically significant
difference in the load for large displacement. These results suggest that bioactive u-HA/PLLA screws
have a slightly lower mechanical resistance compared with the titanium screws within the limitations
of a mandibular condylar head model study.

Screw osteosynthesis for mandibular joint fractures is a relatively minimally invasive operation
and is the current standard surgical treatment for this type of fracture. The primary reason for this
is that screw fixation provides better fixation stability, a smaller incision area, shorter surgery time,
and less scarring of the temporomandibular joint than plate fixation [17]. The second reason is that
screws can be applied without interfering with soft tissue. Fractures of the mandibular head always
move anteriorly, inferiorly, and medially because of the contraction of the lateral pterygoid muscle.
This dislocation causes shortening of the mandibular ramus and bad occlusion. However, the lateral
pterygoid muscle must be preserved because it plays an important role in fracture healing [18,19]. Screw
fixation, which has a small working space and can reduce and fix a displaced bone fragment, is also
useful for healing. However, a titanium screw that has completed its role after osteosynthesis remains
indefinitely inside the human body. Even if there is no problem immediately after the operation,
a screw that has remained in the body may later cause complications such as those associated with the
stress-shielding effect, condylar head resorption, perforation of the articular fossa, or exposure of the
pin during remodeling of the bone [20,21]. Therefore, fixation using resorbable screws is desirable
for mandibular condylar head fracture. In addition, it would be ideal if the absorbent material used
had bioactivity.

Bioabsorbable materials are used in maxillofacial surgery, including orthognathic surgery [22],
the osteosynthesis of maxillofacial fractures [23], orbital reconstruction [24,25], bone augmentation of
dental implants [12], reconstruction after maxillofacial cysts, and tumor removal [26,27]. Although the
clinical usefulness of bioresorbable materials has been reported, its insufficient strength is a problem
for use in sites where a functional load is applied, such as the jaw. Unlike titanium, bioresorbable
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materials generally cannot withstand high mechanical loads [16]. In this study, we first examined the
mechanical strength of titanium and u-HA/PLLA bioresorbable screws. The strength of the u-HA/PLLA
bioresorbable system for titanium screws was about 60% in torsional strength and surprisingly only
about 16% for shear strength. These results were similar to strength research using bioresorbable
screws of the same composition [28]. Thus, in regard to pure biomechanical strength, our findings may
suggest that u-HA/PLLA bioresorbable screws are much weaker than titanium screws.

In our biomechanical test study, we examined the number of screws for fixation with one and
two screws, respectively. Titanium double fixation showed a maximum load value that was about
1.3 times higher than the single fixation of their strength in vertical load and horizontal load tests.
The u-HA/PLLA double fixation showed about 1.2–1.4 times higher resistance than single fixation in
vertical load and horizontal load tests. This suggests that the double fixation increased the fixing force
against loads in the both vertical and horizontal directions. As a noteworthy point, fixation with a
single screw caused the bone fragments to turn under a high load in the horizontal load test. This is
consistent with previous reports suggesting that using a single screw for fixation is not sufficient to
provide rotational stability [29]. The clinical study further considered that a two-screw fixation was
stable for the fixation of head fractures due to the superior retention of the cancellous bone in the
mandibular condylar head [29]. The results of our study support these previous findings.

Vertical load direction imitates the functional load at the time of mouth opening [30]. The fixation
of double u-HA/PLLA screws showed a significantly lower resistance at the initial load compared with
the two titanium screws, but this was not the case at higher loads. Therefore, the bioresorbable screw
was clinically useful for osteosynthesis in the open treatment of mandibular condylar fractures, but it
was considered appropriate to limit the load applied during the initial function. By contrast, the load in
the horizontal direction was slightly inferior to that of the titanium screw. This result is very interesting.
Although the shear strength of u-HA/PLLA was clearly low, as shown in the first experiment, using
double-screw fixation generated high strength. This load direction imitates functional load during
the lateral movement of the mandible [16,30]. This result suggested that the bioresorbable screw had
sufficient strength for a functional load during the lateral exercise for the osteosynthesis of mandibular
condylar head fracture.

Shear strength was presumed to be important for osteosynthesis devices in the mandibular
condylar head fractures in this study. Therefore, the titanium screw showed higher strength than the
bioresorbable screw even in the biomechanical test due to the excellent shear strength of the titanium
screw itself. It is desirable to improve the shear strength to actively use the biomechanical screw in
the future.

In this study, biomechanical strength was assessed by measuring the load as a function of the
amount of displacement. This study method was based on our previous experimental design in
biomechanical studies of mandibular condylar fractures [16]. Small displacements are assumed to
occur at rest or at small functions and are involved in the better stability of bone healing. On the
other hand, large displacements are assumed to occur during functions such as large mouth opening.
In small displacements, the bioresorbable screw fixation showed slightly lower strength than the
titanium screw fixation. From our experimental results, maxillofacial surgeons have to devise low
strength for clinical application bioresorbable screws. It will be necessary to continue to limit the
opening due to traction with rubber. There was no significant difference between bioresorbable and
titanium screws in large displacements, but single-screw fixation caused rotational deformation in
the horizontal test. Therefore, when selecting a single screw due to anatomical restrictions, strong
restrictions such as intermaxillary fixation might be necessary.

It of great importance to determine the strength of the u-HA/PLLA materials used in this study.
This is because the most common conventional resorbable material, pure PLLA, has disadvantages
such as inability to bind directly to bone, unstable resorption and degradation processes, and long
replacement times [31,32]. By contrast, u-HA/PLLA material has high biological activity and advantages
such as osteoconductivity, biocompatibility, direct binding to bone, and stable complete degradation
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and absorption [11–13,33,34]. This is the effect of the unfired hydroxyapatite compound. However,
synthetic materials can cause a reduction in strength. Thus, this study—in which we clarified its
strength as an osteosynthesis material for mandibular condylar head fractures—is significant.

This study has some limitations. As an in vitro biomechanical stress test, it does not fully reflect
the dynamics of humans. However, the major functional load of mandibular movement has been
reproduced experimentally. This is the first study of osteosynthesis for mandibular condylar head
fracture using bioactive u-HA/PLLA screw, and it is important. Second, the mechanical model used
in this study, the polyurethane model, is softer than the actual human mandible. The mandibular
condylar head is a site with abundant bone marrow and close strength, but it is not enough to reproduce
a faithful cortical bone in this model. Therefore, the results of this study suggest that the bioresorbable
materials should not be used immediately for clinical treatment. Given the lower biomechanical
strength of the u-HA/PLLA screw using this mandibular model, the actual clinical use of the resorbable
screw should avoid early overload immediately after surgery. With the use of these u-HA/PLLA screws,
patients with strong occlusal forces may need to be restricted by dietary guidance and elastic rubber to
eat soft food after surgery.

5. Conclusions

In this study, we show that a bioactive bioresorbable u-HA/PLLA screw has lower strength
than the conventional titanium screw. Two screws were needed for stable fixation of the mandibular
condylar head fracture. However, in a comparison after screw fixation for mandibular condylar head
fractures, the titanium screw model was slightly more resistant to vertical and horizontal loads with
a load for a small displacement than the u-HA/PLLA screws model in biomechanical evaluation.
By contrast, there was no statistically significant difference in load for large displacements. These results
suggest that the bioactive bioresorbable u-HA/PLLA screw has low mechanical resistance under small
displacement loading compared with the titanium screw within the limits of the mandibular condylar
head fracture model.
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