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What are Geobacillus?

The genus Geobacillus includes thermophilic Gram-
positive spore-forming bacteria that form a phylo-
genetically coherent clade within the family Bacillaceae.
They are of great interest for biotechnology (as discussed
below). These thermophiles seem to be ubiquitous; viable
Geobacillus spores can be isolated in large quantities not
only from hot environments such as hydrothermal vents,
but also, paradoxically, from cool soils and cold ocean
sediments (Zeigler, 2014).

These bacteria were previously categorized as ‘Group
5’ within the genus Bacillus but were subsequently split
into the new genus Geobacillus (Nazina et al., 2001).
Many Geobacillus strains were previously described as
belonging to a single species Bacillus stearothermophilus,
but it was clear that there was great heterogeneity in
physiology, preferred temperature range and other phe-
notypic characteristics among these strains. For example,
see Fig. 1 showing three distinct colony morphologies
among three strains described as ‘B. stearothermophilus’.
It is now absolutely clear that there are several distinct
species within Geobacillus and these can be distin-
guished by both genotype and phenotype (Nazina et al.,
2001; Banat et al., 2004; Zeigler, 2005; Dinsdale et al.,
2011; Coorevits et al., 2012).

Why are Geobacillus species of interest
for biotechnology?

Geobacillus spp. are of interest for biotechnology as
source of thermostable enzymes and natural products,

digesters of lignocellulose, bioremediators of hydrocar-
bons, producers of bio-fuel, cellular factories for
heterologous expression of enzymes and as hosts for
directed evolution (Wiegel et al., 1985; Niehaus et al.,
1999; Couñago and Shamoo, 2005; Marchant et al.,
2006; Cripps et al., 2009; Taylor et al., 2009; Tabachnikov
and Shoham, 2013). Industrially important enzymes
originating from Geobacillus spp. include lipases
(Schmidt-Dannert et al., 1998), glycoside hydrolases
(Fridjonsson et al., 1999; Bartosiak-Jentys et al., 2013;
Suzuki et al., 2013), N-acylhomoserine lactonase (Seo
et al., 2011) and DNA polymerase I (Sandalli et al., 2009)
and protease (Chen et al., 2004) among others. The
advantages of using thermophilic bacteria as whole-cell
biocatalysts were recently discussed in this journal (Taylor
et al., 2011) and include reduced risk of contamination,
acceleration of biochemical processes and easier main-
tenance of anaerobic conditions. These bacteria also
tend to ferment a wide range of substrates, utilizing
both cellobiose and pentose sugars. In the context of
bioethanol production, there is the additional advantage of
reduced cooling costs and easier removal and recovery
of the volatile product by sparging or partial vacuum
thus also avoiding ethanol poisoning of the bacteria
(Taylor et al., 2009). Less positively, Geobacillus spp. are
common contaminants in the dairy and food industries
(Burgess et al., 2010).

Which genomes have been sequenced?

At the time of writing (28 July 2014), 29 Geobacillus
genome sequences are available (Table 1). These include
representatives of all the major phylogenetic groups within
the genus and include representatives of the species
G. thermoleovorans, G. kaustophilus, G. thermocatenu-
latus, G. thermodenitrificans, G. stearothermophilus,
G. caloxylosilyticus and G. thermoglucosidans (formerly
G. thermoglucosidasius) as well as several strains that
have not been assigned to named species (Fig. 2).
Genome sequences are also available for some other
thermophilic members of the Bacillaceae, such as
Paenibacillus lautus (Mead et al., 2012) and Bacillus
coagulans (Xu et al., 2013) and for Geobacillus-infecting
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K1041NRRL 1174 NUB3621
Fig. 1. Diverse colony morphologies of strains classified as ‘G. stearothermophilus’. Strains NRRL 1174, K1041 and NUB3621 were streaked-
out on tryptic soy broth plates and incubated overnight at 50°C. Plates were photographed under identical conditions.

Table 1. Geobacillus strains whose genomes have been sequenced as of 26 July 2014.

Species and strain Motivation for sequencing Accession number References

G. caldoxylosilyticus CIC9 Not known NZ_AMRO01000000.1 n. a.
G. caldoxylosilyticus NBRC 107762 Not known BAWO01000000.1 n. a.
G. kaustophilus GBlys Lysogenic, containing an integrated prophage NZ_BASG01000001.1 (Doi et al., 2013)
G. kaustophilus HTA426 Source of novel glycoside hydrolases

(6-phospho-β-glycosidase and β-fucosidase)
NC_006510.1 (Takami et al., 2004)

G. sp. A8 Not known NZ_AUXP01000001.1 n. a.
G. sp. C56-T3 Not known NC_014206.1 n. a.
G. sp. CAMR12739 Hemicellulose degradation JHUR01000001.1 (De Maayer et al., 2014)
G. sp. CAMR5420 Hemicellulose degradation JHUS01000001.1 (De Maayer et al., 2014)
G. sp. FW23 Potential for degradation and utilization of oil

(bioremediation of oil spills)
JGCJ01000001.1 (Pore et al., 2014)

G. sp. G11MC16 Not known NZ_ABVH01000001.1 n. a.
G. sp. GHH01 Source if thermostable and thermo-active

secreted lipase
NC_020210.1 (Wiegand et al., 2013)

G. sp. JF8 Degrades biphenyl and polychlorinated
biphenyls (PCB)

NC_022080.4 (Shintani et al., 2014)

G. sp. MAS1 Potential source of useful enzyme-encoding
genes

NZ_AYSF01000001.1 (Siddiqui et al., 2014)

G. sp. WCH70 Not known NC_012793.1 n. a.
G. sp. WSUCF1 Abel to grow on lignocellulosic substrates NZ_ATCO01000001.1 (Bhalla et al., 2013)
G. sp. Y4.1MC1 Not known NC_014650.1 n. a.
G. sp. Y412MC52 Not known NC_014915.1 n. a.
G. sp. Y412MC61 Not known NC_013411.1 n. a.
G. stearothermophilus ATCC 7953 Not known JALS01000001.1 n. a.
G. stearothermophilus NUB3621 Genetically amenable host strain for metabolic

engineering
AOTZ01000001.1 (Blanchard et al., 2014)

G. thermocatenulatus GS-1 Not known JFHZ01000001.1 n. a.
G. thermodenitrificans NG80-2 Denitrification and degradation of long-chain

alkanes, facilitating oil recovery in oil
reservoirs

NC_009328.1 (Feng et al., 2007)

G. thermodenitrificans subsp.
thermodenitrificans DSM 465

Comparative genomics between the
alkane-utilizing NG80-2 and this strain which
is unable to utilize alkanes

NZ_AYKT01000001.1 (Yao et al., 2013)

G. thermoglucosidans TNO-09.020 Contaminant in dairy-processing environment NZ_CM001483.1 (Zhao et al., 2012)
G. thermoglucosidasius C56-YS93 Not known NC_015660.1 n. a.
G. thermoglucosidasius NBRC 107763 Not known BAWP01000001.1 n. a.
G. thermoleovorans B23 DNA Alkane degrader with unidentified alkane

monooxygenase
BATY01000001.1 (Boonmak et al., 2013)

G. thermoleovorans CCB_US3_UF5 Not known NC_016593.1 (Muhd Sakaff et al., 2012)

Names are given as found in the GenBank sequence database. n.a., not available.
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bacteriophage (Marks and Hamilton, 2014), but these will
not be discussed here. The team who sequenced the
genome of Geobacillus sp. MAS1 described this strain as
‘G. thermopakistaniensis’, but this is not a validly named

species and no justification was provided for its proposal as
a new species (Siddiqui et al., 2014). On the basis of
its recN sequence, a useful phylogenetic marker for
Geobacillus spp. (Zeigler, 2005), strain MAS1 is closely

Fig. 2. Phylogenetic relationships among sequenced strains of Geobacillus inferred from a multiple sequence alignment of recN sequences.
The circles indicate strains whose genomes have been sequenced, as listed in Table 1. The triangles indicate type strains of the various
Geobacillus species; recN sequences from these are taken from a previous phylogenetic analysis by Zeigler (2005). The maximum-likelihood
tree was generated using MEGA6 (Tamura et al., 2013).
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related to the type strains of G. kaustophilus and
G. thermoleovorans (Fig. 2). Strain NUB3621 was
described as ‘G. stearothermophilus’ but as has been pre-
viously noted (Studholme et al., 1999; Zeigler, 2005;
Blanchard et al., 2014), this strain is phylogenetically dis-
tinct from B. stearothermophilus sensu strictu and is more
closely related to G. caldoxylsilyticus and, to a lesser
extent, G. thermoglucosidans (Fig. 2). For more than half
of the sequenced genomes, papers have been published
describing and/or announcing the sequence data and
usually indicating the particular features of the strain that
motivated its sequencing. An insightful discussion of the
biological lessons from Geobacillus genomes was previ-
ously published earlier this year, including surveys of
genes involved in breakdown of plant-derived lignocellu-
lose (Zeigler, 2014); but at that time, only 10 genome
sequences were available.

The phylogenetic group within Geobacillus most
richly represented by genome sequences is the clade
containing G. thermoleovorans, G. kaustophilus and
G. thermocatenulatus (see the ‘kaustophilus clade’ in
Fig. 2). Based solely of sequences of the recN phylo-
genetic marker, it is not possible to precisely resolve rela-
tionships among sequenced strains within this group
(Fig. 2). However, the availability of complete genome
sequence data enables phylogenetic analysis based on
single-nucleotide variants over the entire core genome,
offering much greater resolution (Fig. 3A). According to
the core-genome-wide phylogenetic analysis, the two
strains assigned as G. kaustophilus do not form a
phylogenetically coherent monophyletic clade. On the
other hand, the two strains of G. thermoleovorans are
closely related and share 99.4% nucleotide sequence
identity [based on MUMMER2 alignments (Delcher et al.,
2002)]. Strain FW23 also appears to fall within this clade
and, subject to phenotypic characterization, can probably
be considered a member of this species too. Geobacillus
thermocatenulatus GS-1 is much more divergent, sharing
only 94% to 95% identity with the other strains in the
clade, which is consistent with the recN-based analysis
(Fig. 2). Strains Y412MC52 and YP412MC61 appear to
be extremely closely related to each other, sharing
99.8% sequence identity and showing no detectable dif-
ferences in gene content. Nucleotide sequence identities
between clades are much lower; between G. kaustophilus
and G. thermoglucosidans, there is approximately 84%
identity.

The considerable amount of reticulation in the
phylogenetic network (Fig. 3A) suggests significant hori-
zontal genetic transfer within and among these species.
This is further illustrated by the extent of variation in the
variable component of the genome (Fig. 3B). Out of 3887
genes on the chromosome of G. thermoleovorans CCB
US3 UF5, a total of 931 (approximately 24%) are variable

(that is, they are absent from at least one of the other
sequenced genomes). The global pattern of gene content
(Fig. 3B) broadly reflects the phylogenetic relationships
(Fig. 3A): according to gene content, the genomes fall into
four main clusters, indicated by four different colours of
shading in Fig. 3B, which correspond to four zones of the
phylogenetic network, shaded with the same colours in
Fig. 3A. However, there are numerous genes whose dis-
tribution across the genomes is incongruent with core-
genome phylogeny, again suggesting extensive horizontal
transfer.

What benefits has the sequencing of Geobacillus
genomes brought?

The availability of complete Geobacillus genome
sequences has enabled or accelerated the discovery,
cloning and exploitation of natural products. For
example, the availability of the NG80-2 genome se-
quence (Feng et al., 2007) enabled the discovery of
thermostable homologues of the lantibiotic nisin in
G. thermodenitrificans (Begley et al., 2009; Garg et al.,
2012), opening the possibility of replacing nisin as a food
preservative and veterinary antibiotic with more-stable
alternatives. Lantibiotics appear to be widely distributed
among sequenced Geobacillus species. For example, the
genome of G. kaustophilus HTA426 contains two
lantibiotic-biosynthesis gene clusters (centred on the
genes for YP_146139 and YP_146147) that are both con-
served in the recently sequenced Geobacillus sp.
CAMR12739. The NG80-2 genome sequence also
enabled discovery of the first nitrous oxide reductase gene
from a Gram-positive, and a novel thermophilic long-chain
alkane monooxygenase (Feng et al., 2007). Furthermore,
the genome sequence enabled proteomics-level confirma-
tion of pathways for catabolism of long-chain alkanes
(Feng et al., 2007) and aromatics (Li et al., 2012).

Many of the Geobacillus genome sequencing pro-
jects reported genes potentially encoding thermostable
homologues of useful enzymes. In some cases, the
genome sequences have been used to clone and express
the genes of interest and characterize the enzyme for
biotechnological potential. For example, the genome of
G. kaustophilus HTA426 was recently mined for members
of the glycoside hydrolase family 1, which have poten-
tial uses in synthesizing therapeutic oligosaccharides
(Suzuki et al., 2013). The genome sequence of the
alkane-utilizing G. thermoleovorans B23 (Boonmak et al.,
2013) revealed a cluster of three long-chain alkane
monooxygenase genes with homology to that of NG80-
2 that showed activity in vivo when heterologously
expressed in Pseudomonas fluorescens (Boonmak et al.,
2014). Recently, a novel thermostable endo-xylanase was
cloned and expressed from Geobacillus sp. WSUCF1
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(Bhalla et al., 2014) following the sequencing of its
genome (Bhalla et al., 2013).

Genome sequencing has revealed that interesting traits
are often encoded on chromosomes rather than on the
chromosome. For example, the biphenyl-degrading
pathway of Geobacillus sp. JF8 (Mukerjee-Dhar et al.,
2005; Shintani et al., 2014) and the long-chain alkane
monooxygenase of G. thermodenitrificans NG80-2 (Feng

et al., 2007) are both located on plasmids. The dynamic
loss and gain of such mobile elements presumably
explains, in part, the physiological differences between
natural isolates of Geobacillus spp. and it also suggests
that these bacteria might be engineered to express new
traits by introduction of recombinant plasmids. Indeed,
progress has been made in developing plasmid shuttle
vectors for heterologous expression in Geobacillus spp.

A

B

Fig. 3. Relationships among sequenced genomes within the G. kaustophilus clade resolved using whole-genome sequence data. The
phylogenetic network in panel A was based on a concatenation of 1722 variant single-nucleotide sites in 1 874 967 nucleotides of the core
genome present in all 15 genomes. The network was generated using the NEIGHBORNET algorithm (Bryant and Moulton, 2004) implemented
in the SPLITSTREE software package (Huson, 1998). The heat-map in B indicates the presence (dark blue) and absence (light blue) of each
of 931 non-core genes from the genome of G. thermoleovorans CCB US3 UF6 across the same 15 genomes appearing in A. The gene-
content clusters are shaded in the same colours in both panels. The heat-map was rendered using Raivo Kolde’s pheatmap package in
R (R Development Core Team, R, 2013).
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(Thompson et al., 2008; Bartosiak-Jentys et al.,
2013).

The value of genome sequencing goes beyond cata-
loguing potentially useful enzymes, as exemplified by the
recently published genomic study of strain NUB3621
(Blanchard et al., 2014). Some previous attempts to fully
exploit the potential of Geobacillus strains as whole-cell
catalysts have been frustrated by the paucity of genetic
and genomic resources (my own PhD research project in
the mid-1990s being a case in point; Studholme, 1998).
However, strain NUB3621 is a promising laboratory work-
horse strain. It is one of the few Geobacillus strains that
has been shown to be readily transformable with plasmid
DNA (Wu and Welker, 1989); protocols have been devel-
oped for genetic analysis (Chen et al., 1986) and a
genetic map has been available for more than two
decades (Vallier and Welker, 1990). Strain NUB3621 is a
mutant derived from wild-type strain NUB36 that lacks its
parent strain’s restriction-modification system and this
probably contributes to transformation efficiency. Inciden-
tally, and consistent with this, we observed that transfor-
mation efficiency was significantly affected by the
methylation status of the plasmid DNA (Thompson et al.,
2008).

Being one of the most genetically amenable Geobacillus
strains, NUB3621 was obviously a high priority for genome
sequencing. But rather than simply announcing and
describing its genome sequence, the authors went on to
show how the genome sequence could be exploited to
further develop the strain as a host for heterologous
expression and metabolic engineering (Blanchard et al.,
2014). Specifically, they used the genome sequence to
clone two promoters and incorporated them into plasmid
vectors: one for inducible gene expression and one con-
stitutive. The authors also mention that they tried other
promoters that did not work so well; presumably, the avail-
ability of the genome sequence allowed them to relatively
quickly screen a number of candidates until they found the
best ones. The combination of a genome sequence, allow-
ing relatively facile construction of expression and/or
knock-out constructs and a global view of metabolism,
along with transformability and a wide range of growth
temperatures [between 39 and 75°C (Wu and Welker,
1991)] make NUB3621 a strong candidate as the preferred
thermophilic host for rationally designed metabolic
engineering.

What’s next?

The availability of complete (or nearly complete) genome
sequences for nearly 30 Geobacillus strains (Table 1) as
well as large-scale proteomic data for at least one (Feng
et al., 2007; Li et al., 2012) should certainly accele-
rate cloning, expression and characterization of novel

thermostable and thermo-active enzymes, at least in an
academic research context. However, there has been
relatively little industrial uptake of enzymes from
thermophiles, with much greater use of proteins originat-
ing from mesophiles but engineered for thermo-stability
(Haki and Rakshit, 2003; Taylor et al., 2011). The conver-
gence of genomic data and transformability, at least for
strain NUB3621, should help to remove the barriers to
greater exploitation of thermophiles. However, genome
sequences are not yet publicly available for the handful of
other readily transformable Geobacillus strains such as
G. thermodenitrificans K1041 (Narumi et al., 1992),
G. stearothermophilus IFO 12550 (Imanaka et al., 1982),
NRRL 1174 (Liao et al., 1986) and G. thermoglu-
cosidasius TN (Thompson et al., 2008). Furthermore,
although it is possible to predict the metabolic networks of
bacteria from complete genome sequence, there is a
need for comprehensive testing of these predictions
through metabolomics. Only then can we rationally design
genetic interventions to predictably manipulate metabo-
lism. And finally, palaeo-genomics of ancient Geobacillus
spores, which may be viable after billions of years of
dormancy, might shed light on population-genetics and
evolutionary processes over timescales that we previ-
ously assumed to be intractable (Nicholson, 2003; Zeigler,
2014).
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