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have become prevalent, particularly in countries like 
China where food security remains strategically impor-
tant [1, 2]. Although synthetic N fertilisers have substan-
tially improved crop yields, they simultaneously induce 
significant alterations in soil organic carbon (SOC) 
dynamics and nutrient cycling, with cascading conse-
quences for soil health, greenhouse gas emissions, and 
long-term ecosystem stability [3]. Decades of research 
consistently show that increased N inputs from syn-
thetic fertilisers and atmospheric deposition profoundly 
impact ecosystem functioning across biomes [4, 5]. Con-
sequently, while N fertilisation underpins modern agri-
cultural productivity, it concurrently reshapes SOC and 

Introduction
Nitrogen (N) is a critical macronutrient leading plant 
growth and driving soil biogeochemical cycles, thus cen-
tral to terrestrial ecosystem productivity and sustain-
ability. In managed agricultural systems, especially under 
intensified global food production, synthetic N fertilisers 
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Abstract
Nitrogen (N) addition is a critical driver of soil organic carbon (SOC) sequestration and nutrient cycling in croplands. 
However, its spatial variability and long-term effects under diverse environmental conditions remain poorly 
understood. We synthesised data from 479 cropland sites across China and apply machine learning models to 
evaluate the impacts of N addition on SOC and key soil nutrient indicators, including total nitrogen (TN), nitrate 
(NO₃⁻-N), ammonium (NH₄⁺-N), the carbon-to-nitrogen ratio (C/N), and available phosphorus (AP). We further 
evaluated the moderating roles of climate zones, fertiliser types, and fertilisation duration. Our findings demonstrate 
that N addition significantly increased SOC, TN, NO₃⁻-N, NH₄⁺-N, and AP contents, whereas the C/N ratio remains 
unaffected. SOC sequestration was greater in arid regions, whereas nutrient accumulation was more pronounced in 
humid zones. Organic and integrated (organic-inorganic) fertilisers outperformed chemical ones in enhancing SOC 
and nutrient cycling. Long-term N input (> 10 years) markedly intensified SOC storage and nutrient accumulation. 
We further developed the high-resolution (5 km) national-scale dataset that predicts the spatial responses of SOC 
and nutrient dynamics to nitrogen addition across China. This AI-derived dataset enables automated mapping 
of soil carbon and nutrient functions, capturing substantial spatial heterogeneity under varying environmental 
conditions. These results provide critical insights for optimising nitrogen management strategies, enhancing soil 
carbon sink functions, and informing precision agriculture policies in China.
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soil nutrient dynamics, emphasising the urgent need to 
balance food production goals with environmental sus-
tainability [6].

Although numerous studies have examined the effect 
of N inputs on SOC sequestration and nutrient cycling, 
their findings exhibit considerable variability due to dif-
ferences in environmental and management conditions. 
On the one hand, N addition can stimulate plant growth 
and increase litter return, thereby increasing SOC stocks 
and modifying microbial activity in ways that enhance 
carbon stabilisation [7]. On the other hand, excessive or 
prolonged N inputs may inhibit microbial decomposi-
tion, reduce microbial diversity, acidify soils, or desta-
bilise soil aggregates—processes that can suppress SOC 
accumulation or even promote carbon losses [8]. Simi-
larly, the impact of N fertilisation on nutrient availabil-
ity—particularly nitrate (NO₃⁻-N), ammonium (NH₄⁺-N), 
total nitrogen (TN), and available phosphorus (AP)—is 
influenced by soil texture, pH, climatic factors, and bio-
logical interactions [9, 10].

Despite this growing body of knowledge, most empiri-
cal studies have been conducted at localised scales or 
under short-term experimental settings, making it diffi-
cult to generalise findings across regions with contrast-
ing agroecological conditions [11, 12]. Global syntheses, 
such as the meta-analysis by Lu et al. [6], confirm that 
N effects on SOC vary across biomes, but nationwide, 
spatially explicit assessments remain scarce, particu-
larly in intensively managed cropland systems like those 
in China. This constrains our ability to understand the 
spatial heterogeneity and cumulative responses of soil C 
and nutrients to N inputs under diverse environmental 
conditions.

Another key limitation in existing research is the reli-
ance on conventional statistical methods, which may 
oversimplify the complex and nonlinear interactions 
among soil properties, climate variables, and manage-
ment practices [13]. For example, linear regression mod-
els may fail to capture threshold responses or synergistic 
effects that emerge only under specific environmental 
contexts. The rise of machine learning (ML) techniques 
in soil science offers powerful tools to address this chal-
lenge, allowing for integrating multi-source datasets and 
modelling nonlinear relationships across large spatial 
scales [14, 15]. ML models have shown great promise in 
predicting SOC distributions, estimating nutrient fluxes, 
and supporting precision agriculture under climate 
change scenarios [16].

Our study uses the comprehensive global dataset 
presented by Elrys et al. [17], narrowing the focus to 
China due to its critical role in global N fertiliser con-
sumption and strategic importance for food secu-
rity. By specifically analysing China’s croplands, we 
address significant knowledge gaps regarding how local 

environmental conditions affect soil N dynamics. More-
over, our approach integrates environmental covariates 
and advanced machine learning modelling, thus extend-
ing the original analysis by revealing spatially explicit pat-
terns and driving mechanisms of nitrogen retention and 
loss unique to China’s intensive agricultural systems. This 
targeted analysis provides a necessary complement to 
global-scale findings, enabling more precise N manage-
ment recommendations tailored to China’s environmen-
tal context.

In this study, we compiled a comprehensive national 
dataset from 479 cropland sites across China to system-
atically assess the effects of N addition on SOC and major 
soil nutrient indicators (TN, NO₃⁻-N, NH₄⁺-N, C/N, and 
AP). Specifically, we aimed to (1) quantify the overall 
effects of N addition on SOC and soil nutrient concen-
trations across Chinese croplands; (2) evaluate how these 
effects are moderated by climatic zones, fertiliser types, 
and fertilisation durations; and (3) develop a machine 
learning model to predict the SOC sequestration poten-
tial of N addition and explore its spatial heterogeneity. By 
filling these knowledge gaps, our study provides critical 
insights into the optimisation of N management and con-
tributes to carbon neutrality and sustainable agriculture 
goals in China and beyond.

Materials and methods
Literature search and data compilation
Our dataset was derived from the comprehensive global 
meta-analysis conducted by Elrys et al. [17] which sys-
tematically assessed the impacts of knowledge-based 
nitrogen (N) management practices on ecosystem nitro-
gen retention worldwide. Elrys et al. [17] performed 
their literature search using the Google Scholar database 
(http://scholar.google.com/) and included publications 
from previously published meta-analyses. The initial 
search conducted in January 2022 employed combina-
tions of keywords such as “gross nitrogen transforma-
tions,” “net nitrogen mineralisation,” “nitrification rates,” 
“nitrogen retention,” “nitrogen fertilisation,” “organic 
fertilisation,” “straw,” “nitrogen and phosphorus inputs,” 
“nitrogen cycling,” “knowledge-based N management 
practices,” and “nitrification inhibitors.” A subsequent 
search in February 2023 used refined keywords includ-
ing “gross nitrogen transformations,” “net nitrogen min-
eralisation,” “nitrification rates,” “nitrogen retention,” 
“nitrogen loss,” “nitrogen leaching,” “gaseous emissions,” 
“ammonia volatilisation,” “nitrogen fertilisation,” “NPK,” 
“organic fertilisation,” “straw,” and “nitrification inhibi-
tors.” Studies were included if they met the criteria: (1) 
treatment and control plots were under identical biotic 
and abiotic conditions; (2) clear documentation of fer-
tiliser type, application rate, experimental duration, 
and terrestrial ecosystem type; (3) direct application of 

http://scholar.google.com/
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organic or synthetic fertilisers in terrestrial ecosystems 
with measured soil N transformation rates or N loss 
pathways; and (4) measurements of soil gross N fluxes 
and pools taken from the topsoil layer (0–20  cm). For 
our analysis, we specifically extracted observations from 
cropland studies in China, resulting in 479 paired obser-
vations following rigorous screening, which involved 
field-based N addition experiments with clearly reported 
N rates and measurement of target variables during the 
crop growing season. Data not directly tabulated were 
extracted using Web Plot Digitizer (​h​t​t​p​​s​:​/​​/​a​u​t​​o​m​​e​r​i​​s​.​i​​o​
/​W​e​​b​P​​l​o​t​D​i​g​i​t​i​z​e​r​/) from published graphs and figures.

Response ratio calculation
To quantify the effects of N addition on SOC and key 
nutrient indicators—including TN, NO₃⁻-N, NH₄⁺-N, 
the C/N, and AP—we used the natural log response ratio 
(lnRR), a standardized effect size commonly applied in 
ecological meta-analyses [18]. The lnRR is calculated as:

	
RR = ln

(
xt

xc

)
= ln (xt) − ln (xc)

where:

 	• xt is the mean value of the treatment group (with N 
addition);

 	• xc is the mean value of the control group (without N 
addition);

 	• ln
(

xt

xc

)
 reflects the relative change caused by N 

addition in natural log units.

Positive values of lnRR indicate an increase in the vari-
able due to N addition, while negative values suggest a 
decrease. This metric facilitates comparisons across stud-
ies with different units or scales. The sampling variance 
of lnRR is estimated using the following equation:

	
v = s2

t

Ntx2
t

+ s2
c

Ncx2
c

where:

 	• s2
t  and s2

c  are the variances of the treatment and 
control groups, respectively;

 	• Ntand Ncare the sample sizes of the treatment and 
control groups;

 	• x2
t and x2

care the squared means of the respective 
groups.

This variance estimate allows for inverse-variance 
weighting in further statistical analyses, such as mixed-
effects models or meta-regression, ensuring that studies 

with higher precision contribute more to the overall 
effect estimates.

Environmental covariates
To assess the influence of environmental conditions on 
treatment effects, we compiled auxiliary environmental 
variables based on the geographic coordinates of each 
experimental site: Mean annual temperature (MAT) and 
mean annual precipitation (MAP) were extracted from 
the WorldClim database (version 2.1; ​h​t​t​p​s​:​/​/​w​w​w​.​w​o​
r​l​d​c​l​i​m​.​o​r​g​/​​​​​)​. Elevation was retrieved from the ASTER 
Global Digital Elevation Model (GDEM) (​h​t​t​p​s​:​​​/​​/​a​s​t​e​r​​w​e​​​
b​.​j​p​​​l​.​n​​a​​​s​a​.​g​​o​v​/​G​​D​E​M​.​a​s​p). Soil properties, including fine 
texture (% clay + silt), bulk density (BD), soil pH, and soil 
water content, were obtained from the SoilGrids data-
base (https://data.isric.org/). All site-specific ​e​n​v​i​r​o​n​m​e​n​
t​a​l data were extracted using latitude and longitude coor-
dinates. These variables were later used as predictors in 
machine learning modelling.

Machine learning modelling
To systematically evaluate the spatial response of farm-
land soil carbon storage and key nutrient indicators to N 
addition, we developed a machine learning model based 
on the Random Forest (RF) algorithm to predict six soil 
property indicators: SOC, TN, C/N, NO₃⁻-N, NH₄⁺-N, 
and AP [19]. The model incorporated over twenty biotic 
and abiotic predictors, including climatic variables (e.g., 
mean annual temperature and precipitation), soil physi-
cochemical properties (e.g., texture, pH, BD, and soil 
water content) and geographic factors. This approach 
allowed us to reconstruct and map the national-scale 
SOC sequestration potential with high accuracy and res-
olution, accounting for complex nonlinear interactions. 
The coefficient of determination (R²) for each model was 
as follows: SOC (0.71), TN (0.68), C/N (0.63), NO₃⁻-N 
(0.60), NH₄⁺-N (0.65), and AP (0.74), indicating high pre-
dictive accuracy across indicators.

Results
Spatial distribution of sampling sites and overall effects of 
nitrogen addition
The 479 cropland sampling sites analysed in this study 
span a wide range of climatic conditions across China, 
covering an extensive aridity gradient. Site locations 
ranged from arid and semi-arid regions in northern and 
northwestern China to humid and semi-humid areas 
in the southern and southeastern regions (Fig.  1(a)). 
Weighted response ratio (LnRR) analysis revealed that 
nitrogen (N) addition significantly increased soil organic 
carbon (SOC), total nitrogen (TN), nitrate nitrogen 
(NO₃⁻-N), ammonium nitrogen (NH₄⁺-N), and available 
phosphorus (AP) contents (P < 0.001). In contrast, the soil 
carbon-to-nitrogen ratio (C/N) showed no significant 

https://automeris.io/WebPlotDigitizer/
https://automeris.io/WebPlotDigitizer/
https://www.worldclim.org/
https://www.worldclim.org/
https://asterweb.jpl.nasa.gov/GDEM.asp
https://asterweb.jpl.nasa.gov/GDEM.asp
https://data.isric.org/
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response to N addition (P = 0.51). Overall, nitrogen 
addition consistently enhanced soil carbon storage and 
nutrient accumulation across diverse environmental con-
ditions (Fig. 1 (b)).

Climatic zone, fertiliser type, and duration influence 
nitrogen addition effects
The effects of N addition varied considerably across cli-
matic zones, fertiliser types, and application durations 
(Fig. 2). Arid regions exhibited stronger SOC sequestra-
tion responses to N addition than humid regions, likely 
due to lower initial SOC levels. In contrast, increases 
in TN and NH₄⁺-N were more pronounced in humid 
regions, while NO₃⁻-N and AP showed greater enhance-
ment in arid zones. Fertiliser type also influenced nutri-
ent dynamics. Organic fertilisers led to the greatest 
increases in SOC and TN, whereas organic-inorganic 
compound fertilisers induced the highest increases in 
NO₃⁻-N and AP. Inorganic fertilisers generally produced 
the lowest responses across most indicators (except for 
NH₄⁺-N), suggesting that organic or mixed fertilisers 
are more effective in enhancing soil carbon and nutri-
ent cycling. Additionally, longer fertilisation durations 
(> 10 years) were associated with progressively greater 

increases in SOC and nutrient indices, highlighting the 
cumulative benefits of sustained nitrogen input over 
time.

Positive dose–response relationships with nitrogen input 
rates
Across all evaluated indicators, the magnitude of soil 
response increased with the rate of nitrogen addition 
(Fig. 3). SOC, TN, NO₃⁻-N, NH₄⁺-N, and AP all exhibited 
significantly positive correlations with N input rates, as 
reflected by increasing weighted response ratios (LnRRs) 
(P < 0.001). The C/N ratio, however, remained unrespon-
sive to nitrogen input levels (P = 0.51). These results indi-
cate that while nitrogen addition broadly enhances soil 
carbon and nutrient status, the magnitude of response 
varies among different indicators, with some nutrients 
(e.g., NH₄⁺-N and AP) responding more strongly than 
others.

Random forest identification of key environmental 
predictors
Figure  4 presents the relative importance of environ-
mental variables in predicting changes in six key soil 
indicators—SOC, TN, C/N ratio, NO₃⁻-N, NH₄⁺-N, 

Fig. 1  Effects of nitrogen addition on soil carbon sequestration and nutrient cycling. a, Global distribution of study sites about nitrogen addition on soil 
carbon sequestration and nutrient cycling. b, Effects of nitrogen addition on soil carbon sequestration and nutrient cycling. Values are effect size ± 95% 
CI. The sample size in each category is given at the Right, and the symbol * indicates statistical significance. SOC, soil organic carbon; TN, total nitrogen; 
C/N, carbon to nitrogen ratio; NO₃⁻-N, nitrate nitrogen; NH₄⁺-N, ammonium nitrogen; AP, available phosphorus
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and AP—under N addition across 479 cropland sites 
in China. Variable importance was assessed using the 
increase in mean squared error (MSE) in random forest 
models. Each soil indicators were influenced by a distinct 
set of predictors, reflecting divergence in environmental 
responses. Notably, the soil pH response ratio (pH_RR) 
was among the most important predictors for SOC 
(Fig. 4a), TN (Fig. 4b), NH₄⁺-N (Fig. 4e), and AP (Fig. 4f ), 
highlighting its overarching regulatory role. In contrast, 

the C/N ratio (Fig.  4c) was mainly influenced by bulk 
density and aridity index, whereas nitrate levels (NO₃⁻-N; 
Fig.  4d) were more sensitive to nitrogen addition rate 
and climatic factors. NH₄⁺-N (Fig. 4e) showed the high-
est model performance (R² =0.77), predominantly shaped 
by elevation, pH, and texture. These findings underscore 
the context-dependent nature of soil biogeochemi-
cal responses and identify pH as a cross-cutting control 
across multiple soil functions.

Fig. 3  Relationships between nitrogen addition rates and changes in indicators of soil carbon sequestration and nutrient cycling. SOC, soil organic car-
bon; TN, total nitrogen; C/N, carbon to nitrogen ratio; NO₃⁻-N, nitrate nitrogen; NH₄⁺-N, ammonium nitrogen; AP, available phosphorus

 

Fig. 2  Responses of soil carbon sequestration and nutrient cycling to nitrogen addition across different climatic zones, nitrogen fertiliser types, and dura-
tions of application. Values are effect size ± 95% CI. The sample size in each category is given at the Right. The closed symbols indicate significant effects, 
and the open symbols indicate nonsignificant effects. SOC, soil organic carbon; TN, total nitrogen; C/N, carbon to nitrogen ratio; NO₃⁻-N, nitrate nitrogen; 
NH₄⁺-N, ammonium nitrogen; AP, available phosphorus
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Machine learning-based predictions of SOC and nutrient 
enhancements
Machine learning modelling provided high-resolution 
estimates of nitrogen addition effects at the national scale 
(Fig. 5). The model predicted an average increase in SOC 
of 30.25% (Fig. 5 (a)), and a 22.62% (Fig. 5 (b)) increase 
in TN. Notably, the C/N ratio was projected to decrease 
slightly by 2.28% (Fig.  5 (c)), reflecting disproportionate 
nitrogen enrichment relative to carbon gains. Among 
nutrient indicators, NH₄⁺-N increased by 87.91% (Fig. 5 
(e)), and NO₃⁻-N by 41.61% (Fig. 5 (f )). The most substan-
tial change was observed for available phosphorus (AP), 
which increased by 651.81% (Fig. 5 (f )), suggesting strong 
N–P interactions in response to fertiliser inputs. These 
findings collectively underscore the substantial role of 
nitrogen addition in promoting soil carbon sequestra-
tion and nutrient cycling across China’s croplands, while 
highlighting regional variability and indicator-specific 
response patterns.

Discussion
Climatic zones, fertiliser type, and application duration 
modulate nitrogen effects
Our results demonstrate that the effects of nitro-
gen addition on SOC and nutrient dynamics are 

context-dependent, varying significantly across climatic 
zones, fertiliser types, and application durations. In arid 
and semi-arid regions, N addition typically results in 
more pronounced increases in SOC compared to humid 
areas. This disparity arises primarily because plant pro-
ductivity in drier regions tends to be more limited by 
nitrogen availability, making additional nitrogen inputs 
particularly effective in enhancing plant growth and, con-
sequently, carbon sequestration in soils [20–22]. In con-
trast, Humid regions typically show smaller relative SOC 
gains after nitrogen additions due to higher baseline fer-
tility, faster decomposition, and greater biological activ-
ity. Experimental drought in tropical forests increased 
soil CO₂ emissions, demonstrating strong moisture con-
trols on decomposition (Cleveland et al., 2010). Simi-
larly, temperature and moisture along tropical gradients 
significantly influence SOC turnover rates [23]. Nutri-
ent dynamics also varied by climate zone. Several stud-
ies support the idea that total TN and NH₄⁺-N increases 
are typically more pronounced in humid regions due to 
higher moisture availability and microbial activity. Mois-
ture-rich conditions in humid climates enhance micro-
bial decomposition and N mineralisation rates, leading 
to greater ammonium production and stabilisation [24, 
25]. Conversely, NO₃⁻-N and AP showed larger increases 

Fig. 4  Relative importance of environmental predictors for soil carbon and nutrient responses to nitrogen addition across Chinese croplands. Asterisks 
indicate significant predictors (P < 0.05). SOC, soil organic carbon; TN, total nitrogen; C/N, carbon to nitrogen ratio; NO₃⁻-N, nitrate nitrogen; NH₄⁺-N, am-
monium nitrogen; AP, available phosphorus; BD, bulk density; MAT, mean annual temperature; MAP, mean annual precipitation
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in arid zones, likely due to reduced plant uptake, slower 
leaching, and greater accumulation in low-rainfall soils.

Our findings highlight fertiliser type as a critical deter-
minant influencing soil organic carbon (SOC), total 
nitrogen (TN), microbial diversity, and nutrient avail-
ability. Studies consistently demonstrates that organic 
fertilisers substantially enhance SOC and TN by directly 
adding organic matter, stimulating microbial biomass, 
and improving soil aggregation [26, 27]. The primary 
reason behind this positive response is that organic 

amendments provide abundant carbon sources and 
nutrients, which fuel microbial metabolism and activity, 
thereby enhancing microbial community growth and the 
stabilisation of organic carbon. Conversely, sole reliance 
on inorganic nitrogen fertilisers generally exhibits weaker 
effects on SOC accumulation and can negatively impact 
microbial diversity due to soil acidification and altered 
microbial habitats [28]. Integrated fertilisation strate-
gies combining organic and inorganic fertilisers provide 
intermediate yet favourable outcomes, optimising both 

Fig. 5  Predicted spatial distribution of soil carbon sequestration and nutrient cycling potential under nitrogen addition across China
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soil fertility and crop productivity, particularly enhanc-
ing nitrate NO₃⁻-N and available AP availability [29]. 
Therefore, implementing balanced fertilisation practices 
emerges as a promising approach for sustainable soil 
management and agricultural productivity enhancement.

Fertilisation duration had a clear cumulative effect. 
Long-term application (> 10 years) was associated with 
significantly greater SOC and nutrient improvements 
than short-term treatments, corroborating results from 
long-term experiments [30]. These effects are likely due 
to enhanced microbial turnover, greater formation of 
stable organo-mineral complexes, and improved nutri-
ent retention over time. Several studies also observed 
delayed SOC responses in the early years of fertilisation, 
underscoring the importance of sustained management.

Together, these findings suggest that tailoring fertiliser 
regimes to local climate, soil, and management histories 
is essential for maximising benefits and minimising unin-
tended consequences. The strong performance of organic 
and integrated inputs across systems also supports grow-
ing calls for diversified fertilisation strategies in climate-
smart agriculture.

Nitrogen addition enhances soil carbon and nutrient 
accumulation in a dose-dependent manner
Our findings from the meta-analysis align with numerous 
previous studies [7, 31], which reports that N fertilisa-
tion stimulates plant productivity and biomass return to 
the soil, enhancing belowground carbon inputs through 
litter, roots, and rhizodeposition [6, 32]. The elevated 
carbon inputs, in turn, fuel microbial activity and accel-
erate the stabilisation of organic matter via microbial 
transformation and aggregate formation [33]. Li et al. 
[34] similarly reported SOC increases of 10–25%, par-
ticularly under moderate to high N inputs, and in sys-
tems with organic matter incorporation. The absence of 
significant C/N change, despite parallel increases in SOC 
and TN, is consistent with long-term trials (e.g., Sun et 
al. [35]) and suggests synchronised carbon and nitrogen 
accumulation. This stoichiometric stability likely reflects 
co-regulation by plant inputs and microbial nitrogen 
immobilisation [36].

The observed increases in NO₃⁻-N and NH₄⁺-N indicate 
that N addition stimulated internal nitrogen cycling, con-
sistent with reports by Gao and Liu [37], which showed 
that N fertilisation enhanced mineralisation, ammoni-
fication, and nitrification rates. NO₃⁻-N accumulation 
may reflect microbial oxidation of NH₄⁺ under favour-
able redox conditions, while elevated NH₄⁺-N could 
result from increased mineralization and decreased plant 
uptake under N surplus [38]. Increased AP availability, 
despite the absence of phosphorus fertilisation in many 
studies, suggests a tight N–P coupling. This phenomenon 
has been attributed to nitrogen-induced stimulation of 

microbial phosphatase activity, increased root growth, or 
enhanced solubilization of soil P pools [39, 40]. Similar 
patterns were reported in several paddy and upland sys-
tems [41, 42], particularly under combined N and organic 
residue inputs.

Importantly, we detected a strong dose–response rela-
tionship between N input rates and the magnitude of 
soil responses across indicators. The weighted response 
ratios (LnRR) for SOC, TN, NO₃⁻-N, NH₄⁺-N, and AP 
all increased significantly with increasing N addition. 
This cumulative effect is consistent with trends observed 
in multiple long-term studies [43, 44], which showed 
progressive SOC and nutrient accumulation with pro-
longed fertilisation. However, some studies reported that 
responses eventually plateau or reverse at very high N 
inputs due to microbial suppression, acidification, or N 
loss pathways [45, 46].

Random forest machine learning enables spatially explicit 
prediction of nitrogen-induced soil improvements
In addition to our meta-analysis, we employed ML mod-
els to predict the spatial distribution of nitrogen-induced 
changes in SOC and soil nutrients across Chinese crop-
lands. We employed an RF machine learning model, 
which has been widely recognised for its ability to handle 
nonlinear relationships in complex environmental datas-
ets [19]. Compared to conventional statistical techniques, 
ML offers advantages in capturing nonlinear interac-
tions, integrating multiple data layers (e.g., climate, soil, 
and management), and generating high-resolution spa-
tial predictions [47]. The RF model integrated both biotic 
and abiotic predictors, including climate, soil properties, 
N fertiliser type, fertilisation duration, and geographic 
features. This data-driven approach allowed us to recon-
struct and map SOC sequestration potential at a national 
scale with high accuracy and resolution, capturing com-
plex nonlinear interactions that conventional statistical 
techniques often fail to detect.

Our results from random forest analysis reveal that 
soil biogeochemical responses to nitrogen addition are 
governed by distinct environmental drivers, with pH 
emerging as a consistent and dominant predictor across 
multiple soil indicators (Fig. 4). This underscores the crit-
ical role of pH regulation in mediating nutrient transfor-
mations and organic carbon stabilization, aligning with 
prior findings that nitrogen-induced acidification signifi-
cantly alters microbial processes and nutrient dynamics 
[48, 49]. The divergence in predictor importance across 
functions—such as the dominance of texture and eleva-
tion for NH₄⁺-N, or aridity and N rate for NO₃⁻-N—
highlights strong spatial heterogeneity and the need for 
site-specific nutrient management strategies [50, 51].
These insights emphasize that optimizing nitrogen use 
efficiency and sustaining soil multifunctionality require 



Page 9 of 12Li and Li Carbon Balance and Management           (2025) 20:15 

integrated approaches that account for underlying soil 
and climatic contexts.

The RF model predicted significant increases in SOC 
and soil nutrient concentrations in response to nitrogen 
fertilisation, with national-scale estimates indicating an 
average SOC increase of 30.25%. This result supports the 
widely observed trend that nitrogen addition enhances 
carbon sequestration by stimulating plant productivity, 
increasing organic matter inputs, and promoting micro-
bial-driven stabilisation of SOC [34]. Alongside SOC 
changes, total TN increased by 22.62%, while NH₄⁺-N 
and NO₃⁻- exhibited contrasting patterns, with ammo-
nium concentrations rising by 87.91% and nitrate levels 
increasing by a more moderate 41.61%. The dispropor-
tionate increase in ammonium relative to nitrate likely 
reflects regional differences in soil microbial activity, 
where limited nitrification under acidic or oxygen-lim-
ited conditions suppresses the conversion of NH₄⁺-N to 
NO₃⁻-N. The relatively lower nitrate accumulation sug-
gests potential losses through leaching and denitrifica-
tion, particularly in areas with high precipitation and 
permeable soils [52].

Among the most striking findings, AP exhibited a dra-
matic increase of 651.81%, reinforcing concerns regard-
ing phosphorus accumulation in intensively managed 
agricultural systems. This substantial rise in AP is likely 
driven by long-term phosphorus fertilisation, soil adsorp-
tion saturation, and organic manure applications, which 
contribute to the persistent buildup of bioavailable phos-
phorus in surface soils [53]. The low mobility of phos-
phorus further exacerbates its accumulation, increasing 
the risk of environmental contamination through surface 
runoff and eutrophication [54]. However, in the southern 
part of China, where the soil Ph is relatively lower, pro-
longed phosphorus fertilisation tends to a buildup of soil 
phosphorus fractions, increasing the risk of phosphorus 
loss and environmental contamination [29].

The RF model effectively captured regional heterogene-
ity in SOC and nutrient responses to nitrogen addition, 
providing valuable insights into the spatial variability of 
soil fertility dynamics. In arid and semi-arid regions, the 
model predicted the most pronounced SOC increases, 
likely due to initially low baseline carbon stocks, which 
make these areas particularly responsive to fertilisation 
inputs. In contrast, phosphorus accumulation was par-
ticularly pronounced in historically phosphorus-deficient 
soils, where long-term fertilisation and manure appli-
cations have led to soil phosphorus saturation, further 
reinforcing the need for site-specific phosphorus man-
agement strategies. Patterns of nitrate accumulation 
varied across agroecological zones, with regions char-
acterised by high precipitation and sandy soils exhibit-
ing lower NO₃⁻-N retention. This suggests that these 
areas may be more susceptible to nitrate leaching losses, 

highlighting the importance of integrating hydrologi-
cal considerations into precision nitrogen management. 
By integrating climate, soil, and management data, the 
RF model offers a robust framework for optimising fer-
tiliser application rates and spatially tailoring nutrient 
management practices. These predictive capabilities are 
particularly relevant for mitigating environmental risks 
associated with nitrogen losses, including groundwater 
contamination and nitrous oxide emissions.

Net GHG balance and policy implication
While our findings confirm that nitrogen addition can 
enhance SOC and nutrient availability, it is critical to 
evaluate these changes in the context of the full green-
house gas (GHG) balance. SOC sequestration, when 
considered in isolation, may offer a partial or even mis-
leading view of the climate impact of fertilisation. Given 
that N₂O has a global warming potential 298 times that 
of CO₂ over a 100-year horizon [55], even modest emis-
sion increases can negate the benefits of SOC storage. 
Shcherbak et al. [56] demonstrated a nonlinear relation-
ship between N input and N₂O emissions, with sharp 
increases beyond agronomic optimums. Moreover, in 
flooded rice systems, nitrogen inputs—especially when 
paired with organic amendments like manure or straw—
can stimulate methane (CH₄) emissions due to enhanced 
substrate availability for methanogenic microbes. There-
fore, despite the observed benefits of organic and inte-
grated fertilisation on enhancing soil carbon and nutrient 
dynamics, their application in anaerobic paddy soils may 
simultaneously increase CH₄ emissions [57, 58]. This 
trade-off was emphasised in Zou et al. [59] and van Groe-
nigen et al. [60], where CH₄ fluxes offset or exceed gains 
from SOC accumulation. These findings reinforce the 
necessity of a whole-system GHG accounting framework, 
including CO₂, N₂O, and CH₄, to guide sustainable nitro-
gen use. Ignoring these interactions may lead to overly 
optimistic assessments of climate mitigation potential 
and encourage fertiliser practices that ultimately increase 
net GHG emissions. Integrating SOC gains with gas flux 
monitoring, yield impacts, and environmental co-bene-
fits will be essential for climate-smart nitrogen strategies.

Despite the effectiveness of machine learning in pre-
dicting SOC and nutrient changes, the RF model has 
certain limitations that warrant further refinement. The 
current approach does not explicitly account for green-
house gas emissions, such as N₂O, which are critical for 
evaluating the full environmental trade-offs of nitrogen 
fertilisation. Additionally, the model does not incor-
porate soil acidification risks, a key factor influencing 
long-term soil fertility and productivity under intensive 
nitrogen application. Microbial-mediated nutrient trans-
formations, which play a central role in nitrogen cycling, 
are also not directly modelled, limiting our ability to fully 
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capture the biogeochemical processes driving nutrient 
dynamics. Future research should integrate real-time 
greenhouse gas flux measurements, remote sensing 
data, and microbial community analyses to improve the 
predictive capacity of machine learning models in soil 
fertility assessments. Incorporating time-series model-
ling approaches could also enhance our understanding 
of the long-term sustainability of nitrogen-induced SOC 
and nutrient changes, allowing for more accurate predic-
tions of future soil health trajectories. By advancing these 
methodologies, machine learning-driven soil modelling 
can further contribute to the development of precision 
agriculture strategies that balance productivity, soil con-
servation, and environmental sustainability.

From a carbon balance perspective, practical farmland 
management strategies should aim to reduce carbon 
emissions while enhancing soil carbon sequestration. 
Minimizing tillage intensity reduces CO₂ release from 
soil organic matter decomposition and protects soil 
structure, thereby lowering microbial respiration losses 
[61]. The retention of crop residues on-site serves as a 
continuous carbon input and fosters soil aggregation, 
which enhances the physical protection of organic car-
bon [62]. The use of cover crops during fallow periods 
increases belowground biomass input and improves soil 
carbon storage, while also reducing erosion-related car-
bon losses [63]. Application of organic amendments with 
a high C: N ratio—such as compost or biochar—not only 
contributes to long-term carbon stabilization in soil but 
also promotes microbial assimilation of nitrogen, thereby 
lowering N₂O emissions [64]. In parallel, optimizing fer-
tilization timing and dose through precision agriculture 
technologies reduces energy-intensive inputs and associ-
ated upstream emissions. Together, these practices form 
an integrated pathway for climate-smart agriculture, con-
tributing to both carbon neutrality goals and the long-
term sustainability of agroecosystems.

Conclusion
This study provides comprehensive, nationwide evidence 
that nitrogen addition significantly enhances soil organic 
carbon (SOC) sequestration and nutrient accumulation 
in Chinese croplands. By synthesising data from 479 
field sites and employing machine learning modelling, 
we demonstrate that nitrogen-induced increases in SOC, 
total nitrogen, nitrate, ammonium, and available phos-
phorus vary according to climate zone, fertiliser type, and 
application duration. The responses are dose-dependent 
and regionally heterogeneous, with particularly strong 
carbon sequestration potential observed in arid regions. 
Organic and integrated fertilisers confer greater ben-
efits than chemical fertilisers, while long-term fertilisa-
tion further amplifies the positive effects on soil health. 
The application of machine learning enables precise 

predictions of nitrogen addition outcomes across envi-
ronmental gradients, offering a powerful tool for guiding 
sustainable nitrogen management and optimising fertil-
iser strategies. While this study offers valuable insights, 
several limitations warrant consideration. The study does 
not explicitly account for greenhouse gas (GHG) emis-
sions, such as nitrous oxide (N₂O), which play a criti-
cal role in assessing the full environmental trade-offs of 
nitrogen fertilisation. Given the potential for increased 
N₂O emissions to offset the carbon sequestration gains 
observed in SOC, future research should integrate GHG 
flux measurements to provide a more holistic evaluation 
of nitrogen management strategies. Addressing these 
emissions is essential to ensuring that fertilisation prac-
tices contribute to both enhanced soil health and broader 
climate mitigation goals. Overall, these findings offer 
a robust scientific foundation for enhancing the carbon 
sink capacity of croplands and developing precision agri-
cultural strategies that align with carbon neutrality and 
food security objectives.
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