
RESEARCH ARTICLE

PACC: Large scale connected component

computation on Hadoop and Spark

Ha-Myung Park1, Namyong ParkID
2, Sung-Hyon Myaeng3, U KangID

4*

1 Kookmin University, Seoul, Republic of Korea, 2 Carnegie Mellon University, Pittsburgh, PA, United States

of America, 3 KAIST, Daejeon, Republic of Korea, 4 Seoul National University, Seoul, Republic of Korea

* ukang@snu.ac.kr

Abstract

A connected component in a graph is a set of nodes linked to each other by paths. The prob-

lem of finding connected components has been applied to diverse graph analysis tasks

such as graph partitioning, graph compression, and pattern recognition. Several distributed

algorithms have been proposed to find connected components in enormous graphs. Ironi-

cally, the distributed algorithms do not scale enough due to unnecessary data IO & process-

ing, massive intermediate data, numerous rounds of computations, and load balancing

issues. In this paper, we propose a fast and scalable distributed algorithm PACC (Partition-

Aware Connected Components) for connected component computation based on three key

techniques: two-step processing of partitioning & computation, edge filtering, and sketching.

PACC considerably shrinks the size of intermediate data, the size of input graph, and the

number of rounds without suffering from load balancing issues. PACC performs 2.9 to 10.7

times faster on real-world graphs compared to the state-of-the-art MapReduce and Spark

algorithms.

Introduction

A connected component in a graph is a set of nodes linked to each other by paths. Finding

connected components is a fundamental graph mining task having various applications

including reachability [1, 2], pattern recognition [3, 4], graph partitioning [5, 6], random walk

[7], graph compression [8, 9], etc. However, graphs of interest are enormous with billions of

nodes and edges; e.g., 2.4 billion monthly active users form a huge friendship network in Face-

book https://newsroom.fb.com/company-info/ and the Web is a gigantic network where more

than 1 trillion Web pages are linked to each other by hyperlinks https://googleblog.blogspot.

com/2008/07/we-knew-web-was-big.html. Then, how do we efficiently compute all connected

components in such massive graphs?

Hadoop and Spark are the de facto standard distributed data processing frameworks com-

posing their own ecosystem with diverse libraries. The ecosystem provides a consistent way to

store, process, and analyze data so that multiple types of big-data analyses run on the same

data at massive scale on commodity hardware. Several algorithms to find connected

PLOS ONE

PLOS ONE | https://doi.org/10.1371/journal.pone.0229936 March 18, 2020 1 / 25

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPEN ACCESS

Citation: Park H-M, Park N, Myaeng S-H, Kang U

(2020) PACC: Large scale connected component

computation on Hadoop and Spark. PLoS ONE 15

(3): e0229936. https://doi.org/10.1371/journal.

pone.0229936

Editor: Tatsuro Kawamoto, National Institute of

Advanced Industrial Science and Technology,

JAPAN

Received: January 17, 2020

Accepted: February 17, 2020

Published: March 18, 2020

Copyright: © 2020 Park et al. This is an open

access article distributed under the terms of the

Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Data Availability Statement: The data underlying

this study have been uploaded to GitHub and are

accessible using the following link: https://github.

com/kmudmlab/PACC.

Funding: This work was supported by ICT R&D

program of MSIP/IITP (2013-0-00179,

Development of Core Technology for Context-

aware Deep-Symbolic Hybrid Learning and

Construction of Language Resources). This work

was also supported by Institute for Information &

Communications Technology Promotion (IITP)

http://orcid.org/0000-0002-3344-2361
http://orcid.org/0000-0002-8774-6950
https://newsroom.fb.com/company-info/
https://googleblog.blogspot.com/2008/07/we-knew-web-was-big.html
https://googleblog.blogspot.com/2008/07/we-knew-web-was-big.html
https://doi.org/10.1371/journal.pone.0229936
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0229936&domain=pdf&date_stamp=2020-03-18
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0229936&domain=pdf&date_stamp=2020-03-18
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0229936&domain=pdf&date_stamp=2020-03-18
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0229936&domain=pdf&date_stamp=2020-03-18
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0229936&domain=pdf&date_stamp=2020-03-18
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0229936&domain=pdf&date_stamp=2020-03-18
https://doi.org/10.1371/journal.pone.0229936
https://doi.org/10.1371/journal.pone.0229936
http://creativecommons.org/licenses/by/4.0/
https://github.com/kmudmlab/PACC
https://github.com/kmudmlab/PACC

components on Hadoop and Spark have been proposed to take the ecosystem’s advantages;

however, ironically, they do not scale enough due to unnecessary data IO and processing, mas-

sive intermediate data, numerous rounds, and load balancing issues.

In this paper, we propose PACC (Partition-Aware Connected Components), a fast, scal-

able, and distributed algorithm for computing connected components. PACC achieves high

performance and scalability by three techniques: two-step processing (partitioning and

computation), edge filtering, and sketching. In the two-step processing, the partitioning

step divides the graph into subgraphs gradually in several rounds so that the subgraphs can

be processed independently of each other in the computation step. PACC distributes work-

loads evenly to machines, and avoids ‘the curse of the last reducer’ issue [10], which the

most advanced MapReduce algorithm [11] suffers from. We found that, during the parti-

tioning step, most edges arrive early in subgraphs where they should be located eventually.

Our proposed edge filtering shrinks the size of intermediate data by excluding every edge

that settles down in a subgraph in each iteration. Note that, the edge filtering is due to the

two-step processing, and thus, it is not applicable to previous MapReduce algorithms. We

also found that even if we replace a subgraph of the input graph with another subgraph that

has the same connectivity, the connectivity of the input graph does not change. The sketch-

ing reduces the size of the input graph by performing a sequential connected component

algorithm on each subgraph of the input graph. This paper makes the following

contributions:

• Algorithm. We propose PACC, a fast and scalable algorithm for connected component

computation in an enormous graph. PACC is made up of three key techniques: two-step

processing (partitioning and computation), edge filtering, and sketching. The techniques

make PACC distribute workloads evenly, shrink the size of input and intermediate data, and

reduce the round number.

• Theory. We theoretically prove various characteristics of PACC and the correctness. We

guarantee the input size never increases in every step of PACC.

• Experiment. We evaluate the performance of PACC using real and synthetic graphs. Experi-

mental results show that PACC is up to 10.7 times faster than state-of-the-art MapReduce

and Spark algorithms.

This paper is an extended version of [12]; in this paper, we newly propose a sketching tech-

nique that improves the performance of the previously proposed method (namely PACC-ef)

by reducing the input data size. We provide the detailed proofs of the correctness and the per-

formance of PACC with sketching (Lemmas 4, 6, 8, and 9). The efficacy of sketching is mea-

sured also experimentally; PACC with sketching shows up to 3.3 times faster performance on

the graphs of Twitter and YahooWeb than PACC without sketching, i.e., PACC-ef. We

describe how to implement PACC with sketching on Hadoop and Spark, and measure the

impact of the systems on the performance of PACC. The datasets used in this paper and the

code of PACC can be found in https://github.com/kmudmlab/PACC. Frequently used sym-

bols are summarized in Table 1.

Related work

Connected component algorithms have been developed in different ways to deal with large

scale graphs. In this section, we first introduce single-machine algorithms that the proposed

algorithm can exploit as a module, and then we introduce distributed-memory and MapRe-

duce algorithms.

PLOS ONE PACC: Large scale connected component computation on Hadoop and Spark

PLOS ONE | https://doi.org/10.1371/journal.pone.0229936 March 18, 2020 2 / 25

grant funded by the Korea government (MSIT) (No.

R0190-15-2012, High Performance Big Data

Analytics Platform Performance Acceleration

Technologies Development). This work was also

supported by the National Research Foundation of

Korea (NRF) grant funded by the Korea

government (MSIT) (No. 2019R1G1A1100794).

The Institute of Engineering Research and ICT at

Seoul National University provided research

facilities for this work. The funders had no role in

study design, data collection and analysis, decision

to publish, or preparation of the manuscript.

Competing interests: The authors have declared

that no competing interests exist.

https://github.com/kmudmlab/PACC
https://doi.org/10.1371/journal.pone.0229936

Single-machine algorithms

Breadth-first-search and depth-first-search are well known graph traversal algorithms that

compute connected components in linear time. Patwary et al. [13] propose a multi-core algo-

rithm that is based on the disjoint-set data structure; each set corresponding to a connected

component and two sets are unified if an edge links nodes in the two sets. However, these algo-

rithms cannot handle graphs exceeding the size of the main memory as they store the entire

graph on the memory. GraphChi [14] and DSP-CC [15] are external algorithms that use exter-

nal memory such as hard disks to increase the size of processable data in a single machine.

GraphChi has an implementation for connected component computation based on iterative

message passing process. DSP-CC is an external algorithm for computing connected compo-

nents based on Union-Find, showing notable speed on graphs with billion nodes and edges by

exploiting solid-state drives (SSDs). PACC can use these single-machine algorithms as a mod-

ule, in other words, PACC can be seen as a tool that enhances single-machine algorithms to be

distributed algorithms running on Hadoop and Spark.

Distributed-memory algorithms

Many distributed connected component algorithms are proposed in a parallel random-access

machine (PRAM) model, a theoretical parallel processing model. Bader and Cong [16] investi-

gate practical algorithms implemented on symmetric multiprocessors (SMPs), and propose a

SMP algorithm that first finds a shallow spanning tree of the input graph and computes

Table 1. Table of symbols.

Symbol Definition

G = (V, E) Undirected graph. V: node set, E: edge set.

u, v, n Nodes.

(u, v) Edge between u and v.

Γ(u) = {v|(u, v) 2 E} Set of neighbors of u.

Γ+(u) = {v|v 2 Γ(u), v > u} Set of large neighbors of u.

Γ−(u) = {v|v 2 Γ(u), v < u} Set of small neighbors of u.

ρ Number of partitions.

ξ Hash function V! {0, � � �, ρ − 1}.

ξ(u) Partition containing u.

[S]i = {v|v 2 S, ξ(v) = i} i-th partition of a set S.

m(u) = min(Γ(u) [{u}) Minimum node in Γ(u) [{u}.

mi(u) = min([Γ(u) [{u}]i) Minimum node in [Γ(u) [{u}]i.

τ Threshold for the number of input edges.

C Number of chunks.

Ei i-th chunk such that E =
S

i2{0,� � �,C−1} Ei and Ei \ Ej = ; if i 6¼ j.
Gi = (Vi,

Ei)

Edge-induced subgraph of Ei where Vi is the node set.

mþi ðuÞ = min([Γ+(u) [{u}]i) Minimum node in [Γ+(u) [{u}]i.

ri(u) Representative node of the connected component containing u in Gi; the minimum node among nodes

connected to u by a path in Gi.

E0i Graph where each node u in Gi is linked to ri(u) by an edge.

E0 Union of E0i 8i 2 f0; � � � ;C � 1g.

G0 = (V,

E0)
Result by the first step of sketching; edge-induced subgraph of E0.

G@ Result graph of sketching.

https://doi.org/10.1371/journal.pone.0229936.t001

PLOS ONE PACC: Large scale connected component computation on Hadoop and Spark

PLOS ONE | https://doi.org/10.1371/journal.pone.0229936 March 18, 2020 3 / 25

https://doi.org/10.1371/journal.pone.0229936.t001
https://doi.org/10.1371/journal.pone.0229936

connected components by conducting the depth-first search starting from the spanning tree in

parallel. Several graph mining platforms that use distributed-memory such as Pregel [17],

GraphLab [18], GraphX [19], PowerGraph [20], PowerLyra [21], Ligra [22], and Gemini [23]

provide implementations for computing connected components that are based on iterative

message passing process. To achieve high performance, they make several implicit assump-

tions: (1) the entire graph including replicated nodes fits into the distributed memory (Pregel,

GraphLab, GraphX, PowerGraph, PowerLyra, Ligra, Gemini), (2) the set of nodes fits into the

memory of a single machine (Gemini), (3) node ids are represented by 32-bit integers and con-

secutive (GraphLab, PowerGraph, PowerLyra, Ligra, Gemini), and (4) the input file should be

in a system-specific format (Ligra, Gemini). These assumptions make the above distributed-

memory algorithms not scalable, not seamlessly connected with other data processing, and

require complex preprocessing.

MapReduce algorithms

MapReduce [24] is a widely-used distributed computing framework. Exploiting distributed

storage, MapReduce provides fault-tolerance of data, high scalability in terms of data and

cluster sizes, and an easy-to-use interface. Thanks to the advantages of MapReduce, diverse

graph mining tasks such as graph visualization [25, 26], subgraph enumeration [27], trian-

gle counting [28, 29], and radii/diameter calculation [30] have been researched on

MapReduce.

Recently, several MapReduce algorithms have been proposed for computing connected

components. A naïve method to compute connected components on MapReduce is to repeat

the breadth-first search (BFS) for each connected component. However, this algorithm

requires too many rounds; for each connected component, the algorithm takes as many

rounds as the diameter of the component. In MapReduce, the number of required rounds sig-

nificantly affects overall performance. Pegasus [30] and Zones [31, 32] conduct the breadth-

first search from every node concurrently so that the number of required rounds is reduced to

the largest diameter of connected components in a graph. However, the number of rounds is

still large for several enormous datasets; for example, the diameter of the YahooWeb graph is

above 30. Hash-Greater-to-Min [33] reduces and guarantees the number of rounds to be

O(log |V|) on the number of nodes for computing connected components. Hash-to-Min in

[33] does not ensure that the number of round is logarithmic, but is faster than Hash-Greater-

to-Min in practice. However, Hash-Greater-to-Min and Hash-to-Min generate massive inter-

mediate data that is more than twice the original graph size, resulting in a severe performance

degradation. However, both algorithms spawn large amounts of additional data during the

execution process, resulting in significant performance degradation.

Two MapReduce algorithms, two-phase and alternating, proposed in [11] resolve the inter-

mediate data explosion problem of Hash-to-Min. The algorithms guarantee that the interme-

diate data size of each round is always less than or equal to the input data size. However, the

algorithms suffers from the load-balancing problem, which is another performance bottleneck.

The alternating algorithm is introduced in more detail in the next section because it is relevant

to our work.

The same paper [11] also proposes optimized algorithms of two-phase and alternating. The

optimized two-phase algorithm, namely two-phase-DHT, exploits a distributed hash-table

(DHT) to decrease the round number. The experimental result of the paper shows that the two

optimized algorithms outperform the two-phase and alternating algorithms, while the opti-

mized alternating algorithm is faster than the two-phase-DHT algorithm on graphs with above

billion nodes and edges.

PLOS ONE PACC: Large scale connected component computation on Hadoop and Spark

PLOS ONE | https://doi.org/10.1371/journal.pone.0229936 March 18, 2020 4 / 25

https://doi.org/10.1371/journal.pone.0229936

Preliminaries

In this section, we introduce the definitions of a connected component and the computation

of it. Then, we introduce the alternating algorithm, a MapReduce algorithm for computing

connected components.

Problem definition

A connected component is a subgraph whose nodes are connected by paths, and the formal

definition is as follows.

Definition 1 Given an undirected graph, a connected component is a node set where nodes
have a path to each other and have no path to a node outside the set.

Fig 1 is an example graph with three connected components: {5, 11}, {3, 6, 12}, and {1, 2, 4,

7, 8, 9, 10}. The computation of connected components is to detect all connected components

in a graph. Equivalent task to connected component computation is to find the minimum
reachable node from each node; the minimum reachable node from a node u is the node with

the smallest identification number among nodes connected by a path from u. Note that we

assume each node has a unique number and the numbers are in a total order. Each minimum

reachable node represent a connected component. For example in Fig 1, nodes 1, 3, and 5 are

the representatives of connected components in the graph. The following is the formal defini-

tion of the computation of connected components.

Definition 2 The connected component computation on a graph G = (V, E) is to map each
node u 2 V to the minimum reachable node from node u.

The result of connected component computation on the example graph in Fig 1 is {(1, 1),

(2, 1), (4, 1), (7, 1), (8, 1), (9, 1), (10, 1), (5, 5), (11, 5), (3, 3), (6, 3), (12, 3)}. For a node u,

Γ(u) = {v|(u, v) 2 E} is the set of u’s neighbors. We denote the small neighbor of u by Γ−(u) =

{v|v 2 Γ(u), v< u}. Similarly, we denote the large neighbor of u by Γ+(u) = Γ(u) \ Γ−(u). We

denote by m(u) = min(Γ(u) [{u}) the node that has the smallest number among u and u’s

neighbors. In Fig 1, for example, Γ(7) = {1, 2, 4, 8, 9, 10}, Γ−(7) = {1, 2, 4}, Γ+(7) = {8, 9, 10},

and m(7) = 1.

The alternating algorithm

The alternating algorithm is one of the two MapReduce algorithms proposed in [11]. The

large-star and the small-star are the core operations of the algorithm. Each operation gets a

graph as input and generates a new graph as output. The large-star operation outputs an edge

(v, m(u)) for each u and for each v 2 Γ+(u). Similarly, the small-star operation outputs an edge

Fig 1. An example graph with 3 connected components.

https://doi.org/10.1371/journal.pone.0229936.g001

PLOS ONE PACC: Large scale connected component computation on Hadoop and Spark

PLOS ONE | https://doi.org/10.1371/journal.pone.0229936 March 18, 2020 5 / 25

https://doi.org/10.1371/journal.pone.0229936.g001
https://doi.org/10.1371/journal.pone.0229936

(v, m(u)) for each u and for each v 2 Γ−(u) \ {m(u)}. The algorithm repeats the two operations

alternately until no more edge is added or deleted.

After several rounds of the alternating algorithm, the input graph is changed into a star

graph. It implies that several nodes will have a numerous neighbors while most nodes will have

few neighbors. This leads to ‘the curse of the last reducer’ issue [10] meaning that most compu-

tations are performed on a small number of reducer, causing an abnormal increase in the run-

ning time of a MapReduce algorithm. In the same paper, the authors try to handle the load-

balancing issue by the optimized alternating algorithm that makes several copies of high-

degree nodes and spreads the high-degree nodes’ neighbors to the copies. However, the opti-

mized alternating algorithm can increase the number of edges during the process, and the

load-balancing issue still remains as we show in our experiments. Note that our method

ensures that the number of edges does not increase (see Lemma 5), while resolving the load

balancing problem.

Proposed method

In this section, we propose PACC (Partition-Aware Connected Components), a fast, scalable

and distributed algorithm for computing connected components. We summarize the chal-

lenges in developing a distributed algorithm for computing connected components efficient

and scalable, and how PACC addresses the challenges as follows.

1. How can we resolve the load balancing problem, which the alternating algorithm suffers

from? Two-step processing of partitioning and computation hinders edges from congre-

gating around a few nodes; thereby, the workloads are balanced across machines.

2. How can we shrinks the input and shuffled data sizes? Filtering out edges that are inside a

partition or no longer change rapidly decreases the number of edges every round. Conse-

quently, the shuffled data size is also decreased. Moreover, finding connected components

on edge disjoint subgraphs of the input graph (sketching) shrinks the number of edges in

the initial graph.

3. How can we minimize the round number? As edge-filtering decreases the number of edges

in each round, PACC reduces the round number by performing a single machine compu-

tation instead of multiple rounds of distributed computation when the edge number

falls below a threshold.

In the following subsections, we first show the overview of PACC, and describe the three

core techniques of PACC with theoretical analyses. Then, we discuss the issues of implementa-

tion on Hadoop and Spark.

Overview

Fig 2 illustrates the overview of PACC. PACC consists of two main steps (partitioning and

computation) and two optimization techniques (edge-filtering and sketching). We define

PACC without sketching as PACC-ef, and PACC-ef without edge-filtering as PACC-base, i.e.,

PACC-base consists only of the two main steps: partitioning and computation. In PACC-base,

the partitioning is an iterative operation that transforms the input graph into another graph

that has the same connectivity; the transformed graph is divided into ρ subgraphs so that the

computation step correctly computes the connected components by processing each subgraph

independently by a sequential algorithm. Note that subgraphs can be processed together in the

same machine or independently in different machines because partitions are logical divisions

of data. In PACC-ef, the edge-filtering eliminates edges that have settled on a subgraph during

PLOS ONE PACC: Large scale connected component computation on Hadoop and Spark

PLOS ONE | https://doi.org/10.1371/journal.pone.0229936 March 18, 2020 6 / 25

https://doi.org/10.1371/journal.pone.0229936

the partitioning step to shrink the intermediate data size for each iteration. It is worthwhile to

mention that the edge-filtering is available due to the two-step processing as the partitioning

step focuses only on partitioning rather than computing connected components; thus, the

edge-filtering is not applicable to the alternating algorithm discussed in the preliminaries. In

PACC, the sketching transforms the input graph into a smaller graph based on the fact that

even if a portion of the graph is replaced by another graph that has the same connectivity, the

transformed graph keeps the connectivity of the original graph. A similar idea is already

applied to DSP-CC [15], an external algorithm, but the idea is not directly applicable to PACC

because the idea is prone to load-balancing issues on distributed algorithm. The sketching of

PACC carefully converts the input data to avoid load-balancing issues. The following sections

describe the PACC-base, PACC-ef, and PACC in turn.

PACC-base: Two-step processing for load-balancing

This section introduces PACC-base, a basic version of PACC without sketching and edge-fil-

tering. We first describe the two main steps of PACC-base, and show how to combine the two

steps to compute connected components.

The partitioning step. The partitioning step of PACC-base resolves the load-balancing

issue of the alternating algorithm. The key idea is to partition the nodes and to avoid connect-

ing nodes in different partitions by edges. The main cause of the alternating algorithm’s load-

balancing issue is that the edges are concentrated on a few nodes after several rounds. A round

of the alternating algorithm transforms the graph in Fig 3a to the graph of Fig 3b. All edges are

connected to node 1, meaning that the computation in the next round is concentrated on

node 1. Meanwhile, PACC distributes the edges evenly to the partitions (see Fig 3c), resolving

Fig 2. A high level overview of PACC.

https://doi.org/10.1371/journal.pone.0229936.g002

Fig 3. A round of the alternating algorithm and PACC transforms the graph in (a) to (b) and (c), respectively.

While all edges are concentrated on node 1 by the alternating algorithm, PACC spreads the edges into ρ = 2 partitions.

https://doi.org/10.1371/journal.pone.0229936.g003

PLOS ONE PACC: Large scale connected component computation on Hadoop and Spark

PLOS ONE | https://doi.org/10.1371/journal.pone.0229936 March 18, 2020 7 / 25

https://doi.org/10.1371/journal.pone.0229936.g002
https://doi.org/10.1371/journal.pone.0229936.g003
https://doi.org/10.1371/journal.pone.0229936

the load-balancing issue. PACC-base divides the nodes into ρ partitions using a hash function

ξ: V! {0, � � �, ρ − 1}. We use ξ(u) to denote the partition of a node u. For a subset S� V of

nodes, we define the i-th partition of S by [S]i = {v 2 S|ξ(v) = i}.
The partitioning step alternately performs two distributed operations, PA-large-star and

PA-small-star, which improve the two core operations of the alternating algorithm by taking

into account the partition of nodes. While the large-star and the small-star link the neighbors

of each node u to the minimum neighbor m(u) of u, the PA-large-star and the PA-small-star

link the neighbors of each node u to the ‘local’ minimum neighbor mi(u) = min([Γ(u) [{u}]i)

of u in the i-th partition, and link the local minimum neighbors mi(u) for i 2 {0, � � �, ρ − 1} to

the ‘global’ minimum neighbor m(u). PA-large-star and PA-small-star are responsible for

large neighbors Γ+(u) of u, and small neighbors including u (i.e., Γ−(u) [{u}), respectively. Fig

4 demonstrates an example. Given a graph in Fig 4a, 4b and 4c show examples of PA-large-star

and PA-small-star on node 7 when the partition number is 2. Nodes 1, 7, and 9 are in partition

1, and nodes 2, 4, 8, and 10 are in partition 2. The global minimum node m(7) of node 7 is

node 1, and the local minimum nodes m1(7), m2(7) of node 7 are nodes 1 and 2, respectively.

PA-large-star links node 9 to node 1, and nodes 8 and 10 to node 2 since large neighbors Γ+(7)

of node 7 are nodes 8, 9, and 10. PA-small-star links node 7 to node 1, and node 4 to node 2

since small neighbors Γ−(7) of node 7 are nodes 1, 2, and 4. Node 2 is linked to node 1 as node

2 is a local minimum node and node 1 is the global minimum node. Algorithms 1 and 2 show

how PA-large-star and PA-small-star is implemented in a distributed manner using MapRe-

duce. Note that both PA-large-star and PA-small-star maintain the connectivity of the input

graph (see Lemma 2).

Algorithm 1: PA-large-star
Map : input hu;vi

1 emit hu;vi and hv;ui
Reduce : input hu;Γ(u)i

2 foreach v 2 Γ+(u) do
3 if v 6¼ mξ(v)(u) then
4 emit hv;mξ(v)(u)i
5 else if v 6¼ m(u) then
6 emit hv; m(u)i

Algorithm 2: PA-small-star
Map : input hu;vi where u > v

1 emit hu;vi
Reduce : input hu;Γ−(u)i

2 foreach v 2 Γ−(u) [{u} do
3 if v 6¼ mξ(v)(u) then
4 emit hv;mξ(v)(u)i

Fig 4. An example of the two distributed operations of PACC-base at node 7. PA-large-star links large neighbors

(in orange) to the local minimum nodes. PA-small-star links small neighbors and node 7 (in orange) to the local

minimum nodes. PA-small-star links node 2 to node 1 as node 2 is a local minimum node.

https://doi.org/10.1371/journal.pone.0229936.g004

PLOS ONE PACC: Large scale connected component computation on Hadoop and Spark

PLOS ONE | https://doi.org/10.1371/journal.pone.0229936 March 18, 2020 8 / 25

https://doi.org/10.1371/journal.pone.0229936.g004
https://doi.org/10.1371/journal.pone.0229936

5 else if v 6¼ m(u) then
6 emit hv;m(u)i

The computation step. The computation step divides the resulting graph of the partition-

ing step into ρ subgraphs and computes connected components in each subgraph indepen-

dently. The i-th subgraph is the edge-induced subgraph on the edges incident to the nodes in

the i-th partition. For example in Fig 3c, the first subgraph contains nodes 1, 7 and 9, and the

second subgraph contains nodes 1, 2, 4, 8, and 10. The computation step independently com-

putes connected components in each subgraph. The computation step is accomplished by a

single round MapReduce task; the map step builds the subgraphs, and the reduce step com-

putes connected components in the subgraphs. The map step sends each edge (u, v) to a parti-

tion ξ(u) where u> v (without lossing generality as the graph is undirected). Then, a reduce

operation receives the edge set Ep of the p-th subgraph, and computes connected components

from the edge-induced subgraph on Ep using a single machine algorithm (LocalCC). In our

experiments, Union-Find with the path compression [34] is used for LocalCC. A pseudo code

for the CC-Computation is in Algorithm 3.

Algorithm 3: CC-Computation
Map : input hu;vi where u > v

1 emit hξ(u);(u, v)i
Reduce : input hp;Epi

2 LocalCC(Ep)

Independent execution of LocalCC on each subgraph ensures to compute connected com-

ponents in the original input graph. For a connected component X, the local minimum node

min([X]i) in i-th partition is adjacent to the global minimum node min([X]) in the i-th sub-

graph, and the other nodes in the i-th partition is adjacent to min([X]i).

Lemma 1. In the resulting graph of PACC-base’s partitioning step, the edge-induced subgraph
on the edges incident to the nodes in a partition is a star graph where the center is the minimum
node in the partition, and the star graph includes the minimum node in the connected compo-
nent where the center node belongs to.

Putting it together. Algorithm 4 is the pseudo code of the complete PACC-base algo-

rithm. PACC-base performs PA-large-star and PA-small-star alternately until convergence to

partition the input graph. The algorithm converges when no edges are added or deleted in a

round. Then, PACC-base computes the connected components from the resulting subgraphs

using the CC-Computation operation (Algorithm 3).

Algorithm 4: PACC-base (PACC without edge-filtering and sketching)
Input: Edges (u, v) as a set E of key-value pairs hu;vi
Output: A unique connected component id for every node v 2 V

1 out E
// Partitioning step: lines 2 through 5

2 repeat
3 out PA-large-star(out)
4 out PA-small-star(out)
5 until Convergence;
6 return CC-Computation(out) // Computation step

PACC-ef: Edge-Filtering

We propose PACC-ef that improves PACC-base with edge-filtering. We first show our obser-

vation that the input edge size cannot be smaller than the number of non-root nodes while the

number of edges changed by the two operations of the alternating algorithm decreases rapidly

every round (see Fig 5). This suggests that most edges are just read and written without change.

PLOS ONE PACC: Large scale connected component computation on Hadoop and Spark

PLOS ONE | https://doi.org/10.1371/journal.pone.0229936 March 18, 2020 9 / 25

https://doi.org/10.1371/journal.pone.0229936

The lower bound of the input size at each round on the alternating algorithm is proved in The-

orem 1.

Theorem 1. In the alternating algorithm, the number of input edges in each round does not
fall below |V| − |C| where |V| and |C| are the numbers of nodes and connected components,
respectively.

Proof. The last round of the alternating algorithm outputs star graphs, each of that consists

of the nodes in a connected component and the center node is the connected component’s

minimum node, i.e., the output of the final round contains |V| − |C| edges. Besides, the num-

ber of output edges monotonically decreases every round by Lemmas 2 and 3 in [11]. As the

input of every round except the first round is the output of the previous round, the number of

input edges in a round cannot be less than |V| − |C|.

The partitioning step of PACC-ef excludes numerous edges so that the size of input and

shuffled data decrease significantly every round. The edge-filtering is possible because the par-

titioning step focus on partitioning instead of finding connected components. PACC-ef

excludes an edge (u, v) in two cases, where u< v without losing generality:

Case 1. ξ(u) = ξ(v) and Γ(v) = {u}: u and v are in the same partition, and u is the only neighbor

of v.

Case 2. Γ−(u) = ;, and Γ(v) = {u}8v 2 Γ(u): u does not have small neighbor, and every neigh-

bor of u does not have neighbor except u.

Edges of case 1 can be excluded as the goal of the partitioning step is to divide the graph

into subgraphs that can be processed independently each other during the computation step.

Thereby, each filtered edge in case 1 stays in the partition, and thus, the edges filtered in case 1

form a forest graph where no edge spans partitions. Meanwhile, edges of case 2 together form

star graphs, in each of them the center is the minimum node. Such edges no longer change in

the subsequent rounds by PA-large-star and PA-small-star. Such edges can be excluded in the

next round safely.

Algorithm 5: PACC-ef
Input: Edges (u, v) as a set E of key-value pairs hu;vi; a threshold

number τ of edges to run a single machine algorithm.
Output: A connected component id for each node v 2 V

1 out E;in ;;cc ;
// Partitioning step: lines 2 through 12

2 repeat
3 if # edges in out > τ then
4 (lout, lcc, lin) PA-large-star-opt(out)
5 cc cc [lcc

Fig 5. The number of input edges (in red) and modified edges (in gray) of the alternating algorithm. The number

of input edges in each round does not fall below the number of non-root nodes while the number of modified edges

drops sharply. This suggests that most edges are just read and written without change.

https://doi.org/10.1371/journal.pone.0229936.g005

PLOS ONE PACC: Large scale connected component computation on Hadoop and Spark

PLOS ONE | https://doi.org/10.1371/journal.pone.0229936 March 18, 2020 10 / 25

https://doi.org/10.1371/journal.pone.0229936.g005
https://doi.org/10.1371/journal.pone.0229936

6 in in [lin
7 (sout, sin) PA-small-star-opt(lout)
8 out sout
9 in in [sin
10 else
11 out LocalCC(out)
12 until Convergence;
//Computation step

13 return CC-Computation(out [in [cc)

Fig 6 shows the data-flow of PACC-ef. In the partitioning step, each round outputs three

types of edges: ‘out’, ‘in’, and ‘cc’. The ‘out’ edges is used as input of the next round while ‘in’

and ‘cc’ edges are not. The ‘in’ and ‘cc’ edges are accumulated, and are used for the computa-

tion step along with the ‘out’ edges of the final round. CC-Computation of the computation

step builds overlapping subgraphs and computes the connected components in each subgraph.

Algorithm 6: PA-large-star-opt
Map : input hu;vi

1 emit hu;vi and hv;ui
Reduce : input hu; Γ(u)i

2 if u = m(u) and Γ(v) = {u} 8v 2 Γ(u) then
3 foreach v 2 Γ+(u) do
4 emit hv;ui to lcc
5 else
6 foreach v 2 Γ+(u) do
7 if v 6¼ mξ(v)(u) then
8 if Γ(v) = {u} then
9 emit hv;mξ(v)(u)i to lin
10 else
11 emit hv;mξ(v)(u)i to lout
12 else if v 6¼ m(u) then
13 emit hv;m(u)i to lout

Algorithm 7: PA-small-star-opt
Map : input hu;vi

1 emit hu;vi and hv;ui
Reduce : input hu;Γ(u)i

2 foreach v 2 Γ−(u) [{u} do
3 if v 6¼ mξ(v)(u) then
4 if v = u and Γ+(u) = ; then
5 emit hv;mξ(v)(u)i to sin
6 else
7 emit hv;mξ(v)(u)i to sout
8 else if v 6¼ m(u) then
9 add a tag to v if v = u and Γ+(u) = ;
10 emit hv;m(u)i to sout

The MapReduce version pseudo code of PACC-ef is listed in Algorithm 5. In the partition-

ing step, PACC-ef alternately performs PA-large-star-opt, and PA-small-star-opt. The pseudo

Fig 6. Data-flow in PACC-ef.

https://doi.org/10.1371/journal.pone.0229936.g006

PLOS ONE PACC: Large scale connected component computation on Hadoop and Spark

PLOS ONE | https://doi.org/10.1371/journal.pone.0229936 March 18, 2020 11 / 25

https://doi.org/10.1371/journal.pone.0229936.g006
https://doi.org/10.1371/journal.pone.0229936

codes of the two operations are listed in Algorithms 6 and 7. For a neighbor v of u, PA-large-

star-opt verifies if Γ(v) is {u} in constant time by checking v has a tag or not, even though we

do not actually have the neighbors of v in the reduce function of PA-large-star-opt. The tag has

been added by PA-small-star-opt of the last round if v does not have large neighbors (line 9 of

Algorithm 7). Edge (u, v) is ‘cc’ edge if u = m(u) and Γ(v) = {u}8v 2 Γ(u) because u = m(u)

means that u does not have small neighbor (i.e., Γ−(u) = ;). PA-large-star-opt stores ‘cc’ edges

into lcc separately (lines 2-4 of Algorithm 6). For edge (u, v), PA-large-star-opt links v to

mξ(v)(u) if v 6¼mξ(v)(u). If Γ(v) = {u}, the edge (v, mξ(v)(u)) is ‘in’ edge, and thus, PA-large-star-

opt stores the edge into lin separately (line 9 of Algorithm 6). In the reduce function of PA-

small-star-opt when the input is hu; Γ(u)i, u is linked to mξ(u)(u) if u 6¼mξ(u)(u). If u has no

large neighbor, the edge (u, mξ(u)(u)) is ‘in’ edge, and thus, PA-small-star-opt stores the edge

into sin separately (line 5 of Algorithm 7).

Decreasing the amount of data to read and write, the edge-filtering quickly drops the num-

ber of edges so that the input graph becomes small enough to be processed on a single machine

after a few rounds. PACC-ef computes connected component using a single machine with

LocalCC when the input size is smaller than a threshold τ, instead of running several MapRe-

duce rounds. It saves preparation time for multiple rounds.

PACC: Sketching for shirinking the input graph size

The size of input graphs greatly influences the running time of PACC. We propose a sketching

method that shrinks the size of an input graph based on the fact that the connectivity of the

input graph is preserved even if a part of the graph is replaced by a graph that has the same

connectivity. Sketching generates a graph G@ with fewer edges than the input graph G by two

consecutive steps. Then, we use G@ as a new input graph of PACC. We explain the method

with an example in Fig 7.

The first step of sketching reduces the size of the input graph G while keeping the connec-

tivity of G by computing connected components in edge disjoint subgraphs of G. We denote

the reduced graph by G0. Details of the first step are as follows. The input graph G is stored as

multiple chunks in a distributed storage, where every edge is included in exactly one of the

chunks. Fig 7b shows one possible set of chunks of graph G in Fig 7a. We denote the i-th

chunk and its edge-induced subgraph by Ei and Gi = (Vi, Ei), respectively, where Vi is the

node set of Gi, i.e., [ðu;vÞ2Ei
fu; vg. Sketching computes connected components in each Gi

for i 2 {0, � � �, C − 1} where C is the number of chunks; that is, the first step outputs

E0i ¼ fðu; riðuÞÞ j u 6¼ riðuÞ; u 2 Vig for each i 2 {0, � � �, C − 1} where ri(u) is the minimum

node of the connected component containing u in Gi. Fig 7c shows the edge induced sub-

graphs G0i of E0i computed from Gi in Fig 7b. Then, the entire output of the first step is the

union of E0i, that is, E0 ¼ [i2f0;���;C� 1gE0i. Fig 7d shows the edge induced subgraph G0 of E0. Note

that the first step is performed in parallel on multiple machines without network communi-

cation. The first step of sketching is very similar to the first step of DSP-CC [15], which is an

external algorithm. As a result of the first step, the input size is reduced but many edges are

concentrated to a few nodes. The edge concentration is not a problem for DSP-CC because

DSP-CC is a single machine algorithm, but it causes a load-balancing issue on PACC as

PACC is a distributed algorithm. In Fig 7d, for example, most edges are concentrated on

node 1 and node 5. The skewness of G0 causes a load-balancing issue during the partitioning

step of PACC as computation of PA-large-star is concentrated on nodes with a large number

of neighbors.

The second step of sketching resolves the load-balancing issue by scattering edges concen-

trated on a small number of nodes while keeping the connectivity of G. The second step

PLOS ONE PACC: Large scale connected component computation on Hadoop and Spark

PLOS ONE | https://doi.org/10.1371/journal.pone.0229936 March 18, 2020 12 / 25

https://doi.org/10.1371/journal.pone.0229936

generates a new input graph G@ from G0 generated by the first step. For each node u, the sec-

ond step replaces a subset of edges from u’s neighbors to u with edges between the neighbors.

Fig 7e shows the result of the second step on G0 in Fig 7d. Let mþi ðuÞ be the minimum

node among the large neighbors [Γ+(u)]i [{u} of node u that are in partition i, that is,

mþi ðuÞ ¼ min ð½GþðuÞ�i [fugÞ. Given node u and partition i, we define (u, i)-localization as

replacing (v, u) with ðv;mþi ðuÞÞ for each large neighbor v 2 ½GþðuÞ�infm
þ
i ðuÞg in partition i.

Then, the second step conducts (u, i)-localization for each node u and partition i. In Fig 7d, for

example, for each partition i 2 {1, 2, 3}, the input edges of (5, i)-localization are in red, green,

and blue, respectively. The minimum neighbors of node 5, including itself, in each partition

are 7, 5, and 6, and thus, other neighbors are linked to one of them as shown in Fig 7e. The two

steps of sketching together are implemented with a single MapReduce job and the pseudo

code is listed in Algorithm 8.

Algorithm 8: Sketching
Map : input Ei

1 foreach (u, v) 2 LocalCC(Ei) do
/� v is the minimum node of the connected component including u in

the i-th
chunk Gi. ξ(u) is the partition containing u. �/

2 emit h(ξ(u), v);ui
Reduce : input h(j, v);[Γ+(v)]ji

3 foreach u 2 [Γ+(v)]j do
4 if u 6¼ mj(v) then
5 emit hu;mj(v)i
6 else
7 emit hu;vi

Fig 7. An illustration of sketching. Given G, sketching generates new input graph G@ via two steps, which has fewer edges than G.

https://doi.org/10.1371/journal.pone.0229936.g007

PLOS ONE PACC: Large scale connected component computation on Hadoop and Spark

PLOS ONE | https://doi.org/10.1371/journal.pone.0229936 March 18, 2020 13 / 25

https://doi.org/10.1371/journal.pone.0229936.g007
https://doi.org/10.1371/journal.pone.0229936

Analyses

We analyse the correctness and performance of PACC. We first prove the correctness of

PACC through Lemmas 2, 3, 4, and Theorem 2.

Lemma 2. PA-large-star and PA-small-star do not break the connectivity of the input graph.

Proof. As proved in Lemmas 1 and 3 of [11], the large-star and the small-star of the alternat-

ing algorithm do not break the original connectivity of the initial graph. We show that PA-

large-star and PA-small-star have the same connectivity as the large-star and the small-star,

respectively. For a node u and a large neighbor v of u, the large-star links v to m(u). PA-large-

star links v to m(u) if v = mξ(v)(u), or connects v to m(u) through mξ(v)(u) in the other cases.

Thus, PA-large-star also keeps the connectivity of the input graph. For a node u and a small

neighbor v of u, the small-star links u and v to m(u). Like PA-large-star, PA-small-star con-

nects v (or u) to m(u) directly if v = mξ(v)(u) (or u = mξ(v)(u)), or via mξ(v)(u) in the other cases.

Thus, PA-small-star also keeps the connectivity of the input graph.

Lemma 3. The ‘in’ set, which is the set of edges filtered out by case 1, is a forest (i.e., a set of
trees).

Proof. For edge (u, v) where u< v in case 1, u is the only neighbor of v and the edge is fil-

tered out by PACC-ef. Assume that vd was a large neighbor of v in a previous round, and

excluded by case 1; v was the only neighbor of vd, meaning that no cycle exists. Thus, the

lemma follows.

Lemma 4. The original input graph G and the graph G@ generated by the sketching method
have the same connected components.

Proof. By the definition of G0i, Gi and G0i have the same connectivity; that is, if two nodes are

connected by a path in Gi, they are also connected in G0i. As G is the union of Gi and G0 is the

union of G0i for i 2 {0, � � �, C − 1}, G and G0 also have the same connectivity.

(u, i)-localization does not change the connectivity of G0; after (u, i)-localization, mþi ðuÞ is

still directly linked to u, and v that is not mþi ðuÞ is reachable via mþi ðuÞ. As (u, i)-localization

does not change the connectivity, localization also does not change the connectivity of G0. That

is, G, G0, and G@ have the same connectivity.

Theorem 2. PACC correctly finds all connected components.
Proof. As proved in Lemma 4, the sketching step of PACC does not change the connectivity

of the original input graph. We then show the correctness of PACC by proving the correctness

of PACC-ef, which is PACC without sketching.

The partitioning step of PACC-ef outputs three edge sets, ‘in’, ‘cc’, and ‘out’, and the union

of the edge sets is the input of CC-Computation. Lemma 3 shows that the ‘in’ set is a forest

where a local minimum node in a connected component is the root of a tree. Meanwhile,

Lemma 1 shows that all local minimum nodes and the global minimum node of a connected

component are linked each other as a star graph in ‘cc’ and ‘out’ of the final round. The two

lemmas together show that the union of the three sets is a forest where each tree corresponds

to a connected component, and the root is the global minimum node; thus, the forest and the

original input graph have the same connectivity. CC-Computation independently computes

connected components from ρ subgraphs of the forest such that the i-th subgraph is the edge-

induced subgraph on the edges incident to the nodes in the i-th partition. As all local mini-

mum nodes in a connected component are directly linked to the global minimum node in the

forest, the nodes of a connected component in i-th partition have paths to the global minimum

node, which implies the result of CC-Computation is the connected components of the origi-

nal graph.

The following lemmas present performance bounds of PACC.

Lemma 5. PA-large-star(-opt) and PA-small-star(-opt) never increases the edge number.

PLOS ONE PACC: Large scale connected component computation on Hadoop and Spark

PLOS ONE | https://doi.org/10.1371/journal.pone.0229936 March 18, 2020 14 / 25

https://doi.org/10.1371/journal.pone.0229936

Proof. PA-large-star and PA-small-star does not duplicate any edges, and just change each

edge with another one. For each edge (u, v) where u< v, PA-large-star and PA-small-star

change the edge with (v, m(u)) or (v, mξ(v)(u)).

Lemma 6. Localization does not increase the number of edges, that is, |E@|� |E0|.
Proof. Localization replaces each edge to another edge to scatter the edges concentrated on

a few nodes. In other words, the edge number does not increase by localization.

Lemma 7. In PACC-ef, the number of input edges into CC-Computation is at most |V| − 1

where |V| is the size of node set.
Proof. The input of CC-Computation forms a forest as shown in Theorem 2. Thus, the max-

imum number of edges in the forest is |V| − 1. If the hash function partitions the nodes evenly,

the expected edge number in a subgraph is (|V| − 1)/ρ.

Lemma 8. The number |E@| of edges generated by sketching is less than or equal to |E| and

C|V|, where C is the number of chunks.
Proof. Given an edge set S, let G[S] = (V[S], S) be the edge induced subgraph where V[S] is

the node set of G[S]. Let r[S](u) be the representative node of the connected component con-

taining the node u in G[S]. We define Z(S) as {(u, r[S](u)) | u 6¼ r[S](u), u 2 V[S]}. Then, for

any nonempty edge set S, we first show that

jZðSÞj � jSj: ð1Þ

By the definition of Z(S),

jZðSÞj ¼ jV½S�j � jr½S�j ð2Þ

where r[S] = {u 2 V[S] | u = r[S](u)}. When S contains only one edge (u, v), the inequality

holds because u and v are in the same connected component and one of them must be the rep-

resentative node. Then, for a nonempty edge set S and an edge (u, v) which is not in S, we

show that |Z(S [{(u, v)})|� |S [{(u, v)}| is satisfied if |Z(S)|� |S|. By (2),

jZðS [fðu; vÞgÞj ¼ jV½S [fðu; vÞg�j � jr½S [fðu; vÞg�j

If u and v both are not in |V[S]|, |V[S [{(u, v)}]| = V[S] + 2 and |r[S [{(u, v)}]| = |r[S]| + 1

because u or v is the representative node of the opposite node. Thus,

jZðS [fðu; vÞgÞj ¼ jV½S�j � jr½S�j þ 1 ¼ jZðSÞj þ 1 � jSj þ 1 ¼ jS [fðu; vÞgj

If only one node u is in |V[S]|, |V[S [{(u, v)}]| = V[S] + 1 and |r[S [{(u, v)}]| = |r[S]|; rhus,

jZðS [fðu; vÞgÞj � jS [fðu; vÞgj

If both u and v are in |V[S]|, |V[S [{(u, v)}]| = |V[S]| and |r[S [{(u, v)}]| = |r[S]|; accordingly,

jZðS [fðu; vÞgÞj ¼ jZðSÞj � jSj < jS [fðu; vÞgj

Thus, for any nonempty edge set S, |Z(S)|� |S| holds.

By the definition of E0 and Z(S),

E0 ¼
[

i2f0;���;C� 1g

E0i ¼
[

i2f0;���;C� 1g

ZðEiÞ

As |X [Y|� |X| + |Y| for any sets X and Y,

jE0j �
X

i2f0;���;C� 1g

jZðEiÞj

PLOS ONE PACC: Large scale connected component computation on Hadoop and Spark

PLOS ONE | https://doi.org/10.1371/journal.pone.0229936 March 18, 2020 15 / 25

https://doi.org/10.1371/journal.pone.0229936

By (1),
X

i2f0;���;C� 1g

jZðEiÞj �
X

i2f0;���;C� 1g

jEij ¼ jEj

By the definition of Z(Ei), |Z(Ei)|� |V[Ei]| = |Vi|, and thus,
X

i2f0;���;C� 1g

jZðEiÞj �
X

i2f0;���;C� 1g

jVij

�
X

i2f0;���;C� 1g

jVj ¼ CjVj
ð10Þ

Finally, by Lemma 6,

jE@j � jE0j � min ðjEj;CjVjÞ

Lemma 9. The expected number of large neighbors of any node after the localization is O(|V|/

ρ + ρ), where ρ is the number of partitions.

Proof. In the result of (u, i)-localization, edge ðu;mþi ðuÞÞ is the only edge crossing two parti-

tions if ξ(u) 6¼ i, and the nodes of the other edges are in partition i. In other words, u’s large

neighbors in a different partition are generated by only (u, i)-localization. For each i 2 {0, � � �,

ρ−1} \ {ξ(u)}, (u, i)-localization can generate an edge crossing partitions i and ξ(u), thus ρ − 1 is

the maximum number of u’s large neighbors not in partition ξ(u) after the localization. Mean-

while, every node in partition ξ(u) has a chance to be linked to u by an edge after the localiza-

tion, that is, the maximum number of u’s neighbors in partition ξ(u) is O(|V|/ρ). Thus, the

expected number of edges incident to n is O(|V|/ρ) + ρ − 1� O(|V|/ρ + ρ).

Implementation

Although we describe PACC using MapReduce primitives for simplicity, PACC can be imple-

mented for various distributed frameworks such as Pregel, Spark, and Pegasus. This section

discusses the issues of implementing PACC in Hadoop and Spark, which are the representative

distributed computing frameworks.

PACC on Hadoop. Algorithm 9: PA-large-star-opt combiner
Combine : input hu;Γ0(u) � Γ(u)i

1 foreach i 2 {0, � � �, ρ − 1} do
2 m0iðuÞ 1
3 foreach v 2 Γ0(u) do
4 if v > u then
5 emit hu;vi
6 else
7 m0

xðvÞðuÞ minðm0
xðvÞðuÞ; vÞ

8 foreach i 2 {0, � � �, ρ − 1} do
9 if m0iðuÞ 6¼ 1 then
10 emit hu; m0iðuÞi

In PA-large-star-opt (Algorithm 6), the map function emits hu;vi and hv;ui for each edge

(u, v) so that all neighbors of each node are gathered into a reduce operation. Then, for each

node u, the reduce function links each large neighbor v 2 Γ+(u) to the global minimum node

m(u) or the local minimum node mξ(v)(u) of the partition ξ(v) of node v. We note that small

neighbors of u, except the local minimum nodes, are not needed in the reduce function. From

this, we reduce the amount of shuffled data by using a combine function that excludes small

neighbors that cannot be a local minimum node; a combine function in Hadoop conducts a

reduce operation in each machine locally, just before the shuffle step. The combine function

PLOS ONE PACC: Large scale connected component computation on Hadoop and Spark

PLOS ONE | https://doi.org/10.1371/journal.pone.0229936 March 18, 2020 16 / 25

https://doi.org/10.1371/journal.pone.0229936

for the PA-large-star-opt operation is listed in Algorithm 9. The combine function gets a node

u and a subset Γ0(u) of its neighbors as input. For each node v 2 Γ0(u), if v is a large neighbor

of u, we emit hu; vi (lines 4-5); in other cases, we update m0
xðvÞðuÞ with v (lines 6-7). For each

partition i, we emit hu; m0iðuÞi if m0iðuÞ has been updated at least once (lines 8-10).

Algorithm 10: PA-small-star-opt combiner
Combine : input hu;Γ0(u) � Γ(u)i

1 γ 1
2 foreach v 2 Γ0(u) do
3 if v < u then
4 emit hu;vi
5 else
6 γ v
7 if γ 6¼ 1 then
8 emit hu;γi

PA-small-star-opt (Algorithm 7), similarly, does not need all large neighbors of each node;

one large neighbor is enough to check whether the node has a large neighbor or not (lines 4

and 9 of Algorithm 7). Accordingly, we use a combine function that excludes all but one large

neighbor of each node in order to reduce the amount of shuffled data. The combine function

for the PA-small-star-opt operation is listed in Algorithm 10. The combine function gets a

node u and a subset Γ0(u) of its neighbors as input. For each node v 2 Γ0(u), if v is a small

neighbor of u, we emit hu; vi (lines 3-4); in other cases, we update γ with v. If γ has been

updated at least once, we emit hu; γi (lines 7-8).

If a graph has a cycle, PACC (and PACC-ef) outputs duplicate edges. PACC can generate

plenty of duplicate edges on most real-world graphs which have many cycles. We improve the

performance of PACC by eliminating such duplicate edges. Fig 8 shows an example of PACC

generating duplicate edges from a cycle. Both PA-large-star and PA-small-star output dupli-

cate edges (1, 3) and (1, 2), respectively. Edge (1, 3) appears twice when performing PA-large-

star on node 1 and 2, respectively. Similarly, edge (1, 2) appears twice when performing PA-

small-star on node 2 and 3, respectively. PACC removes duplicate edges in the reduce func-

tions of PA-large-star-opt and PA-small-star-opt. Each reduce function gets a node u and the

neighbors Γ(u) of u as input. If edge (u, v) is duplicated, Γ(u) contains multiple v. That is,

removing duplicates in Γ(u) means removing duplicate edges. One way to remove duplicates

in Γ(u) is using a hash table where one slot contains only one element. However, a hash table

is effectively slow and requires O(Γ(u)) space which can exceed the main memory. Instead of

using a hash table, we sort and scan Γ(u) on external memory.

PACC on Spark. Each round of PACC-ef makes three output sets: ‘out’, ‘in’, and ‘cc’. In

Spark, one can run three filter operations to make three output sets from a single input set

as a filter operation holds only results satisfying a condition and discards the others. This

Fig 8. PACC can output duplicate edges from a cycle in both PA-large-star and PA-small-star.

https://doi.org/10.1371/journal.pone.0229936.g008

PLOS ONE PACC: Large scale connected component computation on Hadoop and Spark

PLOS ONE | https://doi.org/10.1371/journal.pone.0229936 March 18, 2020 17 / 25

https://doi.org/10.1371/journal.pone.0229936.g008
https://doi.org/10.1371/journal.pone.0229936

approach, however, has two inefficiency issues. One is that this approach reads the same input

data multiple times as each filter operation requires processing entire data, and the other

is that all intermediate data (i.e., ‘in’ and ‘cc’ sets) must remain as RDDs until the end of PACC

occupying a large amount of memory. We resolve the two issues by storing the output sets

except the ‘out’ set into a distributed storage system such as HDFS.

The two star operations of PACC process the neighbors of each node together. Although a

groupByKey operation in Spark can gather the neighbors of each node, we use a combina-

tion of a partitionBy operation and external sorting on each partition instead of group-
ByKey because it does not work well with massive data; groupByKey uses memory-based

hash tables which assume that data are evenly distributed and fit into memory. Also, even if

some data are evenly distributed in memory, hash tables slow down as the data size increases

because hash tables frequently require random access accompanying high cache miss rate.

Contrary to groupByKey, partitionBy does not use a large hash table because it gathers

the neighbors of each node according to the partition, rather than the node. In other words,

the neighbors of a node are still mixed up with other nodes’ neighbors in a partition as a set of

edges. We gather the neighbors by sorting the edges by the source nodes, then also by the desti-

nation nodes to remove duplicate edges. As the size of a partition cannot fit into memory, we

use an external sort algorithm. The combination of partitionBy and external sorting sig-

nificantly increases the scalability and efficiency of PACC on Spark.

Experiments

This section evaluates PACC. The experimental settings are designed to answer the following

questions.

Q1. Efficacy of Partitioning. How well does the node-partitioning resolves the load-bal-

ancing issue?

Q2. Efficacy of Edge-Filtering. How many edges are filtered out by the edge-filtering?

Q3. Efficacy of Sketching. How much does sketching shrink the edge number?

Q1. Scalability. How well does PACC scale out when the data size and the machine num-

ber increase?

In the following, we first introduce datasets and experimental environments, and then,

answer the questions with the experimental results.

Setup

Datsets. Table 2 shows the list of the datasets used in our experiments and their sources.

Skitter is a computer network, and Patent is a citation relationship graph of US patents. Live-

Journal and Friendster are friend-relation graphs in online social media. Twitter is a follower

network in the social media of the same name. SubDomain is a hyperlink graph in domain

level. YahooWeb is a hyperlink graph in page level. RMAT-r is a synthetic graph generated by

RMAT model, which is a widely used realistic graph generation model following power-law

degree distribution and community structure, where r is the recursion level. We use (0.57,

0.19, 0.19, 0.05) for the RMAT parameters (a, b, c, d), and use the distributed RMAT generator

in TeGViz [26], to generate large graphs. RMAT graphs are for testing scalability of methods

so they have various sizes but similar average numbers of neighbors. The target edge numbers

for RMAT graphs are 31 457 280, 125 829 120, 503 316 480, 2 013 265 920, and 8 053 063 680

for recursion levels 21, 23, 25, 27, and 29, respectively. We remove all duplicate edges and self-

loops beforehand. The numbers of edges in Table 2 are counted except for self-loops and

PLOS ONE PACC: Large scale connected component computation on Hadoop and Spark

PLOS ONE | https://doi.org/10.1371/journal.pone.0229936 March 18, 2020 18 / 25

https://doi.org/10.1371/journal.pone.0229936

duplicate edges; edges with the same nodes and different direction, e.g., (u, v) and (v, u), are

also considered as duplicates as we assume all graphs are undirected.

Environment. We implement PACC, the alternating algorithm (Alt), and the optimized

alternating algorithm (Alt-opt) on Hadoop and Spark. Most experiments are conducted on

Hadoop, and a comparison between Hadoop and Spark is presented separately. For PACC, the

default values of the threshold τ and the number ρ of partitions are 20 000 000 and 80, respec-

tively. The parameter ρ for Alt and Alt-opt is also 80 unless otherwise noted. The cluster server

used for the experiments consists of 20 machines, and each is equipped with Intel Xeon E5-

2620v3 CPU (6-cores at 2.40GHz), 32GB RAM, and 4 HDD of 2TB. Hadoop v2.7.3 and Spark

v2.2.0 are installed on the cluster with 20 slave machines and one of them also acts as a master.

The memory size for a container is 7GB so that one slave can run 4 mappers or 4 reducers con-

currently. All running times shown in this paper include all the time to load data and write the

results from/to HDFS, the distributed storage used in the experiment.

Results

Efficacy of Partitioning. Fig 9 presents a box plot of reducers’ running time in each itera-

tion of PACC, Alt, and Alt-opt on YahooWeb; to show the effect of partitioning, we also run

Table 2. The summary of datasets.

Dataset |V| |E| |E|/|V| Source

Skitter (SK) 1 696 415 11 095 298 6.54 SNAP1

Patent (PT) 3 774 768 16 518 948 4.37 SNAP

LiveJournal (LJ) 4 847 571 68 993 773 14.23 SNAP

Friendster (FS) 65 608 366 1 806 067 135 27.52 SNAP

Twitter (TW) 41 652 230 1 468 365 182 35.25 Kwak et al. [35]2

SubDomain (SD) 89 247 739 1 940 007 864 21.73 Webscope3

YahooWeb (YW) 720 242 173 6 434 561 035 8.93 Webscope

ClueWeb12 (CW) 6 257 706 595 71 746 553 402 11.47 LemurProject4

RMAT-21 731 258 29 519 203 40.36 N/A (Synthetic graphs)

RMAT-23 2 735 400 120 517 935 44.05

RMAT-25 10 204 129 488 843 429 47.90

RMAT-27 38 034 673 1 974 122 517 51.90

RMAT-29 141 509 689 7 947 695 690 56.16

1 http://snap.stanford.edu/data/
2 http://an.kaist.ac.kr/traces/WWW2010.html
3 http://webscope.sandbox.yahoo.com
4 http://www.lemurproject.org/clueweb12

https://doi.org/10.1371/journal.pone.0229936.t002

Fig 9. A box plot of reducers’ running time on YahooWeb. PACC, with or without edge filtering and sketching,

shows the best load-balancing for every iteration.

https://doi.org/10.1371/journal.pone.0229936.g009

PLOS ONE PACC: Large scale connected component computation on Hadoop and Spark

PLOS ONE | https://doi.org/10.1371/journal.pone.0229936 March 18, 2020 19 / 25

http://snap.stanford.edu/data/
http://an.kaist.ac.kr/traces/WWW2010.html
http://webscope.sandbox.yahoo.com
http://www.lemurproject.org/clueweb12
https://doi.org/10.1371/journal.pone.0229936.t002
https://doi.org/10.1371/journal.pone.0229936.g009
https://doi.org/10.1371/journal.pone.0229936

PACC only with partitioning, that is, without edge filtering and sketching. We omit the results

on other datasets as they have similar trends. The threshold τ of PACC is set to 0 to see the run-

ning time of entire iterations. The last iterations of PACC and Alt-opt are for the computation

step and for cleaning up copied nodes, respectively. The odd-numbered iterations of PACC,

Alt, and Alt-opt are of PA-large-star(-opt), large-star, and large-star-opt, respectively. Simi-

larly, the even-numbered iterations of the methods are of PA-small-star(-opt), small-star, and

small-star-opt, respectively. The 0-th iteration of PACC is for sketching. The running time of

mappers, which has no load-balancing issue, is omitted; accordingly, the initialization time of

all methods except complete PACC is omitted because it works only with mappers. The top

and the bottom of a box are the third quartile and the first quartile, and a whisker spans the

maximum and the minimum running time. Longer whiskers indicate more serious load bal-

ancing issues. In the figure, PACC, with or without edge filtering and sketching, shows the

best load balancing for every iteration. The running time of PACC with edge filtering and

sketching decreases drastically as the graph size decreases with each iteration.

Efficacy of edge-filtering. Fig 10 shows the input edge size of PACC, Alt, and Alt-opt on

YahooWeb in each round. While Alt, Alt-opt, and PACC-base have a limit in reducing the

number of input edges, PACC with edge-filtering dramatically reduces the input edge size

every round. We depict the numbers of edges modified by PA-large-star-opt and PA-small-

star-opt in each round by the solid and dashed lines, respectively, as the lower bound of the

number of input edges. The blue line for PACC is very close to the lower bound, showing how

effective edge-filtering is. The vertical bars in two colors show the number of added edges to

the ‘in’ and ‘out’ sets. The longer the bar, the greater the decrease in the number of input edges

in the next round. Edge-filtering also significantly reduces the running time (see Fig 9).

Fig 11 shows the running time of PACC on various threshold τ on Twitter. With or without

sketching, PACC shows the best performance when τ is 20 000 000. The running time of

PACC-ef sours when τ� 2 × 109 because then PACC-ef just runs the single machine algorithm

Fig 10. The number of input edges of PACC, Alt, and Alt-opt on YahooWeb at each round. While Alt, Alt-opt, and

PACC without edge filtering do not reduce the size of graph below the number of non-root nodes, PACC with edge

filtering reduces it to near the lower bound.

https://doi.org/10.1371/journal.pone.0229936.g010

Fig 11. The running time of PACC on various τ values. PACC shows the best performance with τ = 2 × 107.

https://doi.org/10.1371/journal.pone.0229936.g011

PLOS ONE PACC: Large scale connected component computation on Hadoop and Spark

PLOS ONE | https://doi.org/10.1371/journal.pone.0229936 March 18, 2020 20 / 25

https://doi.org/10.1371/journal.pone.0229936.g010
https://doi.org/10.1371/journal.pone.0229936.g011
https://doi.org/10.1371/journal.pone.0229936

LocalCC after initialization that simply transforms the input files into binary files. On the

other hand, the running time of PACC when τ� 2 × 109 is not that high compared to the opti-

mal running time even if PACC also runs LocalCC right after sketching, thanks to the reduced

input data size by sketching.

Efficacy of sketching. Sketching boosts the performance of PACC by reducing the input

data size. Fig 12 shows how much sketching reduces the size of input data. The data reduction

ratio is defined as |E|/|E@| where |E| is the number of edges in the original graph and |E@| is the

number of edges in the graph generated by sketching. As the upper bound of the data reduc-

tion ratio is the average number |E|/|V| of neighbors, as shown in Lemma 8, we show the corre-

lation between the average number of neighbors and the data reduction ratio of sketching. The

dashed line depicts the upper bound. Various data reduction ratios are measured according to

the input data; sketching has the best effect on Twitter (data reduction ratio = 11.1) and has

the least effect on Friendster (data reduction ratio = 1.7) among real-world graphs. For rela-

tively small datasets such as Patent, Skitter, and LiveJournal, the data reduction ratios are

almost close to the upper bound; this is because most edges are included in few chunks. On the

other hand, the data reduction ratios are arbitrary for large datasets: Friendster, Twitter, Sub-

Domain, YahooWeb, and ClueWeb12.

Scalability. Fig 13a shows the running time of PACC, Alt, and Alt-opt on RMAT-S graphs

with various sizes. PACC shows the best scalability, which is almost linear, on data size as well

as the shortest running time for every RMAT-S graph. Sketching not only reduces the running

time of PACC but also increases the scalability on data size; when sketching is included, PACC

has a more gradual slope in Fig 13a. This is because sketching has a positive effect on load-bal-

ancing. Without sketching, a load balancing problem may occur for the first PA-large-star-opt

Fig 12. Correlation between the average number of neighbors and the data reduction ratio of sketching.

https://doi.org/10.1371/journal.pone.0229936.g012

Fig 13. Scalability of PACC, Alt, and Alt-opt. (a) The running time on RMAT graphs with various sizes. PACC

exhibits the best scalability as well as the shortest running time for all sizes. (b) The running time with various numbers

of machines on Twitter. PACC scales out better than Alt and Alt-opt as the number of machines increases.

https://doi.org/10.1371/journal.pone.0229936.g013

PLOS ONE PACC: Large scale connected component computation on Hadoop and Spark

PLOS ONE | https://doi.org/10.1371/journal.pone.0229936 March 18, 2020 21 / 25

https://doi.org/10.1371/journal.pone.0229936.g012
https://doi.org/10.1371/journal.pone.0229936.g013
https://doi.org/10.1371/journal.pone.0229936

operation of PACC according to the distribution of input data. After sketching, meanwhile,

the maximum number of large neighbors is bounded by Lemma 9, leading to better load-

balancing.

Fig 13b shows the running time of PACC, Alt, and Alt-opt in a log scale according to the

number of machines on Twitter. The steeper the slope, the better the machine scalability.

PACC always shows the fastest performance with the best machine scalability (slope = −0.74).

Alt and Alt-opt have the worst machine scalability (slope� −0.48) because of the problem in

load balancing; they do not fully utilize all the machines, and only a few machines work hard.

Results on real-world graphs. Fig 14 shows the running time of PACC, Alt, and Alt-opt

on real world graphs. We also show the running time of PowerGraph, a representative distrib-

uted-memory graph processing system, and Union-Find, a representative single machine algo-

rithm, for reference. The proposed algorithm PACC presents the best performance on large

graphs, showing up to 10.7 times faster performance than Alt-opt on YahooWeb. Only PACC

and PACC-ef succeed in processing ClueWeb12, which is the largest graph used in this paper

with 6 billion nodes and 72 billion edges. On small graphs such as Skitter and Patent, all the

distributed algorithms on Hadoop have longer running time even than the single machine

algorithm; it is because the preparation time for each iteration on Hadoop dominates the

entire running time when the graph is small. By the same reason, PowerGraph is faster than all

hadoop algorithms, but PowerGraph fails on large graphs (YahooWeb and ClueWeb12)

because of an out-of-memory error. For each dataset, the differences in running time between

PACC and PACC-ef, and between PACC-ef and PACC-base indicate the effects of sketching

and edge-filtering, respectively. The result shows that the decrease in running time by sketch-

ing is highly correlated with the data reduction ratio in Fig 12; the running time gaps between

PACC and PACC-ef are much bigger on LiveJournal, Twitter, and YahooWeb, whose data

reduction ratios are high, than on Friendster and SubDomain, whose data reduction ratios are

low. On small graphs, the effect of sketching is insignificant because of the preparation time of

Hadoop as mentioned. Meanwhile, edge-filtering tends to be effective on sparse graphs with

small average numbers of neighbors such as Skitter, Patent, and YahooWeb, as edge-filtering

reduces the round number significantly; the round number required by each algorithm is pre-

sented in Fig 15. CC-computation and sketching of PACC are counted as separate rounds,

respectively. The number of required round by PACC is smallest compared to the other tested

algorithm due to the edge-filtering.

Hadoop vs Spark. We test PACC, Alt, and Alt-opt on Spark and compare the running

times with those on Hadoop. Fig 16 shows the running time of the algorithms on Spark. The

running times of PowerGraph and Union-Find are also presented for reference as in Fig 14.

Fig 14. The running time of PACC, Alt, and Alt-opt on Hadoop. PowerGraph and Union-Find are for reference.

Missing algorithms for some datasets mean they failed to run on the datasets. Only PACC and PACC-ef succeed in

processing ClueWeb12, which consists of 6 billion nodes and 72 billion edges. PACC outperforms Alt-opt showing

from 2.9 (on Friendster) to 10.7 (on YahooWeb) times faster performance. Details on the datasets are given in Table 2.

https://doi.org/10.1371/journal.pone.0229936.g014

PLOS ONE PACC: Large scale connected component computation on Hadoop and Spark

PLOS ONE | https://doi.org/10.1371/journal.pone.0229936 March 18, 2020 22 / 25

https://doi.org/10.1371/journal.pone.0229936.g014
https://doi.org/10.1371/journal.pone.0229936

On small graphs (Skitter, Patent, and LiveJournal), PowerGraph has the shortest running time.

On large graphs (Friendster, Twitter, and SubDomain), PACC shows similar or better perfor-

mance even than PowerGraph. Compared to Alt-opt, PACC is 2.3-8.8 times faster on all tested

graphs. Alt and PowerGraph fail on YahooWeb because of out-of-memory errors. Fig 17

shows speedup over Hadoop on real world graphs. Regardless of algorithms and graphs, the

running time on Spark is shorter than that on Hadoop in most cases. The reason is that Spark

has shorter preparation time for each iteration than Hadoop does. As Hadoop requires con-

stant preparation time for each iteration, the total preparation time is proportional to the num-

ber of rounds. Meanwhile, the total running time increases with the graph size. This means

that the preparation time takes a large part of the overall running time if a method requires

many rounds while the graph is small; in this case, Spark significantly reduces the total running

time, as the preparation time of Spark is much shorter than that of Hadoop. Thus PACC-base,

Fig 15. The number of rounds required by PACC, Alt, and Alt-opt on real world graphs in Table 2. PACC requires

the smallest number of rounds.

https://doi.org/10.1371/journal.pone.0229936.g015

Fig 16. The running time of PACC, Alt, and Alt-opt on Spark. PowerGraph and Union-Find are for reference. Alt

and PowerGraph fail on YahooWeb because of out-of-memory errors. ClueWeb12 is omitted because all algorithms

fail on it. As in Hadoop, PACC outperforms Alt-opt for every graph in Spark; PACC is 2.3-8.8 times faster than Alt-

opt.

https://doi.org/10.1371/journal.pone.0229936.g016

Fig 17. The speedup of Spark over Hadoop on connected component computation. Spark is faster than Hadoop in

most cases for all algorithms.

https://doi.org/10.1371/journal.pone.0229936.g017

PLOS ONE PACC: Large scale connected component computation on Hadoop and Spark

PLOS ONE | https://doi.org/10.1371/journal.pone.0229936 March 18, 2020 23 / 25

https://doi.org/10.1371/journal.pone.0229936.g015
https://doi.org/10.1371/journal.pone.0229936.g016
https://doi.org/10.1371/journal.pone.0229936.g017
https://doi.org/10.1371/journal.pone.0229936

Alt, and Alt-opt, which require many rounds, get a lot of benefit from Spark when the graph is

relatively small (Skitter and Patent). Meanwhile, PACC and PACC-ef have few benefits since

they require fewer rounds due to edge-filtering. Despite the relatively few benefits from Spark,

PACC still shows the best performance on Spark as well as on Hadoop when the graph is large.

Conclusion

Connected component computation is a fundamental problem in the field of graph mining

with various applications such as pattern recognition, graph partitioning, and graph compres-

sion. Meanwhile, the existing MapReduce algorithms struggle in the enormity of the graphs

with billions of nodes and edges. In this paper, we propose PACC, a fast and scalable algorithm

for connected component computation in such large graphs. PACC increases its scalability and

performance by three techniques: two step processing of partitioning & computation, edge fil-

tering, and sketching. The two step processing allows PACC to distribute workloads evenly, the

edge filtering shrinks the size of intermediate data, and the sketching significantly reduces the

input data size. We implement PACC on Hadoop and Spark. The running time of PACC on

Spark is shorter than that on Hadoop in most cases; the result is consistent with existing

researches that Spark is more suitable for iterative tasks than Hadoop. Regardless of the under-

lying platform, our experimental results show that PACC shows the best performance on real

graphs, with 10.7× faster speed than the most recently proposed MapReduce algorithm.

Author Contributions

Conceptualization: Ha-Myung Park, Namyong Park.

Data curation: Ha-Myung Park, Namyong Park.

Formal analysis: Ha-Myung Park.

Funding acquisition: U Kang.

Investigation: Ha-Myung Park.

Methodology: Ha-Myung Park.

Supervision: Sung-Hyon Myaeng, U Kang.

Validation: Namyong Park.

Writing – original draft: Ha-Myung Park.

Writing – review & editing: Ha-Myung Park, Namyong Park, Sung-Hyon Myaeng, U Kang.

References
1. Medini D, Covacci A, Donati C. Protein Homology Network Families Reveal Step-Wise Diversification

of Type III and Type IV Secretion Systems. PLoS Computational Biology. 2006; 2(12). https://doi.org/

10.1371/journal.pcbi.0020173 PMID: 17140285

2. Albert R. Scale-free networks in cell biology. Journal of cell science. 2005; 118(21):4947–4957. https://

doi.org/10.1242/jcs.02714 PMID: 16254242

3. He L, Chao Y, Suzuki K, Wu K. Fast connected-component labeling. Pattern Recognition. 2009;

42(9):1977–1987. https://doi.org/10.1016/j.patcog.2008.10.013

4. Kang U, McGlohon M, Akoglu L, Faloutsos C. Patterns on the Connected Components of Terabyte-

Scale Graphs. In: ICDM; 2010. p. 875–880.

5. Lim Y, Lee W, Choi H, Kang U. Discovering large subsets with high quality partitions in real world

graphs. In: BIGCOMP; 2015. p. 186–193.

6. Lim Y, Lee W, Choi H, Kang U. MTP: discovering high quality partitions in real world graphs. WWW.

2016; p. 1–24.

PLOS ONE PACC: Large scale connected component computation on Hadoop and Spark

PLOS ONE | https://doi.org/10.1371/journal.pone.0229936 March 18, 2020 24 / 25

https://doi.org/10.1371/journal.pcbi.0020173
https://doi.org/10.1371/journal.pcbi.0020173
http://www.ncbi.nlm.nih.gov/pubmed/17140285
https://doi.org/10.1242/jcs.02714
https://doi.org/10.1242/jcs.02714
http://www.ncbi.nlm.nih.gov/pubmed/16254242
https://doi.org/10.1016/j.patcog.2008.10.013
https://doi.org/10.1371/journal.pone.0229936

7. Jung J, Shin K, Sael L, Kang U. Random Walk with Restart on Large Graphs Using Block Elimination.

TODS. 2016; 41(2):12. https://doi.org/10.1145/2901736

8. Kang U, Faloutsos C. Beyond ‘Caveman Communities’: Hubs and Spokes for Graph Compression and

Mining. In: ICDM; 2011. p. 300–309.

9. Lim Y, Kang U, Faloutsos C. SlashBurn: Graph Compression and Mining beyond Caveman Communi-

ties. TKDE. 2014; 26(12):3077–3089.

10. Suri S, Vassilvitskii S. Counting triangles and the curse of the last reducer. In: WWW; 2011. p. 607–614.

11. Kiveris R, Lattanzi S, Mirrokni VS, Rastogi V, Vassilvitskii S. Connected Components in MapReduce

and Beyond. In: SoCC; 2014. p. 18:1–18:13.

12. Park H, Park N, Myaeng S, Kang U. Partition Aware Connected Component Computation in Distributed

Systems. In: ICDM; 2016. p. 420–429.

13. Patwary MMA, Refsnes P, Manne F. Multi-core Spanning Forest Algorithms using the Disjoint-set Data

Structure. In: IPDPS; 2012. p. 827–835.

14. Kyrola A, Blelloch GE, Guestrin C. GraphChi: Large-Scale Graph Computation on Just a PC. In: OSDI;

2012. p. 31–46.

15. Kim M, Lee S, Han W, Park H, Lee J. DSP-CC-: I/O Efficient Parallel Computation of Connected Com-

ponents in Billion-Scale Networks. TKDE. 2015; 27(10):2658–2671.

16. Bader DA, Cong G. A fast, parallel spanning tree algorithm for symmetric multiprocessors (SMPs).

JPDC. 2005; 65(9):994–1006.

17. Malewicz G, Austern MH, Bik AJC, Dehnert JC, Horn I, Leiser N, et al. Pregel: a system for large-scale

graph processing. In: SIGMOD; 2010. p. 135–146.

18. Low Y, Gonzalez J, Kyrola A, Bickson D, Guestrin C, Hellerstein JM. Distributed GraphLab: A Frame-

work for Machine Learning in the Cloud. PVLDB. 2012; 5(8):716–727.

19. Gonzalez JE, Xin RS, Dave A, Crankshaw D, Franklin MJ, Stoica I. GraphX: Graph Processing in a Dis-

tributed Dataflow Framework. In: OSDI; 2014. p. 599–613.

20. Gonzalez JE, Low Y, Gu H, Bickson D, Guestrin C. PowerGraph: Distributed Graph-Parallel Computa-

tion on Natural Graphs. In: OSDI; 2012. p. 17–30.

21. Chen R, Shi J, Chen Y, Chen H. PowerLyra: differentiated graph computation and partitioning on

skewed graphs. In: EuroSys; 2015. p. 1:1–1:15.

22. Shun J, Blelloch GE. Ligra: a lightweight graph processing framework for shared memory. In: PPoPP;

2013. p. 135–146.

23. Zhu X, Chen W, Zheng W, Ma X. Gemini: A Computation-Centric Distributed Graph Processing Sys-

tem. In: OSDI; 2016. p. 301–316.

24. Dean J, Ghemawat S. MapReduce: simplified data processing on large clusters. Commun ACM. 2008;

51(1):107–113. https://doi.org/10.1145/1327452.1327492

25. Kang U, Lee JY, Koutra D, Faloutsos C. Net-Ray: Visualizing and Mining Billion-Scale Graphs. In:

PAKDD; 2014. p. 348–361.

26. Jeon B, Jeon I, Kang U. TeGViz: Distributed Tera-Scale Graph Generation and Visualization. In: ICDM;

2015. p. 1620–1623.

27. Park H, Silvestri F, Pagh R, Chung CW, Myaeng SH, Kang U. Enumerating Trillion Subgraphs On Dis-

tributed Systems. ACM TKDD. 2018; 12(6):71:1–71:30.

28. Park H, Chung C. An efficient MapReduce algorithm for counting triangles in a very large graph. In:

CIKM; 2013. p. 539–548.

29. Park H, Silvestri F, Kang U, Pagh R. MapReduce Triangle Enumeration With Guarantees. In: CIKM;

2014. p. 1739–1748.

30. Kang U, Tsourakakis CE, Faloutsos C. PEGASUS: A Peta-Scale Graph Mining System. In: ICDM;

2009. p. 229–238.

31. Cohen J. Graph Twiddling in a MapReduce World. CS&E. 2009; 11(4):29–41.

32. Plimpton SJ, Devine KD. MapReduce in MPI for Large-scale graph algorithms. Parallel Comp. 2011; 37

(9):610–632. https://doi.org/10.1016/j.parco.2011.02.004

33. Rastogi V, Machanavajjhala A, Chitnis L, Sarma AD. Finding connected components in map-reduce in

logarithmic rounds. In: ICDE; 2013. p. 50–61.

34. Cormen TH. Introduction to algorithms. MIT press; 2009.

35. Kwak H, Lee C, Park H, Moon S. What is Twitter, a social network or a news media? In: WWW; 2010. p.

591–600.

PLOS ONE PACC: Large scale connected component computation on Hadoop and Spark

PLOS ONE | https://doi.org/10.1371/journal.pone.0229936 March 18, 2020 25 / 25

https://doi.org/10.1145/2901736
https://doi.org/10.1145/1327452.1327492
https://doi.org/10.1016/j.parco.2011.02.004
https://doi.org/10.1371/journal.pone.0229936

